Intra-domain Source Address Validation (SAVNET) Architecture

Dan Li, Jianping Wu, **Lancheng Qin,** Nan Geng, Li Chen, Mingqing Huang, Fang Gao

November 8, 2023

Two Goals of Intra-domain SAV

□ Goal #1: Outbound traffic validation

Edge routers should block illegitimate packets coming from the AS's intra-domain subnets which forge source addresses of other subnets (either within the AS or other ASes)

□ Goal #2: Inbound traffic validation

Border routers should block illegitimate packets coming from other ASes which forge internal source addresses

Outbound SAV at edge router
 Inbound SAV at border router

Review of Intra-domain SAV Problem Statement

□ Problems of existing intra-domain SAV mechanisms^[1]

- ACL-based SAV requires high operational overhead
- •uRPF-based SAV has improper block or improper permit problems

D Requirements of the new intra-domain SAV mechanism^[1]

- Automatic update
- Accurate validation
- Incremental/partial deployment
- ♦Convergence
- Security

[1]: draft-ieft-savnet-intra-domain-problem-statement-02

Background of Intra-domain SAVNET Architecture

- □ Intra-domain SAVNET architecture aims to achieve accurate SAV in an intradomain network by an automatic way
 - ◆Address the problems of existing intra-domain SAV mechanisms
 - Meet the requirements proposed in [draft-ietf-savnet-intra-domain-problem-statement]

Historical versions

- ♦draft-li-savnet-intra-domain-architecture-01, IETF 116 SAVNET WG

- Interpretation of the second structure of the secon

Main Updates Compared to Version-03

- Updates in Intra-domain SAVNET Architecture section
 - Clarify the content of SAV-specific information
 - ◆Introduce the SAV rule generation process for edge router and border router, respectively
- **D** Updates in Use Cases section
 - Use the two use cases proposed in [draft-ietf-savnet-intra-domain-problem-statement] to illustrate intra-domain SAVNET can achieve more accurate validation and support automatic update
- □ Add a new section
 - Describe how intra-domain SAVNET meet the five design requirements proposed in [draftietf-savnet-intra-domain-problem-statement]

Key Idea of Intra-domain SAVNET Architecture

D Exchange SAV-specific information among intra-domain routers automatically

□ Generate SAV rules in routers based on both SAV-specific information and local routing information

Source Entity and Validation Entity

An intra-domain router can act as one or two roles: source entity or/and validation entity

Source entity sends its SAV-specific information to other routers Validation entity receives SAV-specific information from other routers and generates SAV rules based on SAV-related information

SAV-specific Information

□ SAV-specific information is specialized for SAV rule generation

- It carries necessary information which cannot be learned from local routing information especially in asymmetric routing scenarios, helping generate accurate SAV rules
- **D** Examples of SAV-specific information in intra-domain SAVNET
 - ◆The router's locally known source prefixes of its connected subnets
 - ◆The ownership of source prefixes, e.g., belonging to a single-homed subnet or belonging to a multi-homed subnet
 - ◆The type of source prefixes, e.g., anycast prefix, hidden prefix, etc.
- □ A new mechanism (namely, SAV-specific information communication mechanism) is needed to communicate SAV-specific information

SAV-specific Information Communication Mechanism

■ Building the communication channel and propagating SAV-specific information from source entity to validation entity

Automatic update in a timely manner

Session authentication before session establishment

SAV Rule Generation

- Edge routers generate SAV rules and perform outbound SAV
 - Obtain the complete source prefixes of each connected subnet based on SAV-specific information and local routing information
- Border routers generate SAV rules and perform inbound SAV
 - Obtain internal source prefixes of the AS based on SAV-specific information and local routing information

Use Case #1: Outbound SAV at Edge Routers

□ Outbound traffic validation in asymmetric routing scenario^[1]

- Edge routers 1 and 2 only learn part of source prefixes of Subnet 1 from local routing information in the asymmetric routing scenario
- **D** If using strict uRPF
 - Improper block
- □ If using intra-domain SAVNET

Accurate & Automatic outbound SAV

Routers 1 and 2 obtain the complete source prefix of Subnet 1 by exchanging their locally known source prefixes of Subnet 1

