
Network Working Group A. Huang Feng

Internet-Draft P. Francois

Updates: RFC5277 (if approved) INSA-Lyon

Intended status: Standards Track T. Graf

Expires: 25 July 2024 Swisscom

 B. Claise

 Huawei

 22 January 2024

 YANG model for NETCONF Event Notifications

 draft-ahuang-netconf-notif-yang-04

Abstract

 This document defines the YANG model for NETCONF Event Notifications.

 The definition of this YANG model allows the encoding of NETCONF

 Event Notifications in YANG compatible encodings such as YANG-JSON

 and YANG-CBOR.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 July 2024.

Huang Feng, et al. Expires 25 July 2024 [Page 1]

Internet-Draft NETCONF Event Notification YANG January 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Differences to draft-ietf-netconf-notification-messages . . . 3

 3. YANG Module . 3

 3.1. YANG Tree Diagram . 3

 3.2. YANG Module . 3

 4. Security Considerations 5

 5. IANA Considerations . 5

 5.1. URI . 5

 5.2. YANG module name . 5

 5.3. YANG SID-file . 5

 6. Acknowledgements . 6

 7. References . 6

 7.1. Normative References 6

 7.2. Informative References 7

 Appendix A. Examples . 7

 A.1. XML encoded message 7

 A.2. YANG-JSON encoded message 8

 A.3. YANG-CBOR encoded message 8

 A.4. YANG-CBOR encoded message using SIDs 9

 Appendix B. .sid file . 10

 Authors’ Addresses . 11

1. Introduction

 This document defines a YANG [RFC7950] data model for NETCONF Event

 Notifications [RFC5277]. The notification structure defined in

 [RFC5277] uses a XML Schema [W3C.REC-xml-20001006] allowing to encode

 and validate the message in XML. Nevertheless, when the notification

 message is encoded using other encodings such as YANG-JSON [RFC7951]

 or YANG-CBOR [RFC9254], a YANG model to validate or encode the

 message is necessary. This document extends [RFC5277], defining the

 NETCONF Event Notification structure in a YANG module.

Huang Feng, et al. Expires 25 July 2024 [Page 2]

Internet-Draft NETCONF Event Notification YANG January 2024

2. Differences to draft-ietf-netconf-notification-messages

 [I-D.ietf-netconf-notification-messages] proposes a structure to send

 multiple notifications in a single message. Unlike

 [I-D.ietf-netconf-notification-messages], this document defines a

 YANG module to encode NETCONF Notifications with encodings other than

 XML, which is currently not existing. The structure for NETCONF

 notifications is defined in [RFC5277] using a XSD, but there is no

 YANG module defining the structure of the notification message sent

 by a server when the message is encoded in YANG-JSON [RFC7951] or

 YANG-CBOR [RFC9254].

3. YANG Module

3.1. YANG Tree Diagram

 This YANG module adds a structure with one leaf for the datetime as

 defined in section 2.2.1 of [RFC5277]. The name of the leaf matches

 the definition of the XSD element name defined in Section 4 of

 [RFC5277].

 module: ietf-notification

 structure notification:

 +-- eventTime yang:date-and-time

3.2. YANG Module

 The YANG module uses the same namespace from the XML Schema defined

 in Section 4 of [RFC5277] allowing to use this YANG module to also

 validate already implemented XML encoded NETCONF Event Notifications.

 <CODE BEGINS> file "ietf-notification@2024-01-22.yang"

 module ietf-notification {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:netconf:notification:1.0";

 prefix inotif;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 import ietf-yang-structure-ext {

 prefix sx;

 reference

 "RFC 8791: YANG Data Structure Extensions";

 }

Huang Feng, et al. Expires 25 July 2024 [Page 3]

Internet-Draft NETCONF Event Notification YANG January 2024

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/group/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng

 <mailto:alex.huang-feng@insa-lyon.fr>

 Pierre Francois

 <mailto:pierre.francois@insa-lyon.fr>

 Thomas Graf

 <mailto:thomas.graf@swisscom.com>

 Benoit Claise

 <mailto:benoit.claise@huawei.com>";

 description

 "Defines NETCONF Event Notification structure as defined in RFC5277.

 This YANG module uses the same namespace from the XML schema defined

 in Section 4 of RFC5277 to be able to validate already implemented

 XML encoded messages.

 Copyright (c) 2023 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, is permitted pursuant to, and subject to the license

 terms contained in, the Revised BSD License set forth in Section

 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision 2024-01-22 {

 description

 "First revision";

 reference

 "RFC XXXX: NETCONF Event Notification YANG";

 }

 sx:structure notification {

 leaf eventTime {

 type yang:date-and-time;

 mandatory true;

 description

 "The date and time the event was generated by the event source.

 This parameter is of type dateTime and compliant to [RFC3339].

 Implementations must support time zones.

 The leaf name in camel case matches the name of the XSD element

Huang Feng, et al. Expires 25 July 2024 [Page 4]

Internet-Draft NETCONF Event Notification YANG January 2024

 defined in Section 4 of RFC5277.";

 }

 }

 }

 <CODE ENDS>

4. Security Considerations

 The security considerations for the NETCONF Event notifications are

 described in [RFC5277]. This documents adds no additional security

 considerations.

5. IANA Considerations

 This document describes the URI used for the IETF XML Registry and

 registers a new YANG module name.

5.1. URI

 IANA is requested to add this document as a reference in the

 following URI in the IETF XML Registry [RFC3688].

 URI: urn:ietf:params:xml:ns:netconf:notification:1.0

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 Reference: RFC5277; RFC-to-be

5.2. YANG module name

 This document registers the following YANG module in the YANG Module

 Names Registry [RFC6020], within the "YANG Parameters" registry:

 name: ietf-notification

 namespace: urn:ietf:params:xml:ns:netconf:notification:1.0

 prefix: inotif

 reference: RFC-to-be

5.3. YANG SID-file

 IANA is requested to register a new ".sid" file in the "IETF YANG SID

 Registry" [I-D.ietf-core-sid]:

 SID range entry point: TBD

 SID range size: 50

 YANG module name: ietf-notification

 reference: RFC-to-be

 A ".sid" file is proposed in Appendix B.

