Profiles of TE Topology Model for non-TE scenarios

TEAS WG, IETF118, Prague

draft-busi-teas-te-topology-profiles-06

Authors:
Italo Busi (Huawei)
Xufeng Liu (Alef Edge)
Igor Bryskin
Tarek Saad (Cisco)
Oscar Gonzalez de Dios (Telefonica)

Contributors:
Vishnu Pavan Beeram (Juniper)
Aihua Guo (Futurewei)
Haomian Zheng (Huawei)
Sergio Belotti (Nokia)
History

• IETF 110: initial proposal
 – Few positive feedbacks from TEAS WG mailing list (thanks to Daniele Ceccarelli)

• IETF 111: updated proposal based on mailing list and weekly call discussions
 – Few positive feedbacks from TEAS WG meeting (thanks to Scott Mansfield)
 – To be further discussion on the mailing list

• TEAS WG recently polled for interest
 – Few positive feedbacks form TEAS WG mailing list (thanks to Julien Meuric)
Motivation

• Multiple similar discussions in IETF working groups
 – Scenario: non-TE networks
 – Requirement: sub-set TE Topology attributes
• Similar discussions recently started for the Digital Map in OPSAWG
• TE Topology Model (RFC8795) looks very complex at the first glance
 – Extensive model to support many features
 • Some applicable only to TE networks
 • Others applicable to both TE and non-TE networks
 – Most of the features/attributes are optional
• Clarify that a sub-set (profile) of TE Topology can be used in specific scenarios (including non-TE use cases)
Examples of non-TE scenarios

• UNI Topology Discovery
• Administrative and Operational State
• Geolocation
• Overlay and Underlay Topology
• Nodes with switching limitations
Technology-specific Augmentations

Option 1
(single inheritance)

Network

Network Topology

TE Topology (profile)

Technology-specific TE Topology

Option 2
(multi-inheritance)

Network

Network Topology

TE Topology (profile)

Technology-specific Network Topology
Open Issue #1

• How to report to the client the profiles implemented by a server
 – may be different for different instances/network types

• Proposal
 – Out of scope from this draft (Informational)
 – Trigger discuss (and further work) with Netmod WG or OPSAWG WG (Digital Map) for a generic solution to support profiling standard YANG models

• See: https://github.com/tsaad-dev/te/issues/161
Open Issue #2

• Explanation of the difference between supporting-node/supporting-link (in RFC8345) and overlay/underlay (in RFC8795)
 – See comment from Scott Mansfield at IETF 111

• Proposal
 – Overlay/underlay concept in RFC8795 is used to model multi-layer relationship: a TE path in an underlay topology is supporting a TE Link in the overlay topology
 – Supporting-node/link in RFC8345 is used to model abstraction relationship: an abstract node in an abstract network topology is supported by a physical node in the native network topology

• See: https://github.com/tsaad-dev/te/issues/167
Next Step

• TEAS WG adoption
• Advertising this draft to other WGs
 – Relevant to the Digital Map work within OPSAWG?
 – Trigger work for a generic solution for profiling standard YANG models?
• Get more review and feedbacks
 – Address the open issues and any comments
• Add other useful examples
• Github: https://github.com/tsaad-dev/te
Backup
module: ietf-te-topology
 augment /nw:networks/nw:network/nw:network-types:
 --rw te-topology!
 augment /nw:networks/nw:network/nw:node/nt:termination-point:
 --rw te-tp-id? te-types:te-tp-id
 --rw te!
 --rw admin-status?
 te-types:te-admin-status
 --rw inter-domain-plug-id? binary
 --ro oper-status? te-types:te-oper-status
Administrative and Operational State

module: ietf-te-topology

augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!

augment /nw:networks/nw:network:
 +-rw te-topology-identifier
 | +-rw provider-id? te-global-id
 | +-rw client-id? te-global-id
 | +-rw topology-id? te-topology-id
 +-rw te!
 +-rw name? string

augment /nw:networks/nw:network/nw:node:
 +-rw te-node-id? te-types:te-node-id

 +-rw te!
 +-rw te-node-attributes
 | +-rw admin-status? te-types:te-admin-status
 | +-rw name? string
 +-ro oper-status? te-types:te-oper-status

augment /nw:networks/nw:network/nt:link:
 +-rw te!
 +-rw te-link-attributes
 | +-rw name? string
 | +-rw admin-status? te-types:te-admin-status
 +-ro oper-status? te-types:te-oper-status

augment /nw:networks/nw:network/nw:node/nt:termination-point:
 +-rw te-tp-id? te-types:te-tp-id

