
TLS Trust Expressions
draft-davidben-tls-trust-expr

David Benjamin Devon O'Brien Bob Beck

1

At a high level, TLS Trust Expressions defines:

A way for relying parties to succinctly convey trusted certification
authorities to subscribers, and

Supporting mechanisms for subscribers to evaluate this information
and select a trusted certificate path to serve, and

It does so in a way that’s flexible enough to improve several
real-world PKI use cases

2

Use Case: Say you want to rotate a root CA key...
Just make a new key and issue from it instead...

Difficult to transition smoothly:

New relying parties might only trust the new key

But old relying parties only trust the old key

How do you satisfy both? ← long overlapping inclusions

The Web PKI has 25-year-old root keys because this is really hard!

3

Single-Certificate Model
In practice, relying parties do not tell the subscriber what they trust

Different relying parties have different requirements:

Also, different versions of a relying party

Also, these requirements are not coordinated and can conflict

Subscribers need a single certificate bundle that is supported by all relying
parties

→ Subscriber choice is limited to the intersection of all supported
relying parties

4

Stuck in the Intersection
CA challenges:

Only ubiquitous roots are useful for
subscribers

Difficult to support old and new relying
parties across changes

Subscriber challenges:

Limited choice

Certificate changes for one relying party
impacts support for another relying party

Hard to predict what will work

Relying party Challenges:

Policy changes to meet new security
requirements for certificates burden the
ecosystem — user security usually suffers 5

Stuck here

Multi-Certificate Model

Instead, use different certificate paths for different relying parties as needed

Requires two changes:

1. A certificate negotiation mechanism to select the right certificate path
2. An issuance mechanism for subscribers to easily obtain multiple

paths

6

Certificate
Negotiation

7

Trust store manifests

Trust store inclusions

Trust expressions

certificate_authorities?
certificate_authorities is a big list of X.509 names:

X.509 names are inefficient

Relying parties may trust many CAs

Chrome Root Program — 131 names totalling 13,104 bytes

Mozilla CA Certificate Program — 144 names totalling 14,475 bytes

8

SubscriberRelying Party
trust expressions

selected certificate

Named Trust Stores

9

A

B

C

(chrome, v1)
(chrome, v2)
(mozilla, v2)

(chrome, v2)
(mozilla, v3)

(enterprise-pki, v1)

"I support everything in (chrome, v2),
excluding ..."

B"I am authenticating as "

Relying party references versioned and named trust stores

Subscriber has metadata about which trust stores match
each candidate certificate path

Pick the best eligible option

Where Does This Come From?

SubscriberRelying Party
trust expressions

selected certificate

B"I am authenticating as "

Relying party references versioned and named trust stores

Subscriber has metadata about which trust stores match
each candidate certificate path

Pick the best eligible option

A

B

C

10

(chrome, v1)
(chrome, v2)
(mozilla, v2)

(chrome, v2)
(mozilla, v3)

(enterprise-pki, v1)

"I support everything in (chrome, v2),
excluding ..."

Overview

SubscriberRelying Party
trust expressions

selected certificate

Root Program Certificate
Authority

trust store manifest

trust anchors
trust expressions

certificate paths
trust store inclusions

Trust Store Manifests
JSON document published by root program

Describes current and historical versions of a
trust store

Also records integer "labels" and maximum
leaf certificate lifetime

New versions defined over time

12

{
 "name": "example",
 "max_age": 864000,
 "trust_anchors": {
 "A1": {"type": "x509", "data": "..."},
 "A2": {"type": "x509", "data": "..."},
 ...
 },
 "versions": [
 {
 "timestamp": 1672531200,
 "entries": [
 {"id": "A1", "labels": [0, 100], "max_lifetime": 7776000},
 {"id": "A2", "labels": [1, 100], "max_lifetime": 7776000},
 {"id": "B1", "labels": [2, 101], "max_lifetime": 7776000},
 {"id": "B2", "labels": [3, 101], "max_lifetime": 7776000}
]
 },
 {
 "timestamp": 1675209600,
 "entries": [
 {"id": "A1", "labels": [0, 100], "max_lifetime": 7776000},
 {"id": "A2", "labels": [1, 100], "max_lifetime": 7776000},
 {"id": "C1", "labels": [4, 102], "max_lifetime": 7776000},
 {"id": "C2", "labels": [5, 102], "max_lifetime": 7776000}
]
 }
]
}

SubscriberRelying
Party

trust expressions

selected certificate

Root
Program

Certificate
Authority

trust store manifest

trust anchors
trust expressions

certificate paths
trust store inclusions

Trust Store Inclusions
CA collects manifests from each root program it
participates in

Generates TrustStoreInclusionList for each issued
certificate path

Sent to subscriber at issuance

Describes the path's matching trust store versions

Assumed not updated until certificate renewal

13

enum {
 previous_version(0),
 latest_version_at_issuance(1)
} TrustStoreStatus;

struct {
 opaque name<1..2^8-1>;
 uint24 version;
} TrustStore;

struct {
 TrustStore trust_store;
 TrustStoreStatus status;
 uint24 labels<1..2^16-1>;
} TrustStoreInclusion;