Huang Feng, et al. Expires 25 July 2024 [Page 5]

Internet-Draft NETCONF Event Notification YANG January 2024

6. Acknowledgements

 The authors would like to thank Andy Bierman, Carsten Bormann, Tom

 Petch and Jason Sterne for their review and valuable comments.

7. References

7.1. Normative References

 [I-D.ietf-core-sid]

 Veillette, M., Pelov, A., Petrov, I., Bormann, C., and M.

 Richardson, "YANG Schema Item iDentifier (YANG SID)", Work

 in Progress, Internet-Draft, draft-ietf-core-sid-24, 22

 December 2023, <https://datatracker.ietf.org/doc/html/

 draft-ietf-core-sid-24>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:

 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event

 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,

 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",

 RFC 6991, DOI 10.17487/RFC6991, July 2013,

 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

Huang Feng, et al. Expires 25 July 2024 [Page 6]

Internet-Draft NETCONF Event Notification YANG January 2024

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",

 RFC 7951, DOI 10.17487/RFC7951, August 2016,

 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data

 Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,

 June 2020, <https://www.rfc-editor.org/info/rfc8791>.

 [W3C.REC-xml-20001006]

 Bray, T., Paoli, J., Sperberg-McQueen, M., and E. Maler,

 "Extensible Markup Language (XML) 1.0 (Second Edition)",

 W3C, October 2000,

 <https://www.w3.org/TR/2000/REC-xml-20001006>.

7.2. Informative References

 [I-D.ietf-netconf-notification-messages]

 Voit, E., Jenkins, T., Birkholz, H., Bierman, A., and A.

 Clemm, "Notification Message Headers and Bundles", Work in

 Progress, Internet-Draft, draft-ietf-netconf-notification-

 messages-08, 17 November 2019,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-

 notification-messages-08>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC9254] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,

 C., and M. Richardson, "Encoding of Data Modeled with YANG

 in the Concise Binary Object Representation (CBOR)",

 RFC 9254, DOI 10.17487/RFC9254, July 2022,

 <https://www.rfc-editor.org/info/rfc9254>.

Appendix A. Examples

 This non-normative section shows examples of how XML, YANG-JSON and

 YANG-CBOR are encoded.

A.1. XML encoded message

 This is an example of a XML-encoded notification as defined in

 [RFC5277].

Huang Feng, et al. Expires 25 July 2024 [Page 7]

Internet-Draft NETCONF Event Notification YANG January 2024

 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">

 <eventTime>2022-09-02T10:59:55.32Z</eventTime>

 <push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">

 <id>1011</id>

 <datastore-contents>

 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">

 <interface>

 <name>eth0</name>

 <oper-status>up</oper-status>

 </interface>

 </interfaces>

 </datastore-contents>

 </push-update>

 </notification>

 Figure 1: XML-encoded notification

A.2. YANG-JSON encoded message

 This is an example of a YANG-JSON encoded notification.

 {

 "ietf-notification:notification": {

 "eventTime": "2023-02-10T08:00:11.22Z",

 "ietf-yang-push:push-update": {

 "id": 1011,

 "datastore-contents": {

 "ietf-interfaces:interfaces": [

 {

 "interface": {

 "name": "eth0",

 "oper-status": "up"

 }

 }

]

 }

 }

 }

 }

 Figure 2: JSON-encoded notification

A.3. YANG-CBOR encoded message

 This is an example of YANG-CBOR encoded notification. The figure

 Figure 3 shows the message using the CBOR diagnostic notation as

 defined in section 3.1 of [RFC9254].

Huang Feng, et al. Expires 25 July 2024 [Page 8]

Internet-Draft NETCONF Event Notification YANG January 2024

 {

 "ietf-notification:notification": {

 "eventTime": "2023-02-10T08:00:11.22Z",

 "ietf-yang-push:push-update": {

 "id": 1011,

 "datastore-contents": {

 "ietf-interfaces:interfaces": [

 {

 "interface": {

 "name": "eth0",

 "oper-status": "up"

 }

 }

]

 }

 }

 }

 }

 Figure 3: CBOR-encoded notification using diagnostic notation

A.4. YANG-CBOR encoded message using SIDs

 This is an example of YANG-CBOR encoded notification using YANG SIDs

 [I-D.ietf-core-sid]. The figure Figure 4 shows the message using the

 CBOR diagnostic notation as defined in section 3.1 of [RFC9254].

 {

 2551: {

 1: "2023-02-10T08:00:11.22Z",

 "ietf-yang-push:push-update": {

 "id": 1011,

 "datastore-contents": {

 "ietf-interfaces:interfaces": [

 {

 "interface": {

 "name": "eth0",

 "oper-status": "up"

 }

 }

]

 }

 }

 }

 }

 Figure 4: CBOR-encoded notification using YANG SIDs in CBOR

 diagnostic notation

Huang Feng, et al. Expires 25 July 2024 [Page 9]

Internet-Draft NETCONF Event Notification YANG January 2024

Appendix B. .sid file

 Note to the RFC-Editor: Please remove this section before publishing.

 For CBOR encoding using YANG-SIDs identifiers, a ".sid" file is

 requested to IANA in Section 5.3.

Huang Feng, et al. Expires 25 July 2024 [Page 10]

Internet-Draft NETCONF Event Notification YANG January 2024

 <CODE BEGINS> file "ietf-notification@2024-01-22.sid"

 {

 "ietf-sid-file:sid-file": {

 "module-name": "ietf-notification",

 "module-revision": "2024-01-22",

 "description": "NETCONF Event Notification structure",

 "dependency-revision": [

 {

 "module-name": "ietf-yang-types",

 "module-revision": "2013-07-15"

 },

 {

 "module-name": "ietf-yang-structure-ext",

 "module-revision": "2020-06-17"

 }

],

 "assignment-range": [

 {

 "entry-point": "2550",

 "size": "50"

 }

],

 "item": [

 {

 "namespace": "module",

 "identifier": "ietf-notification",

 "sid": "2550"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-notification:notification",

 "sid": "2551"

 },

 {

 "namespace": "data",

 "identifier": "/ietf-notification:notification/eventTime",

 "sid": "2552"

 }

]

 }

 }

 <CODE ENDS>

 Figure 5: .sid file for "ietf-notification" module

Authors’ Addresses

Huang Feng, et al. Expires 25 July 2024 [Page 11]

