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Strong attacker model;
closer to implementations



Types for Security Protocols



Types for Security Protocols

K : key for T
m eTnc e ——> enc(K,m) : public



Types for Security Protocols

K : key for T
m eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure



Types for Security Protocols

K : enckey for T |
- eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure
v

one time proof effort



Types for Security Protocols

K : enckey for T |
- eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure
v

one time proof effort




Types for Security Protocols

K : enckey for T |
- eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure
v

one time proof effort

‘ automatlc ,j

. developer only | |
' mOduIar proof effort

es type system!|



Protocol-Level Modularity

Handshake I@

Data Transfer (O




Protocol-Level Modularity

(only specs)

Handshake I@

Data Transfer ‘_‘_‘_®




Protocol-Level Modularity

Handshake

w/ PKI

iInstantiates
(only specs)

Handshake I@ h

Handshake

w/ Pre-Shared Key

Data Transfer ‘_‘_‘_®




Owl

Protocol
Description

Verified
Extraction
Pipeline

Type-based
security
analysis

memory safety

functional correctness

side-channel resistance

performance




Owl

Protocol
Description

Verified
Extraction
Pipeline

i Ongoing

Type-based |

security
analysis

memory safety

functional correctness

side-channel resistance

performance




Verus: Verifying Rust Programs using Linear Ghost Types

10



Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

o
)

executable
Rust implementation

Verus
Extraction




Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

(almost) directly equal to input
Owl code

executable
Rust implementation

Verus
Extraction



Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

(almost) directly equal to input
Owl code

gory low-level detalls

Verus
Extraction

verified parser library,
Zero-copy ciphers,

executable
Rust implementation



Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

(L

/ memory safety

Verus
Extraction

autogenerated functional equivalence
proof script X
\ side-channel resistance

executable
Rust implementation



Ongoing Work: a verified VPN
€) WIREGUARD

MMMMMM , SECURE VPN TUNNEL




Ongoing Work: a verified VPN
€) WIREGUARD

MMMMMM , SECURE VPN TUNNEL

widely used:
iInside Linux kernel



Ongoing Work: a verified VPN
€) WIREGUARD

DE , SECURE VPN

widely useaq: very lean:
inside Linux kernel implementable in 4K LoC



Ongoing Work: a verified VPN
) WREGUARD

FAST, MODERN, SECURE VPN TUNNEL

widely useaq: very lean:
inside Linux kernel implementable in 4K LoC

Goal: verified, drop-in replacement
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Owil:
End-to-End Verification of Security Protocols via a
Secure Type System

New tool for modular, automated proofs of security protocols
* Novel use of type systems for constructing secure cryptographic protocols
e Security is proved once-and-for-all;

 Protocols checked via type checker
* Ongoing work: verified extraction and drop-in implementation of WireGuard

owl-lang.org
jgancher@andrew.cmu.edu
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