 +-rw te!
 +-rw admin-status? te-types:te-admin-status
 +-rw name? string
 +-ro oper-status? te-types:te-oper-status
Geolocation

module: ietf-te-topology
 augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!
 augment /nw:networks/nw:network:
 +-rw te-topology-identifier
 | +-rw provider-id? te-global-id
 | +-rw client-id? te-global-id
 | +-rw topology-id? te-topology-id
 +-rw te!
 +-ro geolocation
 +-ro altitude? int64
 +-ro latitude? geographic-coordinate-degree
 +-ro longitude? geographic-coordinate-degree
 augment /nw:networks/nw:network/nw:node:
 +-rw te-node-id? te-types:te-node-id
 +-rw te!
 +-ro geolocation
 +-ro altitude? int64
 +-ro latitude? geographic-coordinate-degree
 +-ro longitude? geographic-coordinate-degree
 augment /nw:networks/nw:network/nw:node/nt:termination-point:
 +-rw te-tp-id? te-types:te-tp-id
 +-rw te!
 +-ro geolocation
 +-ro altitude? int64
 +-ro latitude? geographic-coordinate-degree
 +-ro longitude? geographic-coordinate-degree
Overlay and Underlay Topology

module: ietf-te-topology
augment /nw:networks/nw:network/nw:network-types:
 +--rw te-topology!
augment /nw:networks/nw:network/nw:node:
 +--rw te-node-id? te-types:te-node-id
 +--rw te!
 +--rw te-node-attributes
 +--rw underlay-topology {te-topology-hierarchy}?
augment /nw:networks/nw:network/nt:link:
 +--rw te!
 +--rw te-link-attributes
 +--rw underlay {te-topology-hierarchy}?
 +--rw enabled? boolean
 +--rw primary-path
 +--rw network-ref?
 | -> /nw:networks/network/network-id
 +--rw path-element* [path-element-id]
 +--rw path-element-id uint32
 +--rw (type)?
 +--(numbered-link-hop)
 | +--rw numbered-link-hop
 | | +--rw link-tp-id te-tp-id
 | | +--rw hop-type? te-hop-type
 | | +--rw direction? te-link-direction
 +--(unnumbered-link-hop)
 +--rw unnumbered-link-hop
 +--rw link-tp-id te-tp-id
 +--rw node-id te-node-id
 +--rw hop-type? te-hop-type
 +--rw direction? te-link-direction
Nodes with switching limitations

module: ietf-te-topology
augment /nw:networks/nw:network/nw:network-types:
 +-rw te-topology!
augment /nw:networks/nw:network/nw:node:
 +-rw te-node-id? te-types:te-node-id
 +-rw te!
 +-rw te-node-attributes
 +-rw connectivity-matrices
 +-rw number-of-entries? uint16
 +-rw is-allowed? boolean
 +-rw connectivity-matrix* [id]
 +-rw id uint32
 +-rw from
 | +-rw tp-ref? leafref
 +-rw to
 | +-rw tp-ref? leafref
 +-rw is-allowed? boolean
Technology-specific Augmentations
Option 1

Augments Network Topology:
- Nodes
- Links
- Termination Points (TPs)

Augment also TE Topology:
- Bandwidth
- Tunnel Termination Points (TTPs)
- Connectivity Matrix
Technology-specific Augmentations
Option 2

- **Network**
- **Network Topology**
 - **TE Topology (profile)**
 - **Technology-specific Network Topology**
 - Augments *only* Network Topology
 - Nodes
 - Links
 - Termination Points (TPs)
Technology-specific Augmentations
Option 3

Augments only Network Topology
- Nodes
- Links
- Termination Points (TPs)

No advantages compared to Option 1
Useful only if the Technology-specific Network Topology already exists

Augment only TE Topology:
- Bandwidth
- Tunnel Termination Points (TTPs)
- Connectivity Matrix

References
Example: Technology-specific Augmentations (Link)

```plaintext
+-rw link* [link-id]
  +-rw link-id link-id
  <...>
  +-rw example-link-attributes // augment TE (Option 1) OR
  |  <...> // augment NT (Option 2 or 3)
  +--rw te!
      +-rw te-link-attributes
          +-rw name? string
          +-rw example-te-link-attributes // augment TE (Option 1 or 3)
          |  <...>
          +-rw max-link-bandwidth
          +-rw te-bandwidth
          +-rw (technology)?
            +-:(generic)
            |  +-rw generic? te-bandwidth
            +-:(foo) // augment TE (Option 1 or 3)
              +-rw foo? foo-bandwidth
```