Internet-Draft NETCONF Event Notification YANG January 2024

 Alex Huang Feng

 INSA-Lyon

 Lyon

 France

 Email: alex.huang-feng@insa-lyon.fr

 Pierre Francois

 INSA-Lyon

 Lyon

 France

 Email: pierre.francois@insa-lyon.fr

 Thomas Graf

 Swisscom

 Binzring 17

 CH-8045 Zurich

 Switzerland

 Email: thomas.graf@swisscom.com

 Benoit Claise

 Huawei

 Email: benoit.claise@huawei.com

Huang Feng, et al. Expires 25 July 2024 [Page 12]

NETCONF Working Group P. Andersson
Internet-Draft Cisco Systems
Intended status: Standards Track K. Watsen
Expires: 2 September 2024 Watsen Networks
 Q. Wu
 Huawei Technologies
 O. Hagsand
 SUNET
 H. Li
 Hewlett Packard Enterprise
 1 March 2024

 List Pagination Snapshots for YANG-driven Protocols
 draft-awwhl-netconf-list-pagination-snapshot-00

Abstract

 List pagination for YANG-driven protocols are defined in
 [I-D.ietf-netconf-list-pagination]. Operational data can have very
 large data sets. These data sets can furthermore have big churn, a
 lot of additions or deletions to the data set. In order to support a
 stable pagination of such data sets, snapshots can be used.

 This document defines snapshot support for pagination of "config
 false" nodes of type "list" and "leaf-list". The snapshot support
 for individual nodes is signaled via the "ietf-system-capabilities"
 module.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Andersson, et al. Expires 2 September 2024 [Page 1]

Internet-Draft List Pagination Snapshots March 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 1.2. Conventions . 4
 1.3. Adherence to the NMDA 4
 2. Solution Overview . 4
 4. Snapshot support . 5
 5. The "ietf-list-pagination-snapshot" Module 5
 5.1. Data Model Overview 6
 5.2. YANG Module . 6
 6. IANA Considerations . 9
 6.1. The "IETF XML" Registry 10
 6.2. The "YANG Module Names" Registry 10
 6.3. The "RESTCONF Capability URNs" Registry 10
 7. Security Considerations 10
 7.1. Regarding the "ietf-list-pagination-snapshot" YANG
 Module . 11
 8. References . 11
 8.1. Normative References 11
 8.2. Informative References 13
 Appendix A. Vector Tests . 14
 A.1. Example Data Set . 14
 A.2. Example Queries . 14
 A.2.1. The "snapshot" Parameter 15
 Acknowledgements . 16
 Authors’ Addresses . 16

1. Introduction

 The following open questions have been identified for list-pagination
 with snapshots.

Andersson, et al. Expires 2 September 2024 [Page 2]

Internet-Draft List Pagination Snapshots March 2024

 The requirements that are necessory to resolve for a complete
 solution:

 * What should be in the snapshot? The discussions have touched on
 include entire list content, take a snapshot of list keys etc.

 * How should a client return to a taken snapshot? I.e. one RESTCONF
 request starts paginating and allocates a snapshot, how does the
 client return to that snapshot for the next page? The snapshot
 would need some id and a method to fetch it later. For instance a
 new query parameter to identify a snapshot, and a snapshot
 metadata id?

 * What is the lifecycle of a snapshot for pagination?

 * Should the client be able to signal that the snapshot should be
 deallocated?

 * Should it the snapshot have some timeout after which it is
 deallocated?

 * What happens when a server can’t take a snapshot due to resource
 constraints?

 * Should snapshots be implicitly deallocated when the pagination
 reaches the last page?

 * Security considerations for protecting against DoS when a lot of
 (possibly huge) snapshots can be taken.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here: client, data model, data tree, feature, extension, module,
 leaf, leaf-list, and server.

Andersson, et al. Expires 2 September 2024 [Page 3]

Internet-Draft List Pagination Snapshots March 2024

1.2. Conventions

 Various examples in this document use "BASE64VALUE=" as a placeholder
 value for binary data that has been base64 encoded (per Section 9.8
 of [RFC7950]). This placeholder value is used because real base64
 encoded structures are often many lines long and hence distracting to
 the example being presented.

1.3. Adherence to the NMDA

 This document is compliant with the Network Management Datastore
 Architecture (NMDA) [RFC8342]. The "ietf-list-pagination-snapshot"
 module only defines a YANG identity, grouping, and augments a couple
 leafs into a "config false" node defined by the "ietf-system-
 capabilities" module.

2. Solution Overview

 The solution presented in this document extends the pagination
 functionality in [I-D.ietf-netconf-list-pagination]. The snapshot
 functionality defined by the document conforms to "config false"
 "list" and "leaf-list" nodes.

 The "snapshot" query parameter (see Section 3) enables clients to ask
 create a snapshot. The support for snapshots is signaled via
 [RFC9196] (see Section 4).

3. The "snapshot" Query Parameter

 Description
 The "snapshot" query parameter indicates that the client requests
 the server to take a snapshot of a "config false" target before
 starting the pagination.

 Default Value
 If this query parameter is unspecified, it defaults to false.

 Allowed Values
 The allowed values are true or false. If snapshots are not
 supported the "snapshot-not-supported" SHOULD be produced in the
 error-app-tag in the error output.

 Conformance
 The "snapshot" query parameter MAY be supported for "config false"
 lists and leaf-lists.

Andersson, et al. Expires 2 September 2024 [Page 4]

Internet-Draft List Pagination Snapshots March 2024

3.1. NETCONF

 For the NETCONF protocol, the "snapshot" query parameter is added to
 the protocol by augmenting "lpgsnap:snapshot-param-grouping" to the
 get, get-config, and get-data RPCs.

3.2. RESTCONF

 The RESTCONF protocol specific functionality and conformance is
 defined in this section.

 If the target node does not support snapshots, then a "501 Not
 Implemented" status-line MUST be returned with the error-type value
 "application" and error-tag value "invalid-value", and SHOULD also
 include the "snapshot-not-supported" identity as error-app-tag value.

 +----------+---------+--+
 | Name | Methods | Description |
 +----------+---------+--+
 | snapshot | GET, | Indicates that the server should take a |
 | | HEAD | snapshot before paginating the result set. |
 +----------+---------+--+

 The "snapshot" query parameter is allowed for GET and HEAD methods on
 "list" and "leaf-list" data resources. A "400 Bad Request" status-
 line MUST be returned if used with any other method or resource type.
 The error-tag value "operation-not-supprted" is used in this case.

