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Part 1: An Introduction to Tamarin



The EMV Standard: Break, Fix, Verify

• S&P21 paper showed how to:
- Pay with stolen credit card
- Without ever needing the PIN
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Attack Video
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The EMV Standard: Break, Fix, Verify

• S&P21 paper showed how to:
- Pay with stolen credit card
- Without ever needing the PIN

• How did they find this attack?

• Used Tamarin!
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What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!

With Tamarin, you can prove that a protocol (model) guarantees security properties
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Workshop Goals

1. Go to github.com/felixlinker/tamarin-workshop/

2. Clone or download

3. Install Tamarin

• Get your hands on Tamarin

• Tamarin is easy! (except when it isn’t)

https://github.com/felixlinker/tamarin-workshop/


Example: TCP
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Demo



Example: TCP – What happens under the hood?
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rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]



Example: TCP – What happens under the hood?
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rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]

St_AliceWait()

Out('SYN')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]



rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]

Example: TCP – What happens under the hood?
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St_AliceWait()

In('SYN')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]



rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]

Example: TCP – What happens under the hood?
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St_AliceWait()

In('SYN')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]



Example: TCP – What happens under the hood?
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St_AliceWait()

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]



Example: TCP – What happens under the hood?
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St_AliceWait()

St_BobWait() Out('SYNACK')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]



Values in Tamarin

• Values can be:
- Constants: ‘constant’
- Unguessable (fresh) values: ~k
- Public values: $P
- Function application: f(t1, t2)

• A variable x can be any of the above (also called message)

• Equational theory gives symbols semantics

functions: sign/2, verify/3, pk/1, true/0

equations: verify(sign(m, sk), m, pk(sk)) = true
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Take-Aways

functions: f/1

rule Memorize:

[]

-->

[ MemorizeSomething(f('x')) ]

rule LookUpAndSend:

[ MemorizeSomething(v) ]

-->

[ Out(v) ]
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rule Standard:

[ St_X0(), In('...something...') ]

--[ Begin() ]->

[ St_X1(), Out('...something...') ]

State read

State write Message out

Message in

Pattern-match

Fact Function

Exercise 1 + 2!
Cheatsheet!



Summary – Part 1

• So far you learned
- Modelling in Tamarin
- State-read/message-in + state-write/message-out pattern
- The symbolic model

• Interested in more? Documentation is quite good

• Also:
- Manual proofs
- Custom proof heuristics
- Induction
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Part 2: Analyzing Specifications with Tamarin
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What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!

With Tamarin, you can prove that a protocol (model) guarantees security properties
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Tamarin proof = thing is secure
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Tamarin proof = thing is secure



What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!
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With Tamarin, you can prove that a protocol (model) guarantees certain security properties 
under certain assumptions



Specifications vs Formal Analysis
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Specification

• Designed to foster compatible implementations
• Often deliberately underspecified
• Security considerations often ad-hoc

Formal Analysis

• A structured way to approach security
• A positive definition of security properties
• A list of explicit assumptions

We did X so 
attack Y is not 

possible
Ideally…



Case Study: OAuth 2.0
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Case Study: OAuth 2.0 – Prior Work

Fett, Küsters, Schmitz. CCS’16.
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• But: Also doesn’t list desired properties



Case Study: OAuth 2.0 – But how analyze a specification?

1. Implement an initial specification

2. Model security properties
- It’s okay if they are trivially true

3. Make your model more realistic
- Now the properties are hopefully false

4. Refine everything
- Let your understanding guide you
- Let Tamarin tell you why your understanding is wrong
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Use the GUI



But how analyze a specification?
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Your rules

Adversary



But how analyze a specification?
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Message 
was sent…

…and adversary 
knows it

Where does the 
model deviate from 
our expectation?

lemma SecrecyMessage:
"All m #t. MessageWasSent(m) @ #t
==> not Ex #x. K(m) @ #x"



But how analyze a specification?
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Adversary knows 
key! We expect this 

to be impossible!
Questions?



Case Study: OAuth 2.0 – Authorization Code Flow
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auth-endpoint.com

redirection-endpoint.com

Client

Authorization
Endpoint

Token
Endpoint

Redirection
Endpoint

1

2 code

exchange code
for token

3

Let’s do it!
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