Service ID for addressing and networking

Daniel Huang ZTE Corporation
Chen Ge China Telecom
Zhang Yan China Unicom
Liang Jie China Telecom
Yang Dong Beijing Jiaotong university
Fu Huakai ZTE Corporation
Dongyu Yuan ZTE Corporation
Guo Yong ZTE Corporation
Huang Cheng ZTE Corporation

draft link:
https://datatracker.ietf.org/doc/draft-huang-rtgwg-sid-for-networking/
What is service identification and how is it in routing network?

Service ID: entity which refers to user-oriented services or capabilities explicitly or implicitly.

WHY:
- Identify service with disparate requirements and treat the traffic accordingly
- Light-weight interface to the users rather than only to the operators
- Relevant across terminal, network, and cloud

HOW in routing network:
- Implicit way: Mapping with 5-tuples
- Explicit way: **service address** of ROSA, **App ID** of APN, **Computing service ID** of CATS
Why it matters
- use case 1: service mesh across multiple clouds

1. Multiple L7 proxy traffic interception in networking among micro-services involves overwhelmed performance price in terms of delay and complexity
2. API gateways at the DCs could be under operation of different parties, additional complexity incurs for the micro-service accessing
Why it matters
- use case 2: multi-cloud/domain interconnection

1. Multi-cloud interconnection could bring up different underlying technologies while the end-to-end service requirements needs to be consistently guaranteed.
 - No unified mechanism is in place to ensure the end-to-end requirements satisfaction
2. Additional delay cost occurs when the gateways of different domain handles the tunnel operation as well as service mobility.
The gaps of the existing mechanisms

1, **State burden**: mapping state would increase exponentially while the services migrate from centralized cloud to edge sites

2, **Granularity and TE**:
 - 5-tuples could not identify the sub-flow of service which could be far more networking sensitive than the rest
 - Bind SID/Color/DSCP based TE could not reflect the service in a fine-grained and explicit way.

3, **Service operation**: existing identification is operator-oriented rather than user-oriented

4, **Network and cloud convergence**: 5-tuples would be terminated by cloud gateway (NAT etc.)

5, **L4/L7 gateway in the way**: traffic routing and forwarding would be terminated with significant performance prices.
The requirements of standalone service ID in routing network

REQ1 Service identification SHOULD have standalone semantics versus 5-tuples. location and device independant
REQ2 Service identification SHOULD have global and unified semantics across terminal, network and cloud.
REQ3 Service identification SHOULD be able to index the specified service profile in terms of its SLA requirements.
REQ4 Service identification might indicate specified networking capabilities and specified applications as well as application components such as microservices.
REQ5 Service identification might cover only the selected services and applications which have been designated to be networking and computing sensitive.
• Service ID is governed and managed by a controlled system
• Service ID is an agreement and explicit interface between provider and user
Instantiation of service ID in IPv6 headers

Service ID in IPv6 address field:

Service ID in IPv6 flow label field:

Service ID in IPv6 extension header:
What's new:
- Service ID-based OAM extends from transport network to the cloud of which OAM would be associated with that of network.
- Network to service OAM leveraging service ID as the unified interface.
- Availability of multiple OAM in terms of service ID.
The draft focuses on rationale of standalone service ID in routing network rather than the specific framework solution, so the use cases and gap analysis would be refined and decoupled from this draft.

Any comments, suggestions and contributions would be welcome and appreciated.