4. Snapshot support

 A server MAY support snapshots when paginating a "config false" list
 or leaf-list. In order to enable servers to identify which nodes may
 be used to take snapshots when paginating the "ietf-list-pagination-
 snapshot" module (see Section 5) augments an empty leaf node called
 "snapshot" into the "per-node-capabilities" node defined in the
 "ietf-system-capabilities" module (see [RFC9196]).

 Note that it is possible for a client to request the server to take a
 snapshot when paginating with the "snapshot" query parameter (see
 Section 3.

5. The "ietf-list-pagination-snapshot" Module

 The "ietf-list-pagination-snapshot" module is used by servers to
 indicate that they support pagination on YANG "list" and "leaf-list"
 nodes, and to provide an ability to indicate which "config false"
 list and/or "leaf-list" nodes are constrained and, if so, which nodes
 may be used in "where" and "sort-by" expressions.

Andersson, et al. Expires 2 September 2024 [Page 5]

Internet-Draft List Pagination Snapshots March 2024

5.1. Data Model Overview

 The following tree diagram [RFC8340] illustrates the "ietf-list-
 pagination-snapshot" module:

 module: ietf-list-pagination-snapshot

 augment /nc:get/nc:input:
 +---w snapshot? boolean
 augment /nc:get-config/nc:input:
 +---w snapshot? boolean
 augment /ncds:get-data/ncds:input:
 +---w snapshot? boolean
 augment /sysc:system-capabilities/sysc:datastore-capabilities
 /sysc:per-node-capabilities:
 +--ro snapshot? empty

 Comments:

 As shown, this module augments an optional leaf into the "per-node-
 capabilities" list node of the "ietf-system-capabilities" module.

5.2. YANG Module

 This YANG module has normative references to [RFC7952] and [RFC9196].

 <CODE BEGINS> file "ietf-list-pagination-snapshot@2024-03-01.yang"

 module ietf-list-pagination-snapshot {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-list-pagination-snapshot";
 prefix lpgsnap;

 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }

 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }

 import ietf-netconf-nmda {
 prefix ncds;

Andersson, et al. Expires 2 September 2024 [Page 6]

Internet-Draft List Pagination Snapshots March 2024

 reference
 "RFC 8526: NETCONF Extensions to Support the
 Network Management Datastore Architecture";
 }

 import ietf-system-capabilities {
 prefix sysc;
 reference
 "RFC 9691: YANG Modules Describing Capabilities for Systems and
 Datastore Update Notifications";
 }

 import ietf-list-pagination {
 prefix lpg;
 reference
 "draft-ietf-list-pagination: List Pagination for YANG-driven
 Protocols";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>";

 description
 "This module is used by servers to indicate they support
 snapshot pagination on ’config false’ nodes of type ’list’
 and ’leaf-list’. It also defines a grouping for the snapshot
 parameter.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

Andersson, et al. Expires 2 September 2024 [Page 7]

Internet-Draft List Pagination Snapshots March 2024

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2024-03-01 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: List Pagination Snapshots for YANG-driven
 Protocols";
 }

 // Identities

 identity snapshot-not-supported {
 base lpg:list-pagination-error;
 description
 "Snapshot is not supported for the target. Either it is not a
 ’config false’ list or leaf-list, or it is disabled.";
 }

 // Groupings

 grouping snapshot-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf snapshot {
 type boolean;
 description
 "The ’snapshot’ parameter indicates that the client requests
 the server to take a snapshot of the ’config false’ list or
 leaf-list target before paginating.";
 }
 }

 // Protocol-accessible nodes

 augment "/nc:get/nc:input" {
 description
 "Allow the ’get’ operation to use the ’snapshot’ query
 parameter for YANG list or leaf-list that is to be
 retrieved.";
 uses snapshot-param-grouping;
 }

Andersson, et al. Expires 2 September 2024 [Page 8]

Internet-Draft List Pagination Snapshots March 2024

 augment "/nc:get-config/nc:input" {
 description
 "Allow the ’get-config’ operation to use the ’snapshot’ query
 parameter for YANG list or leaf-list that is to be
 retrieved.";
 uses snapshot-param-grouping;
 }

 augment "/ncds:get-data/ncds:input" {
 description
 "Allow the ’get-data’ operation to use the ’snapshot’ query
 parameter for YANG list or leaf-list that is to be
 retrieved.";
 uses snapshot-param-grouping;
 }

 augment
 "/sysc:system-capabilities/sysc:datastore-capabilities"
 + "/sysc:per-node-capabilities" {

 // Ensure the following node is only used for the
 // <operational> datastore.
 when "/sysc:system-capabilities/sysc:datastore-capabilities"
 + "/sysc:datastore = ’ds:operational’";

 description
 "Defines some leafs that MAY be used by the server to
 describe constraints imposed of the ’where’ filters and
 ’sort-by’ parameters used in list pagination queries.";
 leaf snapshot {
 type empty;
 description
 "Indicates that snapshots are supported for the targeted
 ’config false’ list or leaf-list node.";
 }
 }
 }

 <CODE ENDS>

6. IANA Considerations

Andersson, et al. Expires 2 September 2024 [Page 9]

Internet-Draft List Pagination Snapshots March 2024

6.1. The "IETF XML" Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688] maintained at
 https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns.
 Following the format in [RFC3688], the following registration is
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-list-pagination-snapshot
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

6.2. The "YANG Module Names" Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020] maintained at https://www.iana.org/assignments/
 yang-parameters/yang-parameters.xhtml. Following the format defined
 in [RFC6020], the below registration is requested:

 name: ietf-list-pagination-snapshot
 namespace: urn:ietf:params:xml:ns:yang:ietf-list-pagination-snapshot
 prefix: lpg
 RFC: XXXX

6.3. The "RESTCONF Capability URNs" Registry

 This document registers one capability in the RESTCONF Capability
 URNs [RFC8040] maintained at https://www.iana.org/assignments/
 restconf-capability-urns/restconf-capability-urns.xhtml. Following
 the instructions defined in Section 11.4 of [RFC8040], the below
 registrations are requested:

 All the registrations are to use this document (RFC XXXX) for the
 "Reference" value.

