Quic Extension for Reporting Ack Receive Timestamps

Meta Inc.
QUIC congestion control [RFC9002] supports sampling round-trip time (RTT) by measuring the time from when a packet was sent to when it is acknowledged.

- meas. granularity depends on ack frequency (~20PktS)

- hides n/w fluctuations at short time-scales (due to cell/wifi scheduling/congestion)
Motivation

Precise delay signals measured via packet receive timestamps have the potential to

- improve accuracy of network bandwidth measurements and effectiveness of congestion control, especially for latency-critical applications such as real-time video conferencing or game streaming
 - E.g. as used in WebRTC congestion control algorithm described in [I-D.ietf-rmcat-gcc]

- Capture short time-scale fluctuations in network conditions, to detect wireless last-mile network congestion.
A variable-length integer indicating that the sending endpoint would like to receive **ACK_RECEIVE_TIMESTAMPS** frames from the peer containing no more than the given maximum number of receive timestamps.

A variable-length integer indicating the exponent to be used when encoding and decoding timestamp delta fields in **ACK_RECEIVE_TIMESTAMPS** frames sent by the peer (see Section 5.1). If this value is absent, a default value of 0 is assumed (indicating microsecond precision). Values above 20 are invalid.

max_receive_timestamps_per_ack

receive_timestamps_exponent
ACK_RECEIVE_TIMESTAMPS Frame

```plaintext
ACK_RECEIVE_TIMESTAMPS Frame {
  Type (i) = TBD
  // Fields of the existing ACK (type=0x02) frame:
  Largest Acknowledged (i),
  ACK Delay (i),
  ACK Range Count (i),
  First ACK Range (i),
  ACK Range (...) ...
  // Additional fields for ACK_RECEIVE_TIMESTAMPS:
  Timestamp Range Count (i),
  Timestamp Ranges (...) ...
}
```

Endpoints which send ACK_RECEIVE_TIMESTAMPS frames must determine a value, `receive_timestamp_basis`, relative to which all receive timestamps for the session will be reported.

The value of `receive_timestamp_basis` MUST be less than the smallest receive timestamp reported, and MUST remain constant for the entire duration of the session.
Each Timestamp Range describes a series of contiguous packet receive timestamps in descending sequential packet number (and descending timestamp) order.

<table>
<thead>
<tr>
<th>Gap</th>
<th>A variable-length integer indicating the largest packet number in the Timestamp Range (as the difference between the largest acked packet, or the smallest packet of the previous range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp Delta Count</td>
<td>A variable-length integer indicating the number of Timestamp Deltas in the current Timestamp Range.</td>
</tr>
<tr>
<td>Timestamp Deltas</td>
<td>Variable-length integers encoding the receive timestamp for contiguous packets in the Timestamp Range in descending packet number</td>
</tr>
</tbody>
</table>

Example:

```
largest_acked_pktnum = 100
timestamp_range_count = 2

gap = 0, timestamp_deltas = 5
  50 0 0 1 1
  100 99 98 97 96

gap = 3, timestamp_deltas = 5
  6 0 0 2 0
  91 90 89 88 87
```
ACK_RECEIVE_TIMESTAMPS Frame: Meta’s implementation

ACK_RECEIVE_TIMESTAMPS Frame {
 Type (i) = TBD
 // Fields of the existing ACK (type=0x02) frame:
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...
 // Additional fields for ACK_RECEIVE_TIMESTAMP:
 Latest Received Packet Num (i)
 Latest Received Packet Time Delta (i)
 Timestamp Range Count (i),
 Timestamp Ranges (..) ...
}
Queues build up for non-serviced clients when waiting for resources. This queuing results in packet aggregation and dispersion.
Congestion Detection:

- Explicit signal for congestion can improve QUIC congestion control algorithms.
- Adaptive bitrate (ABR) optimizations to better adapt to congestion.

Bandwidth Estimation:

- Fine-grained, short time-scale BW estimates help latency-sensitive applications
Discussion and Next-steps

Proposal: extend current draft to support encoding out-of-order packet ranges (and time-of-arrival deltas) in the ACK_RECEIVE_TIMESTAMPS frame

- useful for more accurate RTT measurements,
- understanding the magnitude and impact of potentially high out-of-order packet scenarios, e.g Quic Direct Server Return (DSR).