
Zakwan Jaroucheh (Edinburgh Napier University)

Mentors: V. Ramakrishna (IBM), Rafael Belchior(Técnico Lisboa), Sandeep Nishad (IBM)

IETF 118: Secure Asset Transfer Working Group
Prague, Czech Republic

November 9, 2023

Secure Asset Transfer Protocol (SATP)
Implementation in the Hyperledger Cacti Interoperability Framework

(draft-ietf-satp-core-02) 
&

(draft-belchior-satp-gateway-recovery-00)

1



IETF 118: SATP Working Group

• Hyperledger Mentorship 2023 project 2023

• https://wiki.hyperledger.org/display/INTERN/Cacti%3A+Im
plement+Standardized+Secure+Asset+Transfer+Protocol

• Augment Cacti “relay” according to SATP draft specs

• SATP-standard endpoints and SATP message parsing capabilities

• Error handling and crash recovery support

• ETA: end of November 2023

2

Reference Implementation of SATP in Hyperledger Cacti

SATP Gateway

https://github.com/hyperledger/cacti

• Relay is a configurable module running gRPC
services built on Rust

• Not built for any specific DLT; compatible with any

• Fits the specification for an SATP gateway

gR
PC

 ::
 A

pp
lic

at
io

n Protocol :: Data Sharing

Protocol :: Asset Transfer

Protocol :: Asset Exchange

gR
PC

 ::
 R

el
ay



IETF 118: SATP Working Group 3

Cacti Relay Architecture

gR
PC

Pr
ot

oc
ol

 A
da

pt
er

gR
PC

ConfigCredentials

Platform SDK

Session Type :: Data Sharing

Pr
ot

oc
ol

 A
da

pt
er

gR
PC

ConfigCredentials

Platform SDK

Pr
ot

oc
ol

 A
da

pt
er

gR
PC

ConfigCredentials

Platform SDK

(Microservice Architecture)

Message 
Type

Message 
Type

Message 
Type

Session Type :: Asset Transfer

Session Type :: Asset Exchange

ConfigCredentials

Best of breed SDK for 
interacting with DLT network

Protocol adapter 
maps protocol 

semantics to DLT 
protocol

Driver for interacting with 
network, enclosed in a container

Formally verifiable message 
based protocol conversation 

with remote relay

Message Cache

Rust-based reference implementation of 
interoperability protocol standard 

enclosed in a container

Smart 
Contracts/DApps

Smart 
Contracts/DApps

Smart 
Contracts/DApps

Hyperledger Fabric

Permissioned Ethereum

Corda

NETWORKS

RELAY

Spec: https://github.com/hyperledger/cacti/blob/main/weaver/rfcs/models/infrastructure/relays.md
Code: https://github.com/hyperledger/cacti/tree/main/weaver/core/relay



IETF 118: SATP Working Group 4

SATP Between Cacti-Augmented Networks

gR
PC

 ::
 A

pp
lic

at
io

n

Protocol :: Data Sharing

Protocol :: Asset Transfer

Protocol :: Asset Exchange

gR
PC

 ::
 R

el
ay

API: Instructions

Cacti Chaincode

Sample Network

Application

Interoperation SDK

RELAY

Sample App
satpsimpleasset chaincode

Driver

gR
PC

 ::
 D

riv
er

Protocol :: Data Sharing

Protocol :: Asset Transfer

Protocol :: Asset Exchange

gR
PC

 ::
 R

el
ay

RELAY

Cacti Chaincode

Sample Network

Sample App
satpsimpleasset chaincode

Application

Interoperation SDK

Driver

SATP



IETF 118: SATP Working Group 5

Augmenting Cacti Components for SATP
• Cacti Relay

• Rust-based and runs gRPC services and clients
• Added a SATP Service

• Added the new service satp_service.rs
• Added a new client satp_client.rs
• Added/Changed the relevant library helper files

• SATP protobuf (service interface)
• In github.com/hyperledger/cacti/weaver/common/protos, added the satp.proto

• Hyperledger Fabric App
• In github.com/hyperledger/cacti/weaver/samples/fabric, added 
satpsimpleasset chaincode (satpsimpleasset.go), i.e., smart contract for Fabric