 Index Capability Identifier

 :snapshot urn:ietf:params:restconf:capability:snapshot:1.0

7. Security Considerations

Andersson, et al. Expires 2 September 2024 [Page 10]

Internet-Draft List Pagination Snapshots March 2024

7.1. Regarding the "ietf-list-pagination-snapshot" YANG Module

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 All protocol-accessible data nodes in the extension to "ietf-system-
 capabilities" module are read-only and cannot be modified. Access
 control may be configured to avoid exposing any read-only data that
 is defined by the augmenting module documentation as being security
 sensitive.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241] and Section 6 of [RFC8526]) apply to the
 extension made to operations <get>, <get-config>, and <get-data>
 defined in this document.

8. References

8.1. Normative References

 [I-D.ietf-netconf-list-pagination]
 Watsen, K., Wu, Q., Andersson, P., Hagsand, O., and H. Li,
 "List Pagination for YANG-driven Protocols", Work in
 Progress, Internet-Draft, draft-ietf-netconf-list-
 pagination-03, 1 March 2024,
 <https://datatracker.ietf.org/api/v1/doc/document/draft-
 ietf-netconf-list-pagination/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Andersson, et al. Expires 2 September 2024 [Page 11]

Internet-Draft List Pagination Snapshots March 2024

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

 [RFC9196] Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
 Describing Capabilities for Systems and Datastore Update
 Notifications", RFC 9196, DOI 10.17487/RFC9196, February
 2022, <https://www.rfc-editor.org/info/rfc9196>.

Andersson, et al. Expires 2 September 2024 [Page 12]

Internet-Draft List Pagination Snapshots March 2024

8.2. Informative References

 [I-D.ietf-netconf-list-pagination-nc]
 Watsen, K., Wu, Q., Hagsand, O., Li, H., and P. Andersson,
 "NETCONF Extensions to Support List Pagination", Work in
 Progress, Internet-Draft, draft-ietf-netconf-list-
 pagination-nc-02, 22 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 list-pagination-nc-02>.

 [I-D.ietf-netconf-list-pagination-rc]
 Watsen, K., Wu, Q., Hagsand, O., Li, H., and P. Andersson,
 "RESTCONF Extensions to Support List Pagination", Work in
 Progress, Internet-Draft, draft-ietf-netconf-list-
 pagination-rc-02, 22 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 list-pagination-rc-02>.

 [I-D.ietf-netconf-restconf-collection]
 Bierman, A., Björklund, M., and K. Watsen, "RESTCONF
 Collection Resource", Work in Progress, Internet-Draft,
 draft-ietf-netconf-restconf-collection-00, 30 January
 2015, <https://datatracker.ietf.org/doc/html/draft-ietf-
 netconf-restconf-collection-00>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,
 <https://www.rfc-editor.org/info/rfc6365>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

Andersson, et al. Expires 2 September 2024 [Page 13]

Internet-Draft List Pagination Snapshots March 2024

Appendix A. Vector Tests

 This normative appendix section illustrates every notable edge
 condition conceived during this document’s production.

 Test inputs and outputs are provided in a manner that is both generic
 and concise.

 Management protocol specific documents need only reproduce as many of
 these tests as necessary to convey pecularities presented by the
 protocol.

 Implementations are RECOMMENDED to implement the tests presented in
 this document, in addition to any tests that may be presented in
 protocol specific documents.

 The vector tests assume the "example-social" YANG module and example
 data set defined [I-D.ietf-netconf-list-pagination].

A.1. Example Data Set

 The examples assume the server’s operational state as follows.

 The following data enables snapshot support for the audit-log list
 node.

 <system-capabilities
 xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"
 xmlns:es="https://example.com/ns/example-social"
 xmlns:lpg="urn:ietf:params:xml:ns:yang:ietf-list-pagination">
 <datastore-capabilities>
 <datastore>ds:operational</datastore>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log</node-selector>
 <lpgsnap:snapshot/>
 </per-node-capabilities>
 </datastore-capabilities>
 </system-capabilities>

A.2. Example Queries

 The following sections present example queries for the the snapshot
 query parameter.

 All the vector tests are presented in a protocol-independent manner.
 JSON is used only for its conciseness.

Andersson, et al. Expires 2 September 2024 [Page 14]

Internet-Draft List Pagination Snapshots March 2024

A.2.1. The "snapshot" Parameter

 The "snapshot" parameter may be used on "config false" target nodes.

 | If this parameter is omitted, the default value is false.

 REQUEST

 Target: /example-social:audit-logs/audit-log
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -
 Snapshot: true

 RESPONSE

Andersson, et al. Expires 2 September 2024 [Page 15]

Internet-Draft List Pagination Snapshots March 2024

 {
 "example-social:audit-log": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "bob",
 ...
 }
]
 }

Acknowledgements

 The authors would like to thank the following for lively discussions
 on list (ordered by first name): Andy Bierman, Tom Petch, and
 Quifang Ma.

Authors’ Addresses

 Per Andersson
 Cisco Systems
 Email: perander@cisco.com

 Kent Watsen
 Watsen Networks

Andersson, et al. Expires 2 September 2024 [Page 16]

Internet-Draft List Pagination Snapshots March 2024

 Email: kent+ietf@watsen.net

 Qin Wu
 Huawei Technologies
 Email: bill.wu@huawei.com

 Olof Hagsand
 SUNET
 Email: olof@hagsand.se

 Hongwei Li
 Hewlett Packard Enterprise
 Email: flycoolman@gmail.com

Andersson, et al. Expires 2 September 2024 [Page 17]

OPSAWG J. Quilbeuf
Internet-Draft B. Claise
Intended status: Standards Track Huawei
Expires: 13 July 2024 T. Graf
 Swisscom
 D. Lopez
 Telefonica I+D
 Q. Sun
 China Telecom
 10 January 2024

 External Trace ID for Configuration Tracing
 draft-ietf-netconf-configuration-tracing-00

Abstract

 Network equipment are often configured by a variety of network
 management systems (NMS), protocols, and teams. If a network issue
 arises (e.g., because of a wrong configuration change), it is
 important to quickly identify the root cause and obtain the reason
 for pushing that modification. Another potential network issue can
 stem from concurrent NMSes with overlapping intents, each having
 their own tasks to perform. In such a case, it is important to map
 the respective modifications to its originating NMS.

