
Verifying Security Protocols
End-to-End with Owl

Joshua Gancher
Carnegie Mellon University

1

Owl
new language for building security protocols
• TLS, WireGuard, Signal, …
• Supports verified implementations

2

Owl
new language for building security protocols
• TLS, WireGuard, Signal, …

Our vision:

formally verified, drop-in

replacements of protocol implementations

• Supports verified implementations

2

Owl
new language for building security protocols
• TLS, WireGuard, Signal, …

Our vision:

formally verified, drop-in

replacements of protocol implementations

• Supports verified implementations

2

Owl
new language for building security protocols
• TLS, WireGuard, Signal, …

Our vision:

formally verified, drop-in

replacements of protocol implementations

functional correctness
memory safety
secure designs{

• Supports verified implementations

2

3

Protocol

Description

Owl

3

Protocol

Description Type-based

security
analysis

Owl

Verified
Extraction
Pipeline

functional correctness
memory safety
side-channel resistance{
performance

3

Protocol

Description Type-based

security
analysis

Owl

Verified
Extraction
Pipeline

functional correctness
memory safety
side-channel resistance{
performance

3

Protocol

Description Type-based

security
analysis

Owl
fully automated

Verified
Extraction
Pipeline

functional correctness
memory safety
side-channel resistance{
performance

4

Protocol

Description Type-based

security
analysis

Owl

Computational SecuritySymbolic Security

5

Computational SecuritySymbolic Security

5

Crypto modeled by

abstract terms,

equations on functions

Computational SecuritySymbolic Security

5

Crypto modeled by

abstract terms,

equations on functions

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

Computational SecuritySymbolic Security

5

Crypto modeled by

abstract terms,

equations on functions

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

attacker can only use

specified functions,

equations

Computational SecuritySymbolic Security

5

Crypto modeled by

abstract terms,

equations on functions

Crypto is given by algorithms on
bytes

Cryptography specified by

security properties:
secrecy of messages,

unforgeability of ciphertexts,

…

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

attacker can only use

specified functions,

equations

Computational SecuritySymbolic Security

5

Strong attacker model;

closer to implementations

Crypto modeled by

abstract terms,

equations on functions

Crypto is given by algorithms on
bytes

Cryptography specified by

security properties:
secrecy of messages,

unforgeability of ciphertexts,

…

functions: enc/2, dec/2
equations: dec(enc(m, k), k) = m

attacker can only use

specified functions,

equations

Types for Security Protocols

6

Types for Security Protocols

K : 𝖾𝗇𝖼𝗄𝖾𝗒 𝖿𝗈𝗋 T ⟹m : T 𝖾𝗇𝖼(K, m) : 𝗉𝗎𝖻𝗅𝗂𝖼

6

Types for Security Protocols

K : 𝖾𝗇𝖼𝗄𝖾𝗒 𝖿𝗈𝗋 T ⟹m : T 𝖾𝗇𝖼(K, m) : 𝗉𝗎𝖻𝗅𝗂𝖼

security via type checking: ⊢ P ⟹ P 𝗌𝖾𝖼𝗎𝗋𝖾

6

Types for Security Protocols

K : 𝖾𝗇𝖼𝗄𝖾𝗒 𝖿𝗈𝗋 T ⟹m : T 𝖾𝗇𝖼(K, m) : 𝗉𝗎𝖻𝗅𝗂𝖼

security via type checking: ⊢ P ⟹ P 𝗌𝖾𝖼𝗎𝗋𝖾
one time proof effort

6

Types for Security Protocols

K : 𝖾𝗇𝖼𝗄𝖾𝗒 𝖿𝗈𝗋 T ⟹m : T 𝖾𝗇𝖼(K, m) : 𝗉𝗎𝖻𝗅𝗂𝖼

security via type checking: ⊢ P ⟹ P 𝗌𝖾𝖼𝗎𝗋𝖾

developer only

uses type system!

one time proof effort

6

Types for Security Protocols

K : 𝖾𝗇𝖼𝗄𝖾𝗒 𝖿𝗈𝗋 T ⟹m : T 𝖾𝗇𝖼(K, m) : 𝗉𝗎𝖻𝗅𝗂𝖼

security via type checking: ⊢ P ⟹ P 𝗌𝖾𝖼𝗎𝗋𝖾

developer only

uses type system!

one time proof effort

automatic,

modular proof effort

6

Protocol-Level Modularity

Data Transfer

Handshake

+

7

Data Transfer

uses

Handshake
(only specs)

Protocol-Level Modularity

8

Data Transfer

uses

Handshake

w/ PKI

Handshake

w/ Pre-Shared Key

instantiates

Handshake
(only specs)

Protocol-Level Modularity

8

Verified
Extraction
Pipeline

functional correctness
memory safety

side-channel resistance{
performance

9

Protocol

Description Type-based

security
analysis

Owl

Verified
Extraction
Pipeline

functional correctness
memory safety

side-channel resistance{
performance

9

Protocol

Description Type-based

security
analysis

Owl
Ongoing

work!

10

Verus
Extraction

executable

Rust implementation

functional

specification

10

Verus
Extraction

executable

Rust implementation

functional

specification

(almost) directly equal to input

Owl code

10

Verus
Extraction

executable

Rust implementation

functional

specification

(almost) directly equal to input

Owl code

gory low-level details
verified parser library,
zero-copy ciphers,

…

10

Verus
Extraction

executable

Rust implementation

functional

specification

∼

autogenerated
proof script functional equivalence

memory safety

side-channel resistance

11

Ongoing Work: a verified VPN

12

Ongoing Work: a verified VPN

widely used:
inside Linux kernel

12

Ongoing Work: a verified VPN

widely used:
inside Linux kernel

very lean:
implementable in 4K LoC

12

Ongoing Work: a verified VPN

widely used:
inside Linux kernel

very lean:
implementable in 4K LoC

Goal: verified, drop-in replacement

12

Owl:

End-to-End Verification of Security Protocols via a
Secure Type System

New tool for modular, automated proofs of security protocols

• Novel use of type systems for constructing secure cryptographic protocols

• Security is proved once-and-for-all;

• Protocols checked via type checker

• Ongoing work: verified extraction and drop-in implementation of WireGuard

jgancher@andrew.cmu.edu
owl-lang.org

13

mailto:jgancher@andrew.cmu.edu

