
Forward Erasure Correction for
Short-Message Delay-Sensitive

QUIC Connection

Dmitry Moskvitin,

Evgeny Onegin,

et al

Background

The Architecture of RTC Services

Control data: Websocket over QUIC

Media data: RTP over UDP

Problem:

> When clients are in the bad network environment, e.g., unstable

wireless signal, they will disconnect from the RTC service

frequently.

- It has a bad QoE. Users have to often reconnect, and start it over.

> The problem is mainly due to the loss of most control data.

> Besides that, small packets during short sessions, e.g. user

verification session, packets carrying certificates, passwords,

fingerprints, emails, SMS codes, etc, will also be affected by

bad network conditions.

Requirement:

> Delay sensitive control data should be delivered first,

and try to avoid loss as much as possible.

> FEC is method appropriate for this scenario.

client client

Edge

Server
Edge

Server

Region

Servers

Network

Huawei Meetime

Network

Proposed QUIC FEC Architecture

Y2S1 S2 Sn YmY1... ...

Protected group of original packets FEC repair symbols

Traditional FEC
FEC for Short Messages

Sj Y1 Y2 Ym
…

Protected
packet

FEC repair symbols

Advantage: It does not modify current QUIC design!

Sender

Receiver

 Xi

QuicSentPacket
manager

FEC encoder

FEC Redundancy policy
manager

Configuration
Initial FEC scheme

Transmission
statistics

RTT, packet
retransmission, ACKed

packets

Transport packet Xi

Send packet queue

Receive packet queue

FEC decoder
QuicReceivedPacket

Manager processing Sj

FEC_ACK generator

QUIC packet Sj

Encryption

DecryptionACK

Repair symbol Ym

Sj

Y1

YmY3

X0

Y1 YmY2 Y3

fec(y)

X1X2X3X4Xn

Y2

fec(y) fec(y) fec(y)

Transport
packets

FEC_ACK {
Type (i) = TBD,
FEC Latest Restored Packet Number (i),
FEC Restored Bytes (i),
FEC Restored Packets (i),
FEC Restored Packet List Size (i),
FEC Restored Packet Number (i) ...

}

FEC_REPAIR {
Type (i) = TBD,
FEC Version (i),
Packet Number Length (2),
Protected Packet Number (8..32),
FEC Meta Data (..),
Reserved (i) = 0,
FEC Payload (..)

}

Results from the test

Test conditions:
- netem server params: Ingress: 50ms delay X% packet loss, Egress: 50ms delay
- Transfer medium: Wi-Fi + cross country

In congested network, the overall performance of version 87 for small packets is improved
by 12.25% to 34.04% on average compared with that of the native version 87.

Webpage Metrics (ms) QUIC without
FEC

QUIC with
FEC

Improvements

Cold
Start

Page loading Time 2783 2651 4.64%

Content Downloading 166 120 27.71%

Warm
Start

Page loading Time 860 670 22.09%

Content
Downloading

750 563 24.93%

Test From Lab Data From Implemented Products

Results from Huawei Browser in weak network environment
(10% loss rate, 50ms delay)

Metrics Improvements

Call Completion Rate 5.71%

Call Completing ratio in 5s 6.34%

Average Delay to Handle in weak
network

60.5%

Call Lost Rate in weak network 0.7%

Improvement Results After QUIC FEC Implemented in Meetime

Issues to be discussed

• Does short message have to be protected by FEC or not?

> In WAN scenario, RTT is relatively large, and there would be both random loss and burst loss in the network.

> If relying on retransmission, delay is a problem; If sending duplicate packets, it is difficult to handle burst loss and waist more

bandwidth than FEC.

> On the basis of above considerations, we think FEC is a good solution in all respects.

• How does FEC deal with the network congestions?

> In order to achieve maximum efficiency, sender should adaptively change FEC redundancy according to network conditions. E.g., in

the case of our websocket long connections, FEC redundancy can be more accurately adjusted based on the network information

collected from the connections.

• Is it able to support large data transaction?

> Yes, can use packet number range to indicate multiple source symbol packets.