 This document specifies a NETCONF mechanism to automatically map the
 configuration modifications to their source, up to a specific NMS
 change request. Such a mechanism is required, in particular, for
 autonomous networks to trace the source of a particular configuration
 change that led to an anomaly detection. This mechanism facilitates
 the troubleshooting, the post mortem analysis, and in the end the
 closed loop automation required for self-healing networks. The
 specification also includes a YANG module that is meant to map a
 local configuration change to the corresponding trace id, up to the
 controller or even the orchestrator.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-
 configuration-tracing.

Quilbeuf, et al. Expires 13 July 2024 [Page 1]

Internet-Draft Configuration Tracing via trace-id January 2024

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Use cases . 4
 3.1. Configuration Mistakes 5
 3.2. Concurrent NMS Configuration 5
 3.3. Conflicting Intents 5
 3.4. Not a use case: Onboarding 5
 4. Relying on W3C Trace Context to Trace Configuration
 Modifications . 5
 4.1. Existing configuration metadata on device 6
 4.2. Client ID . 6
 4.3. Instantiating the YANG module 6
 4.4. Using the YANG module 7
 5. YANG module . 8
 5.1. Overview . 8

Quilbeuf, et al. Expires 13 July 2024 [Page 2]

Internet-Draft Configuration Tracing via trace-id January 2024

 5.2. YANG module ietf-external-transaction-id 9
 6. Security Considerations 13
 7. IANA Considerations . 13
 8. Contributors . 13
 9. Open Issues / TODO . 13
 10. Normative References . 13
 11. Informative References 14
 Appendix A. Changes between revisions 15
 Appendix B. Tracing configuration changes 15
 Acknowledgements . 15
 Authors’ Addresses . 15

1. Introduction

 Issues arising in the network, for instance violation of some SLAs,
 might be due to some configuration modification. In the context of
 automated networks, the assurance system needs not only to identify
 and revert the problematic configuration modification, but also to
 make sure that it won’t happen again and that the fix will not
 disrupt other services. To cover the last two points, it is
 imperative to understand the cause of the problematic configuration
 change. Indeed, the first point, making sure that the configuration
 modification will not be repeated, cannot be ensured if the cause for
 pushing the modification in the first place is not known. Ensuring
 the second point, not disrupting other services, requires as well
 knowing if the configuration modification was pushed in order to
 support new services. Therefore, we need to be able to trace a
 configuration modification on a device back to the reason that
 triggered that modification, for instance in a NMS, whether the
 controller or the orchestrator.

 This specification focuses only on configuration pushed via NETCONF
 [RFC6241] or RESTCONF [RFC8040]. The rationale for this choice is
 that NETCONF is better suited for normalization than other protocols
 (SNMP, CLI). Another reason is that the notion of trace context,
 useful to track configuration modifications, has been ported to
 NETCONF in [I-D.rogaglia-netconf-trace-ctx-extension] and RESTCONF in
 [I-D.rogaglia-netconf-restconf-trace-ctx-headers].

 The same network element, or NETCONF [RFC6241] server, can be
 configured by different NMSs or NETCONF clients. If an issue arises,
 one of the starting points for investigation is the configuration
 modification on the devices supporting the impacted service. In the
 best case, there is a dedicated user for each client and the
 timestamp of the modification allows tracing the problematic
 modification to its cause. In the worst case, everything is done by
 the same user and some more correlations must be done to trace the
 problematic modification to its source.

Quilbeuf, et al. Expires 13 July 2024 [Page 3]

Internet-Draft Configuration Tracing via trace-id January 2024

 This document specifies a mechanism to automatically map the
 configuration modifications to their source, up to a specific NMS
 service request. Practically, this mechanism annotates configuration
 changes on the configured element with sufficient information to
 unambiguously identify the corresponding transaction, if any, on the
 element that requested the configuration modification. It reuses the
 concept of Trace Context [W3C-Trace-Context] applied to NETCONF as in
 [I-D.ietf-netconf-transaction-id] The information needed to trace the
 configuration is stored in a new YANG module that maps a local
 configuration change to some additional metadata. The additional
 metadata contains the trace ID, and, if the local change is not the
 beginning of the trace, the ID of the client that triggered the
 local-change.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terms client and server from [RFC6241].

 This document uses the terms transaction and Transaction ID from
 [I-D.ietf-netconf-transaction-id].

 This document uses the term trace ID from [W3C-Trace-Context].

 Local Commit ID Identifier of a local configuration change on a
 Network Equipment, Controller, Orchestrator or any other device or
 software handling configuration. Such an identifier is usually
 present in devices that can show an history of the configuration
 changes, to identify one such configuration change.

3. Use cases

 This document was written with autonomous networks in mind. We
 assume that an existing monitoring or assurance system, such as
 described in [RFC9417], is able to detect and report network
 anomalies , e.g. SLA violations, intent violations, network failure,
 or simply a customer issue. Here are the use cases for the proposed
 YANG module.

Quilbeuf, et al. Expires 13 July 2024 [Page 4]

Internet-Draft Configuration Tracing via trace-id January 2024

3.1. Configuration Mistakes

 Taking into account that many network anomalies are due to
 configuration mistakes, this mechanism allows to find out whether the
 offending configuration modification was triggered by a tracing-
 enabled client/NMS. In such a case, we can map the offending
 configuration modification id on a server/NE to a local configuration
 modification id on the client/NMS. Assuming that this mechanism (the
 YANG module) is implemented on the controller, we can recursively
 find, in the orchestrator, the latest (set of of) service request(s)
 that triggered the configuration modification. Whether this/those
 service request(s) are actually the root cause needs to be
 investigated. However, they are a good starting point for
 troubleshooting, post mortem analysis, and in the end the closed loop
 automation, which is absolutely required for for self-healing
 networks.

3.2. Concurrent NMS Configuration

 Building on the previous use case is the situation where two NMS’s,
 unaware of the each other, are configuring a common router, each
 believing that they are the only NMS for the common router. So one
 configuration executed by the NMS1 is overwritten by the NMS2, which
 in turn is overwritten by NMS1, etc.

3.3. Conflicting Intents

 Autonomous networks will be solved first by assuring intent per
 specific domain; for example data center, core, cloud, etc. This
 last use case is a more specific "Concurrent NMS configuration" use
 case where assuring domain intent breaks the entire end to end
 service, even if the domain-specific controllers are aware of each
 other.

