
Key Share Prediction
draft-davidben-tls-key-share-prediction

David Benjamin

(EC)DHE* negotiation
Client sends two extensions

supported_groups — list of preferred NamedGroups

key_share — keys for some subset of supported_groups

Server picks some supported group

Sends ServerHello if the group is in key_share

Sends HelloRetryRequest otherwise (extra round-trip)

Policies left up to implementation…

…but normally semantics of fields are specified

* Now also postquantum KEMs

(EC)DHE* negotiation
Client sends two extensions

supported_groups — list of preferred NamedGroups

key_share — keys for some subset of supported_groups

Server picks some supported group

Sends ServerHello if the group is in key_share

Sends HelloRetryRequest otherwise (extra round-trip)

Policies left up to implementation…

…but normally semantics of fields are specified

No semantics given in RFC 8446

* Now also postquantum KEMs

Is this server behavior okay?
1. Pick a group out of key_shares, send ServerHello

2. Otherwise, pick a group out of supported_groups, send
HelloRetryRequest

Compare with

1. Pick a group out of supported_groups

2. If group is in key_shares, ServerHello. Otherwise, HelloRetryRequest

“key_share first”

“supported_groups first”

Clients always predict
their most preferred
groups, right?

Imagine the next postquantum transition
Consider three groups: AwesomeNewKEM, Kyber, X25519

AwesomeNewKEM and Kyber are postquantum, X25519 is classical

Sending two PQ KEMs is expensive

Client will not predict both

Server might support AwesomeNewKEM or Kyber

Client needs prior knowledge to guess — how?

Client predicts AwesomeNewKEM over Kyber because it’s more common

Server only supports Kyber

Uncommon groups

Client

supported_groups

{AwesomeNewKEM, Kyber, X25519}

key_share

{AwesomeNewKEM, X25519}

Server

supported_groups

{Kyber, X25519}

Result

X25519 😞

Fix this by adding DNS or other key share hint

Attacker hints X25519, but actually server supports Kyber

Out-of-band prediction

Client

supported_groups

{Kyber, X25519}

key_share

{X25519}

Server

supported_groups

{Kyber, X25519}

Result

X25519 😞

Client implements compatibility hack by sometimes not predicting Kyber

Attacker triggers this path even though server supports Kyber

Compatibility hacks*

Client

supported_groups

{Kyber, X25519}

key_share

{X25519}

Server

supported_groups

{Kyber, X25519}

Result

X25519 😞

* Not recommended; let’s please avoid this if we can

Server has no security preference between X25519 and P-256

Picking the one without HelloRetryRequest is faster

Equipreference

Client
supported_groups

{X25519, P-256}
key_share

{X25519}

Server
supported_groups

{X25519, P-256}
Result

X25519 🤷

Client
supported_groups

{X25519, P-256}
key_share

{P-256}

Server
supported_groups

{X25519, P-256}
Result

P-256 🤷

draft-davidben-tls-key-share-prediction
Clarify protocol semantics:

Client key shares are predictions, not preferences

Servers cannot assume key share list reflects preferences

Introduce SvcParamKey to hint server preferences in DNS

Backwards compatibility
Older TLS 1.3 servers exist

Define “prediction-safe” vs “prediction-unsafe” groups

Existing groups are prediction-unsafe

Newer groups are prediction-safe, require the new server behavior

Prediction tricks only apply to prediction-safe groups

Prediction-unsafe key shares must reflect preferences

Limit DNS hint to prediction-safe groups

Make all postquantum KEMs prediction-safe

Is this server behavior okay?
1. Pick a group out of key_shares, send ServerHello

2. Otherwise, pick a group out of supported_groups, send
HelloRetryRequest

Answer

Only if you have no preference between any of your supported groups

Definitely not okay if you support both postquantum and classical options

Questions?
https://datatracker.ietf.org/doc/draft-davidben-tls-key-share-prediction/

https://github.com/davidben/tls-key-share-prediction

https://datatracker.ietf.org/doc/draft-davidben-tls-key-share-prediction/
https://github.com/davidben/tls-key-share-prediction

