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uses type system!

one time proof effort

automatic,

modular proof effort
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Ongoing Work: a verified VPN

widely used:
inside Linux kernel

very lean:
implementable in 4K LoC

Goal: verified, drop-in replacement
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Owl: 

End-to-End Verification of Security Protocols via a  
Secure Type System 

New tool for modular, automated proofs of security protocols


• Novel use of type systems for constructing secure cryptographic protocols

• Security is proved once-and-for-all;

• Protocols checked via type checker


• Ongoing work: verified extraction and drop-in implementation of WireGuard

jgancher@andrew.cmu.edu
owl-lang.org
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