
Tamarin Workshop
Automated Protocol Verification
Felix Linker
PhD Student, ETH Zurich

Department of Computer 
Science



Who are we?

Felix Linker
Department of Computer Science

ETH Zürich

https://felixlinker.de
@felixlinker

Alexander Dax
CISPA Helmholtz Center for

Information Security

https://alexanderdax.com

Jonathan Hoyland
Cloudflare



Part 1: An Introduction to Tamarin



The EMV Standard: Break, Fix, Verify

• S&P21 paper showed how to:
- Pay with stolen credit card
- Without ever needing the PIN

Department of Computer Science 4



Attack Video

Department of Computer Science 5



The EMV Standard: Break, Fix, Verify

• S&P21 paper showed how to:
- Pay with stolen credit card
- Without ever needing the PIN

• How did they find this attack?

• Used Tamarin!

Department of Computer Science 6



What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!

With Tamarin, you can prove that a protocol (model) guarantees security properties

Department of Computer Science 7



Workshop Goals

1. Go to github.com/felixlinker/tamarin-workshop/

2. Clone or download

3. Install Tamarin

• Get your hands on Tamarin

• Tamarin is easy! (except when it isn’t)

https://github.com/felixlinker/tamarin-workshop/


Example: TCP

Department of Computer Science 9

Demo



Example: TCP – What happens under the hood?

Department of Computer Science 10

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]



Example: TCP – What happens under the hood?

Department of Computer Science 11

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]

St_AliceWait()

Out('SYN')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]



rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]

Example: TCP – What happens under the hood?

Department of Computer Science 12

St_AliceWait()

In('SYN')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]



rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]

Example: TCP – What happens under the hood?

Department of Computer Science 13

St_AliceWait()

In('SYN')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]



Example: TCP – What happens under the hood?

Department of Computer Science 14

St_AliceWait()

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]



Example: TCP – What happens under the hood?

Department of Computer Science 15

St_AliceWait()

St_BobWait() Out('SYNACK')

rule SYN:
[]
--[ Begin() ]->
[ St_AliceWait(), Out('SYN’) ]

rule SYNACK:
[ In('SYN') ]
-->
[ St_BobWait(), Out('SYNACK') ]



Values in Tamarin

• Values can be:
- Constants: ‘constant’
- Unguessable (fresh) values: ~k
- Public values: $P
- Function application: f(t1, t2)

• A variable x can be any of the above (also called message)

• Equational theory gives symbols semantics

functions: sign/2, verify/3, pk/1, true/0

equations: verify(sign(m, sk), m, pk(sk)) = true

Department of Computer Science 16



Take-Aways

functions: f/1

rule Memorize:

[]

-->

[ MemorizeSomething(f('x')) ]

rule LookUpAndSend:

[ MemorizeSomething(v) ]

-->

[ Out(v) ]

Department of Computer Science 17

rule Standard:

[ St_X0(), In('...something...') ]

--[ Begin() ]->

[ St_X1(), Out('...something...') ]

State read

State write Message out

Message in

Pattern-match

Fact Function

Exercise 1 + 2!
Cheatsheet!



Summary – Part 1

• So far you learned
- Modelling in Tamarin
- State-read/message-in + state-write/message-out pattern
- The symbolic model

• Interested in more? Documentation is quite good

• Also:
- Manual proofs
- Custom proof heuristics
- Induction

Department of Computer Science 18



Part 2: Analyzing Specifications with Tamarin

Department of Computer Science 19



What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!

With Tamarin, you can prove that a protocol (model) guarantees security properties

Department of Computer Science 20

Tamarin proof = thing is secure



What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!

With Tamarin, you can prove that a protocol (model) guarantees security properties

Department of Computer Science 21

Tamarin proof = thing is secure



What is Tamarin?

• Our world is powered by security-critical protocols
- You want certain things to not happen
- NSA reads your WhatsApp messages

- You want certain things to always happen
- Merchant receives payment upon confirmation

• Protocols are complex!

• People make mistakes!

Department of Computer Science 22

With Tamarin, you can prove that a protocol (model) guarantees certain security properties 
under certain assumptions



Specifications vs Formal Analysis

Department of Computer Science 23

Specification

• Designed to foster compatible implementations
• Often deliberately underspecified
• Security considerations often ad-hoc

Formal Analysis

• A structured way to approach security
• A positive definition of security properties
• A list of explicit assumptions

We did X so 
attack Y is not 

possible
Ideally…



Case Study: OAuth 2.0

Department of Computer Science 24



Case Study: OAuth 2.0 – Prior Work

Fett, Küsters, Schmitz. CCS’16.

Department of Computer Science 25

• But: Also doesn’t list desired properties



Case Study: OAuth 2.0 – But how analyze a specification?

1. Implement an initial specification

2. Model security properties
- It’s okay if they are trivially true

3. Make your model more realistic
- Now the properties are hopefully false

4. Refine everything
- Let your understanding guide you
- Let Tamarin tell you why your understanding is wrong

Department of Computer Science 26

Use the GUI



But how analyze a specification?

Department of Computer Science 27

Your rules

Adversary



But how analyze a specification?

Department of Computer Science 28

Message 
was sent…

…and adversary 
knows it

Where does the 
model deviate from 
our expectation?

lemma SecrecyMessage:
"All m #t. MessageWasSent(m) @ #t
==> not Ex #x. K(m) @ #x"



But how analyze a specification?

Department of Computer Science 29

Adversary knows 
key! We expect this 

to be impossible!
Questions?



Case Study: OAuth 2.0 – Authorization Code Flow

Department of Computer Science 30

auth-endpoint.com

redirection-endpoint.com

Client

Authorization
Endpoint

Token
Endpoint

Redirection
Endpoint

1

2 code

exchange code
for token

3

Let’s do it!



Further Reading

C. Herley and P. C. Van Oorschot, "SoK: Science, Security and the Elusive Goal of Security as a Scientific 
Pursuit," 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017, pp. 99-120, doi: 
10.1109/SP.2017.38.

Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal Security Analysis of OAuth 
2.0. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security 
(CCS '16). Association for Computing Machinery, New York, NY, USA, 1204–1215. 
https://doi.org/10.1145/2976749.2978385

Department of Computer Science 31