TrustStoreInclusion
 TrustStoreInclusionList<1..2^16-1>;

SubscriberRelying
Party

trust expressions

selected certificate

Root
Program

Certificate
Authority

trust store manifest

trust anchors
trust expressions

certificate paths
trust store inclusions

Trust Expressions
Root programs provide TrustExpressionList with trust
anchor list

Each trust expression matches the referenced trust
store, minus exclusions

A path is eligible if it matches any trust expression

Exclusions account for subscribers that predate the
trust store (sections 4.1 and 6.5)

14

enum {
 trust_expressions(TBD), (2^16-1)
} ExtensionType;

struct {
 opaque name<1..2^8-1>;
 uint24 version;
} TrustStore;

struct {
 TrustStore trust_store;
 uint24 excluded_labels<0..2^16-1>;
} TrustExpression;

TrustExpression
 TrustExpressionList<1..2^16-1>;

SubscriberRelying
Party

trust expressions

selected certificate

Root
Program

Certificate
Authority

trust store manifest

trust anchors
trust expressions

certificate paths
trust store inclusions

Privacy

15

Only advertise trust anchors common to anonymity set

E.g. browser vendor or OS root program

Other trust anchors continue to work

If no trust expressions match, subscribers use previous behavior

ACME Extensions

16

Sending multiple certificate paths

Certificate properties

ACME already has this

No more heuristic needed

Lift the same end-entity restriction

As long as CA is okay issuing and renewing all variants together

Future work: another mechanism for more complex cases? (Multiple orders?)

Sending Multiple Certificate Paths

17

Certificate Properties
CertificatePropertyList — extensible
container for certificate metadata, e.g.
trust store inclusions

New media type:
application/pem-certificate-chain
-with-properties

Prepend a CERTIFICATE PROPERTIES
block to existing ACME type

Use HTTP Accept header to negotiate

18

enum {
 trust_stores(0), (2^16-1)
} CertificatePropertyType;

struct {
 CertificatePropertyType type;
 opaque data<0..2^16-1>;
} CertificateProperty;

CertificateProperty
 CertificatePropertyList<0..2^16-1>;

-----BEGIN CERTIFICATE PROPERTIES-----
...
-----END CERTIFICATE PROPERTIES-----
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
...
-----END CERTIFICATE-----

CAs transparently issue multiple
paths that together cover all
relying parties

Root ubiquity problem is gone!

19

Multi-Certificate
Examples

20

Key rotation

Eliding intermediates

Postquantum roots

Backup certificates

Key Rotation
CA operator generates new root key

Issue from both in parallel

New relying parties get new root, old ones get old root

Out-of-date relying parties work as long as old root key is in operation

No subscriber changes are required during a rotation

Subscriber does not need to know why there are two paths, just which to
send where

21

Eliding Intermediates
A predistributed intermediate is the same as a (short-lived) trust anchor

Can omit intermediates as in draft-ietf-tls-cert-abridge-00:

CA sends short path and long path to subscribers

Up-to-date relying parties get the short path from subscriber

Older relying parties get the long path from subscriber

22

Postquantum roots
Postquantum roots can be gradually deployed

CAs may introduce postquantum roots at different times

Relying party may trust some postquantum roots, but not a specific
postquantum root

Certificate negotiation fixes the root ubiquity problem

23

Backup Certificates
Subscriber can combine output from multiple CAs

Same negotiation mechanism as paths from one CA, different deployment
model

Backup if one CA is unreachable, compromised, or removed.

Can also be used to be compatible multiple ecosystems.

24

Recap

Trust expressions allow relying
parties to compactly describe a trust
anchor list

CA provisions subscriber with
metadata to select certificates for
each relying party

Enables a multi-certificate
deployment model

PKI transitions can proceed
smoothly without subscriber
disruption

25

SubscriberRelying
Party

trust expressions

selected certificate

Root
Program

Certificate
Authority

trust store manifest

trust anchors
trust
expressions

certificate paths
trust store
inclusions

Questions?

26

https://github.com/davidben/tls-trust-expressions/

https://datatracker.ietf.org/doc/draft-davidben-tls-trust-expr/

Backup slide: Version Skew
TrustStoreInclusionList set at issuance, but relying party may be newer

Relying party says (example, v3), but subscriber knows up to (example, v2)

latest_version_at_issuance entries match all subsequent versions

If a CA was removed in v3, relying parties exclude it until last pre-v3
certificate expires

(Details in sections 4.1 and 6.5)

27

SubscriberRelying Party
A

B

(example, v2)
latest_version_at_issuance
label0, label2

(example, v2)
latest_version_at_issuance
label1, label2

trust expressions

selected certificate

(example, v3) excluding label0

B

// (example, v2)
{
 "timestamp": 1672531200,
 "entries": [
 {"id": "A", "labels": [0, 2],
 "max_lifetime": 7776000},
 {"id": "B", "labels": [1, 2],
 "max_lifetime": 7776000}
]
},

// (example, v3)
{
 "timestamp": 1675209600,
 "entries": [
 {"id": "B", "labels": [1, 2],
 "max_lifetime": 7776000},
],
}

