Verifying Security Protocols
End-to-End with Owl

Carnegie Mellon University

) Security and Privacy Institute

Joshua Gancher
Carnegie Mellon University

1

Owl

new language for building security protocols

e TLS, WireGuard, Signal, ...
* Supports verified implementations

Owl

new language for building security protocols

e TLS, WireGuard, Signal, ...
* Supports verified implementations

Our vision:
formally verified, drop-in
replacements of protocol implementations

Owl

new language for building security protocols

e TLS, WireGuard, Signal, ...
* Supports verified implementations

Our vision:
formally verified, drop-in
replacements of protocol implementations

%WIREGUARD@

FAST, MODERN, SECURE VPN TUNNEL

2

Owl

new language for building security protocols

e TLS, WireGuard, Signal, ...
* Supports verified implementations

Our vision:

formally verified, drop-in
replacements of protocol implementations

functional correctness

%) WIREGUARD memory safety

FAST, MODERN, SECURE VPN TUNNEL .
secure designs

2

Owl

Protocol
Description

Owl

Protocol

Description Type-based
security

analysis

Owl

Protocol
Description

Verified
Extraction
Pipeline

Type-based
security
analysis

functional correctness

memory safety

side-channel resistance

performance

fully automated

Owl

Protocol
Description

Verified
Extraction
Pipeline

Type-based
security
analysis

functional correctness

memory safety
side-channel resistance

performance

OwL: Compositional Verification of Security Protocols via an
Information-Flow Type System

Joshua Gancher Sydney Gibson Pratap Singh Samvid Dharanikota Bryan Parno
Carnegie Mellon University

.t V \

Protocol
Description

Verified
Extraction
Pipeline

Type-based
security
analysis

functional correctness
memory safety

side-channel resistance

performance

Symbolic Security Computational Security

Symbolic Security Computational Security

Crypto modeled by
abstract terms,
equations on functions

Symbolic Security Computational Security

Crypto modeled by
abstract terms,
equations on functions

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

Symbolic Security Computational Security

Crypto modeled by
abstract terms,
equations on functions

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

attacker can only use
specified functions,
equations

Symbolic Security Computational Security

Crypto modeled by Crypto is given by algorithms on
abstract terms, bytes
equations on functions
Cryptography specified by
security properties:

functions: enc/2, dec/2 secrecy of messages,

t3 : d ’ k / k - 1l .
equations: dec(enc(m, k), k) = m unforgeability of ciphertexts,

attacker can only use
specified functions,
equations

Symbolic Security Computational Security

Crypto modeled by Crypto is given by algorithms on
abstract terms, bytes
equations on functions
Cryptography specified by
security properties:

functions: enc/2, dec/2 secrecy of messages,

t3 : d ’ k / k - 1l .
equations: dec(enc(m, k), k) = m unforgeability of ciphertexts,

attacker can only use
specified functions,
equations

Strong attacker model;
closer to implementations

Types for Security Protocols

Types for Security Protocols

K : key for T
m eTnc e ——> enc(K,m) : public

Types for Security Protocols

K : key for T
m eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure

Types for Security Protocols

K : enckey for T |
- eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure
v

one time proof effort

Types for Security Protocols

K : enckey for T |
- eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure
v

one time proof effort

Types for Security Protocols

K : enckey for T |
- eTnc e ——> enc(K,m) : public

security via type checking: |- P —> P secure
v

one time proof effort

‘ automatlc ,j

. developer only | |
' mOduIar proof effort

es type system!|

Protocol-Level Modularity

Handshake I@

Data Transfer (O

Protocol-Level Modularity

(only specs)

Handshake I@

Data Transfer ‘_‘_‘_®

Protocol-Level Modularity

Handshake

w/ PKI

iInstantiates
(only specs)

Handshake I@ h

Handshake

w/ Pre-Shared Key

Data Transfer ‘_‘_‘_®

Owl

Protocol
Description

Verified
Extraction
Pipeline

Type-based
security
analysis

memory safety

functional correctness

side-channel resistance

performance

Owl

Protocol
Description

Verified
Extraction
Pipeline

i Ongoing

Type-based |

security
analysis

memory safety

functional correctness

side-channel resistance

performance

Verus: Verifying Rust Programs using Linear Ghost Types

10

Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

o
)

executable
Rust implementation

Verus
Extraction

Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

(almost) directly equal to input
Owl code

executable
Rust implementation

Verus
Extraction

Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

(almost) directly equal to input
Owl code

gory low-level detalls

Verus
Extraction

verified parser library,
Zero-copy ciphers,

executable
Rust implementation

Verus: Verifying Rust Programs using Linear Ghost Types

functional
specification

(L

/ memory safety

Verus
Extraction

autogenerated functional equivalence
proof script X
\ side-channel resistance

executable
Rust implementation

Ongoing Work: a verified VPN
€) WIREGUARD

MMMMMM , SECURE VPN TUNNEL

Ongoing Work: a verified VPN
€) WIREGUARD

MMMMMM , SECURE VPN TUNNEL

widely used:
iInside Linux kernel

Ongoing Work: a verified VPN
€) WIREGUARD

DE , SECURE VPN

widely useaq: very lean:
inside Linux kernel implementable in 4K LoC

Ongoing Work: a verified VPN
) WREGUARD

FAST, MODERN, SECURE VPN TUNNEL

widely useaq: very lean:
inside Linux kernel implementable in 4K LoC

Goal: verified, drop-in replacement

g

Owil:
End-to-End Verification of Security Protocols via a
Secure Type System

New tool for modular, automated proofs of security protocols
* Novel use of type systems for constructing secure cryptographic protocols
e Security is proved once-and-for-all;

 Protocols checked via type checker
* Ongoing work: verified extraction and drop-in implementation of WireGuard

owl-lang.org
jgancher@andrew.cmu.edu

13

mailto:jgancher@andrew.cmu.edu

