
Quic Extension for Reporting Ack Receive
Timestamps
Meta Inc.

Motivation

QUIC congestion control [RFC9002] supports sampling
round-trip time (RTT) by measuring the time from when
a packet was sent to when it is acknowledged.

- meas. granularity depends on ack frequency
(~20Pkts)

- hides n/w fluctuations at short time-scales (due to
cell/wifi scheduling/congestion)

https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html#RFC9002

Motivation

Precise delay signals measured via packet receive
timestamps have the potential to

- improve accuracy of network bandwidth
measurements and effectiveness of
congestion control, especially for
latency-critical applications such as real-time
video conferencing or game streaming

- E.g. as used in WebRTC congestion
control algorithm described in
[I-D.ietf-rmcat-gcc]

- Capture short time-scale fluctuations in
network conditions, to detect wireless
last-mile network congestion.

https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html#I-D.ietf-rmcat-gcc

Draft Proposal Outline: Extension Negotiation

max_receive_timestamps_per_ack

A variable-length integer indicating that the sending
endpoint would like to receive
ACK_RECEIVE_TIMESTAMPS frames from the peer
containing no more than the given maximum
number of receive timestamps.

receive_timestamps_exponent

A variable-length integer indicating the exponent to
be used when encoding and decoding timestamp
delta fields in ACK_RECEIVE_TIMESTAMPS frames
sent by the peer (see Section 5.1). If this value is
absent, a default value of 0 is assumed (indicating
microsecond precision). Values above 20 are invalid

https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html

https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html#ts-ranges
https://www.ietf.org/archive/id/draft-smith-quic-receive-ts-00.html

ACK_RECEIVE_TIMESTAMPS Frame

ACK_RECEIVE_TIMESTAMPS Frame {
 Type (i) = TBD
 // Fields of the existing ACK (type=0x02) frame:
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 // Additional fields for ACK_RECEIVE_TIMESTAMPS:
 Timestamp Range Count (i),
 Timestamp Ranges (..) ...,
}

Endpoints which send ACK_RECEIVE_TIMESTAMPS frames must determine a value,
receive_timestamp_basis, relative to which all receive timestamps for the session will
be reported

The value of receive_timestamp_basis MUST be less than the smallest receive
timestamp reported, and MUST remain constant for the entire duration of the
session

Timestamp Ranges Encoding

Gap A variable-length integer indicating the largest packet number in
the Timestamp Range (as the difference between the largest
acked packet, or the smallest packet of the previous range)

Timestamp Delta
Count

A variable-length integer indicating the number of Timestamp
Deltas in the current Timestamp Range.

Timestamp Deltas Variable-length integers encoding the receive timestamp for
contiguous packets in the Timestamp Range in descending
packet number

Each Timestamp Range describes a series of contiguous packet receive
timestamps in descending sequential packet number (and descending
timestamp) order.

ACK_RECEIVE_TIMESTAMPS Frame: Meta’s implementation

ACK_RECEIVE_TIMESTAMPS Frame {
 Type (i) = TBD
 // Fields of the existing ACK
(type=0x02) frame:
 Largest Acknowledged (i),
 ACK Delay (i),
 ACK Range Count (i),
 First ACK Range (i),
 ACK Range (..) ...,
 // Additional fields for
ACK_RECEIVE_TIMESTAMPS:
 Latest Received Packet Num (i)
 Latest Received Packet Time Delta (i)
 Timestamp Range Count (i),
 Timestamp Ranges (..) ...,
}

Rx timestamps are NOT
generated for out-of-order
packets.

Latest received
pkt_num/time_delta received
surfaces latest was an
out-of-order packet.

Allows for more accurate RTT
measurements

Wireless Last-mile Congestion Detection

Interval 0

Queues build up for non-serviced clients when waiting for resources.
This queuing results in packet aggregation and dispersion.

Interval 1

Interval 2

Interval 3

Interval 4

QUIC
Server QUIC

Client

Scheduled
Resource
Network
Element

00:00:00.000

00:00:00.002

00:00:00.003

Interval 5

Interval 6

Interval 7

00:00:00.007

Inter-arrival times can be collated
with send timestamps to identify

congestion.

Send Times

Receive Times

Aggregation due to
congestion-induced queue
build-up

Packet/Burst Dispersion due to
congestion

Use cases @ Meta

Congestion Detection:

● Explicit signal for congestion can improve QUIC congestion
control algorithms.

● Adaptive bitrate (ABR) optimizations to better adapt to
congestion.

Bandwidth Estimation:
● Fine-grained, short time-scale BW estimates help

latency-sensitive applications

Discussion and Next-steps

Proposal: extend current draft to support encoding
out-of-order packet ranges (and time-of-arrival deltas) in the
ACK_RECEIVE_TIMESTAMPS frame

- useful for more accurate RTT measurements,
- understanding the magnitude and impact of potentially

high out-of-order packet scenarios, e.g Quic Direct Server
Return (DSR).