3.4. Not a use case: Onboarding

 During onboarding, a newly added device is likely to receive a
 multiple configuration message, as it needs to be fully configured.
 Our use cases focus more on what happens after the initial
 configuration is done, i.e. when the "stable" configuration is
 modified.

4. Relying on W3C Trace Context to Trace Configuration Modifications

Quilbeuf, et al. Expires 13 July 2024 [Page 5]

Internet-Draft Configuration Tracing via trace-id January 2024

4.1. Existing configuration metadata on device

 This document assumes that NETCONF clients or servers (orchestrators,
 controllers, devices, ...) have some kind of mechanism to record the
 modifications done to the configuration. For instance, devices
 typically have an history of configuration changes and this history
 associates a locally unique identifier to some metadata, such as the
 timestamp of the modification, the user doing the modification or the
 protocol used for the modification. Such a locally unique identifier
 is a Local Commit ID, we assume that it exists on the platform. This
 Local Commit ID is the link between the module presented in this
 draft and the device-specific way of storing configuration changes.

4.2. Client ID

 This document assumes that each NETCONF client for which
 configuration must be traced (for instance orchestrator and
 controllers) has a unique client ID among the other NETCONF clients
 in the network. Such an ID could be an IP address or a host name.
 The mechanism for providing and defining this client ID is out of
 scope of the current document.

4.3. Instantiating the YANG module

 [I-D.rogaglia-netconf-trace-ctx-extension] defines a NETCONF
 extension providing the trace context from [W3C-Trace-Context].
 Using this mechanism, the NETCONF server captures the trace-id, when
 available, and maps it to a local commit ID, by populating the YANG
 module.

 +---------------+
 | Orchestrator |
 +---------------+
 | tr-1, tx-1
 v
 +---------------+
 | Controller |
 +---------------+
 tr-1, tx-2 | | tr-1, tx-3
 v v
 +-----+ +-----+
 | NE1 | | NE2 |
 +-----+ +-----+

 Figure 1: Example of Hierarchical Configuration. tx: transaction.
 tr: trace.

Quilbeuf, et al. Expires 13 July 2024 [Page 6]

Internet-Draft Configuration Tracing via trace-id January 2024

 It is technically possible that several clients push configuration to
 the candidate configuration datastore and only one of them commits
 the changes to the running configuration datastore. From the running
 configuration datastore perspective, which is the effective one,
 there is a single modification, but caused by several clients, which
 means that this modification should have several corresponding
 client-ids. Although, this case is technically possible, it is a bad
 practice. We wont cover it in this document. In other terms, we
 assume that a given configuration modification on a server is caused
 by a single client, and thus has a single corresponding client-id.

4.4. Using the YANG module

 The YANG module defined below enables tracing a configuration change
 in a Network Equipment back to its origin, for instance a service
 request in an orchestrator. To do so, the Anomaly Detection System
 (ADS) should have, for each client-id, access to some credentials
 enabling read access to the YANG module for configuration tracing on
 that client. It should as well have access to the network equipment
 in which an issue is detected.

 +---------------+
 .----------------[5]match tr-1-------------->| |
 | | Orchestrator |
 | ----------------[6]commit-id---------------| |
 | | +---------------+
 | | | tx-1
 | | v
 | | +---------------+
 | | .-----------[3] match tr-1------------>| | |
 | | | | Controller |
 | | | .-----------[4] c-id O tr-1----------| |
 | | | | +---------------+
 | | | | | tx-2
 | v | v v
 +-----------+ +----+
 | Anomaly |--[1] match commit-id before time t-->| |
 | Detection | | NE |
 | System |<--------- [2] c-id C tr-1------------| |
 +----------+ +----+

 Figure 2: Example of Configuration Tracing. tr: trace-id, C:
 Controller, O: orchestrator. The number between square brackets
 refer to steps in the listing below.

Quilbeuf, et al. Expires 13 July 2024 [Page 7]

Internet-Draft Configuration Tracing via trace-id January 2024

 The steps for a software to trace a configuration modification in a
 Network Equipment back to a service request are illustrated in
 Figure 2. They are detailed below.

 1. The Anomaly Detection System (ADS) identifies the commit id that
 created an issue, for instance by looking for the last commit-id
 occurring before the issue was detected. The ADS queries the NE
 for the trace id and client id associated to the commit-id.

 2. The ADS receives the trace-id and the client-id. In Figure 2,
 that step would receive the trace-id tr-1 and the id of the
 Controller as a result. If there is no associated client-id, the
 change was not done by a client compatible with the present
 draft, and the investigation stops here.

 3. The ADS queries the client identified by the client-id found at
 the previous step, looking for a match of the trace-id from the
 previous step. In Figure 2, for that step, the software would
 look for the trace-id tr-1 stored in the Controller.

 4. From that query, the ADS knows the local-commit-id on the client
 (Controller in our case). Since the local-commit-id is
 associated to a client-id pointing to the Orchestrator, the ADS
 continues the investigation.

 5. The ADS queries the Orchestrator, trying to find a match for the
 trace-id tr-1.

 6. Finally, the ADS receives the commit-id from the Orchestrator
 that ultimately caused the issue in the NE. Since there is no
 associated client-id, the investigation stops here. The
 modification associated to the commit-id, for instance a service
 request, is now available for further manual or automated
 analysis, such as analyzing the root cause of the issue.

 Note that step 5 and 6 are actually a repetition of step 3 and 4.
 The general algorithm is to continue looking for a client until no
 more client-id can be found in the current element.

5. YANG module

 We present in this section the YANG module for modelling the
 information about the configuration modifications.

5.1. Overview

 The tree representation [RFC8340] of our YANG module is depicted in
 Figure 3

Quilbeuf, et al. Expires 13 July 2024 [Page 8]

Internet-Draft Configuration Tracing via trace-id January 2024

 module: ietf-external-transaction-id
 +--ro external-transactions-id
 +--ro configuration-change* [local-commit-id]
 +--ro local-commit-id string
 +--ro timestamp? yang:date-and-time
 +--ro trace-parent
 | +--ro version? hex-digits
 | +--ro trace-id? hex-digits
 | +--ro parent-id? hex-digits
 | +--ro trace-flags? hex-digits
 +--ro client-id? string

 Figure 3: Tree representation of ietf-external-transaction-id
 YANG module

 The local-commit-id represents the local id of the configuration
 changes, which is device-specific. It can be used to retrieve the
 local configuration changes that happened during that transaction.