[1]: draft-ieft-savnet-intra-domain-problem-statement-02

Use Case #2: Inbound SAV at Border Routers

□ Inbound traffic validation^[1]

- Border routers 3 and 4 should block inbound packets with source address of internal source prefixes at border routers
- □ If using ACL-based SAV
 - Manual update when internal prefixes or network topology change dynamically
- □ If using loose uRPF
 - Large amount of improper permit
- □ If using intra-domain SAVNET
 - Accurate & Automatic inbound SAV

Routers 3 and 4 obtain the complete internal source prefix based on SAV-specific information sent by Routers 1, 2, and 5

[1]: draft-ieft-savnet-intra-domain-problem-statement-02

Use Case #2: Inbound SAV at Border Routers

□ Inbound traffic validation^[1]

- Border routers 3 and 4 should block inbound packets with source address of internal source prefixes at border routers
- □ If using ACL-based SAV
 - Manual update when internal prefixes or network topology change dynamically
- □ If using loose uRPF
 - Large amount of improper permit
- □ If using intra-domain SAVNET
 - Accurate & Automatic inbound SAV

Routers 3 and 4 obtain the complete internal source prefix based on SAV-specific information sent by Routers 1, 2, and 5

[1]: draft-ieft-savnet-intra-domain-problem-statement-02

Inbound SAV at border router
 SAV-specific information update

Accurate Validation & Automatic Update

Use Cases #1 and #2 illustrate that intra-domain SAVNET can achieve more accurate validation and support automatic update

- Compared with uRPF-based SAV which solely uses local routing information,
 Intra-domain SAVNET generates SAV rules by using both local routing information and SAV-specific information exchanged among routers, resulting in more accurate SAV validation in asymmetric routing scenarios
- **Compared with ACL-based SAV** which requires manual updates,
 - Intra-domain SAVNET generates SAV rules automatically in a distributed way and allows routers to exchange the changes of SAV-specific information among each other automatically

Incremental/Partial Deployment

- **D** Edge routers and border routers deploying intra-domain SAVNET is enough
- □ If only partial edge routers and border routers deploy intra-domain SAVNET, they can still block spoofing traffic by exchanging SAV-specific information
 - Outbound SAV: as long as edge routers connected to the same subnet exchange SAVspecific information, that subnet can be prevented from spoofing other subnets
 - Inbound SAV: if a border router only obtains partial internal source prefixes, it can still block inbound packets which forge those prefixes
 - When SAV-specific information is missing, local routing information can be used to generate SAV rules
- □ More routers deploy intra-domain SAVNET, more benefits

Convergence

D When SAV-related information changes,

- Source entity MUST send the updated SAV-specific information to validation entity timely
- ◆Validation entity MUST detect the changes of received SAV-specific information and local routing information in time and update SAV rules with the latest information
- Propagation speed of SAV-specific information is the main factor that affects the convergence of SAV rule generation
 - SAV-specific information can have a similar propagation speed as routing information
 > if SAV-specific information and routing information of an edge router can be advertised to other routers in a similar way
 - ◆ Depending on the design and implementation of the new intra-domain SAV solution

Security

In some unlikely cases, some routers may do harm to other routers within the same domain

- Potential threats: entity impersonating, message blocking, message alteration, message replay, etc.
- □ The above security threats SHOULD be considered when designing the new intra-domain SAV solution
 - Possible solutions: session authentication, message acknowledge, message integrity verification, duplication detection, etc.

Summary

Following this architecture, the new SAV solution can meet the requirements proposed in [draft-ieft-savnet-intra-domain-problem-statement]

- □ Requirement #1: Accurate Validation
 - ◆Generate SAV rules using both SAV-specific information and local routing information
- □ Requirement #2: Automatic update
 - ◆SAV-specific information exchange is triggered automatically when topology or prefix changes
- □ Requirement #3: Incremental/partial Deployment
 - ◆Block spoofing traffic when it is partially deployed in an intra-domain network
- □ Requirement #4: Convergence
 - ◆SAV-specific information and SAV rules can be updated in a timely manner
- **D** Requirement #5: Security
 - ◆Possible security threats should be considered when designing the new SAV solution

Thanks!