• Augmented interoperation helper SDK for Fabric clients 
github.com/hyperledger/cacti/weaver/core/fabric-
driver/server/server.ts to include the following functions: performLock, 
createAsset, extinguish, and assignAsset

• Reference: https://github.com/hyperledger/cacti/pull/2748



IETF 118: SATP Working Group 6

Relay Support for SATP Operations

Reference: draft-ietf-satp-core-02



IETF 118: SATP Working Group 7

SATP Protobuf (Service Interface for Relay)



IETF 118: SATP Working Group 8

SATP Service Sample Function

Stage 1
Step 1.1



IETF 118: SATP Working Group 9

SATP Gateway Calls Fabric Driver

Step 1.1
Step 2.1A



IETF 118: SATP Working Group 10

SATP Gateway Calls Fabric Driver

Stage 2
Step 2.1A



IETF 118: SATP Working Group 11

SATP Gateway Calls Fabric Driver

Stage 2
Step 2.1A



IETF 118: SATP Working Group 12

Fabric Driver Invokes satpsimpleasset Chaincode
A sample/reference implementation for networks built on Hyperledger Fabric that use SATP gateways

Function to process 
asset received from 

another network

Step 3.6A



IETF 118: SATP Working Group 13

Support for Other Kinds of Networks

• Relay is DLT-agnostic, so the SATP augmentation will work for any DLT (not 
just Fabric)

• Hyperledger Cacti supports connectivity to various kinds of DLTs: 
Hyperledger Fabric, Hyperledger Besu (permissioned Ethereum), Quorum, 
R3 Corda, Hyperledger Sawtooth, and others; more in the pipeline

• Offers a connector/driver for each
• Need to augment these to talk to the relay, just as we did for the Fabric driver in this project

• Offers a client library/SDK for each
• Need to add functions just like we did for the Fabric SDK in this project

• Offers sample apps (smart contracts or DApps) for each
• Need to add asset transfer endpoint functions (to lock, burn, mint, redeem, assets)



IETF 118: SATP Working Group 14

Logging (Crash Recovery)

Reference: draft-belchior-satp-gateway-recovery-00

Types: Init, Exec, Done



IETF 118: SATP Working Group 15

Logging (Crash Recovery)

Storage Implementation: SQLite database



IETF 118: SATP Working Group 16

Sample Snapshot of Log Entries

Storage Implementation: SQLite database



IETF 118: SATP Working Group 17

Project Status

• SATP Service
• All endpoints for Stage 1 to Stage 3 have been implemented
• An endpoint has been added to allow the driver to update the status of an asset for the steps: 

2.1B, 3.2B, 3.4B and 3.6B. 
• Placeholders have been added to validate each incoming requests
• Placeholders have been added to derive the corresponding request object (that needs to be 

sent to the other gateway) based on the incoming requests
• Demo how an asset can be transferred from one Fabric network to another Farbic network 

using SATP protocol implementation

• TODO
• All endpoints related to Stage 0
• Fill the above placeholders according to the SATP logic
• Remove some hardcoded values used for demoing creating an asset, assign it and destroy it
• Add a looping mechanism that enables the gateway to repeatedly inquire about the asset's 

status from the driver.



IETF 118: SATP Working Group 18

Feedback from Implementer

• It would be beneficial to have the format of these messages documented in a Git 
repository to serve as the definitive source of truth.

• Interface between gateway and driver (executor) is not clear (Note: out of scope)
• Unclear how to get a unique ID for each request
• How do gateways negotiate compatible signature algorithms? (Note: Stage 0)
• Ambiguity about asset state inference in the face of failure

• If a gateway recovers after a crash and wishes to resume SATP but discovers that an asset is 
locked, how does it know that the asset was locked by the in-progress SATP instance and not 
by an unrelated process?

• Note: do we need a generic interface for networks to expose the states of digital assets to 
third parties?

• Managing contention and avoid overhead: read asset state first before attempting 
to lock (atomic operation)



IETF 118: SATP Working Group 19

Thank you and Q&A

Zakwan Jaroucheh: zakwanj@gmail.com
Rafael Belchior: rafael.belchior@tecnico.ulisboa.pt

V. Ramakrishna: vramakr2@in.ibm.com
Sandeep Nishad: sandeep.nishad1@ibm.com

Zakwan’s demo with voiceover: https://we.tl/t-dWH2vFeNt4