 The trace-parent is present to identify the trace associated to the
 local-commit-id. This trace-parent can be transmitted by a client or
 created by the current server. In Section 4.4, the most important
 field in trace-parent is the trace-id. We also included the other
 fields for trace-parent as defined in [W3C-Trace-Context] for the
 sake of completion. In some cases, for instance direct configuration
 of the device, the device may choose to not include the trace-id.

 The presence of a client-id indicates that the trace-parent has been
 transmitted by that client. If the trace is initiated by the current
 server, there is no associated client-id.

 Even if this document focuses only on NETCONF or RESTCONF, the use
 cases defined in Section 3 are not specific to NETCONF or RESTCONF
 and the mechanism described in this document could be adapted to
 other configuration mechanisms. For instance, a configuration
 modification pushed via CLI can be identified via a label, which
 could contain the trace-parent. As such cases are difficult to
 standardize, we wont cover them in this document.

5.2. YANG module ietf-external-transaction-id

 <CODE BEGINS> file "ietf-external-transaction-id@2021-11-03.yang"
 module ietf-external-transaction-id {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-external-transaction-id";
 prefix ext-txid;

Quilbeuf, et al. Expires 13 July 2024 [Page 9]

Internet-Draft Configuration Tracing via trace-id January 2024

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types, Section 3";
 }

 organization
 "IETF NETCONF Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>
 Author: Benoit Claise <mailto:benoit.claise@huawei.com>
 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";
 description
 "This module enables tracing of configuration changes in a
 network for the sake of automated correlation between
 configuration changes and the external request that triggered
 that change.

 The module stores the identifier of the trace, if any, that
 triggered the change in a device. If that trace-id was provided
 by a client, (i.e. not created locally by the server), the id
 of that client is stored as well to indicated which client
 triggered the configuration change.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices. ";

 revision 2022-10-20 {
 description
 "Initial revision";
 reference
 "RFC xxxx: Title to be completed";
 }

 typedef hex-digits {
 type string {
 pattern ’[0-9a-f]*’;
 }

Quilbeuf, et al. Expires 13 July 2024 [Page 10]

Internet-Draft Configuration Tracing via trace-id January 2024

 description
 "A string composed of hexadecimal digits. Digits represented by
 letters are restricted to lowercase so that a single
 representation of a given value is allowed. This enables using
 the string equality to check equality of the represented
 values.";
 }

 grouping trace-parent-g {
 description
 "Trace parent frow the W3C trace-context recommandation.
 Follows the format version 00.";
 leaf version {
 type hex-digits {
 length "2";
 }
 must "../version = ’00’";
 description
 "Version of the trace context. Must be 00 to match the
 format described in this module.";
 }
 leaf trace-id {
 type hex-digits {
 length "32";
 }
 must "../trace-id != ’00000000000000000000000000000000’";
 description
 "Trace ID that is common for every transaction that is
 part of the configuration chain. This value can be used
 to match a local commit id to a commit local to another
 system.";
 }
 leaf parent-id {
 type hex-digits {
 length "16";
 }
 description
 "ID of the request (client-side) that lead to configuring
 the server hosting this module.";
 }
 leaf trace-flags {
 type hex-digits {
 length "2";
 }
 description
 "Flags enabled for this trace. See W3C reference for the
 details about flags.";
 }

Quilbeuf, et al. Expires 13 July 2024 [Page 11]

Internet-Draft Configuration Tracing via trace-id January 2024

 }

 container external-transactions-id {
 config false;
 description
 "Contains the IDs of configuration transactions that are
 external to the device.";
 list configuration-change {
 key "local-commit-id";
 description
 "List of configuration changes, identified by their
 local-commit-id";
 leaf local-commit-id {
 type string;
 description
 "Stores the identifier as saved by the server. Can be used
 to retrieve the corresponding changes using the server
 mechanism if available.";
 }
 leaf timestamp {
 type yang:date-and-time;
 description
 "A timestamp that can be used to further filter change
 events.";
 }
 container trace-parent {
 description
 "Trace parent associated to the local-commit-id. If a
 client ID is present as well, the trace context was
 transmitted by that client. If not, the trace context was
 created locally.

 This trace-parent must come from the trace context of the
 request actually modifying the running configuration
 datastore. This request might be an edit-config or a
 commit depending on whether the candidate datastore is
 used.";
 uses trace-parent-g;
 }
 leaf client-id {
 type string;
 description
 "ID of the client that originated the modification, to
 further query information about the corresponding
 change.

 This data node is present only when the configuration was
 pushed by a compatible system.";

Quilbeuf, et al. Expires 13 July 2024 [Page 12]

Internet-Draft Configuration Tracing via trace-id January 2024

 }
 }
 }
 }
 <CODE ENDS>

6. Security Considerations

7. IANA Considerations

 This document includes no request to IANA.

8. Contributors

9. Open Issues / TODO

 * Indicate what to do with O-RAN apps, since each of them might be
 seen as a different client with a different client-id. This is
 actually a requirement that the client-id should be granular
 enough to distinguish between different controllers colocated on
 the same device. For instance, the IP address might not be a
 suitable client-id in that case.

 * Define how to pass the client-id. Current leads are the trace-
 state from [W3C-Trace-Context] and W3C Baggage
 (https://www.w3.org/TR/baggage/).

 * The model and usage presented here focuses of the problem of
 tracing a configuration change back to its sources. As it relies
 on [W3C-Trace-Context], we could also use associated mechanisms
 for collecting and representing trace data such as OTLP. For
 instance, we could define a YANG model matching the OTLP
 protobuffer definition (draft: https://github.com/rgaglian/ietf-
 netconf-trace-context-extension/blob/main/ietf-netconf-otlp-
 protocol.tree). In that case the client-id could be a specific
 attribute of the spans list.

10. Normative References

 [I-D.ietf-netconf-transaction-id]
 Lindblad, J., "Transaction ID Mechanism for NETCONF", Work
 in Progress, Internet-Draft, draft-ietf-netconf-
 transaction-id-01, 4 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 transaction-id-01>.

Quilbeuf, et al. Expires 13 July 2024 [Page 13]

Internet-Draft Configuration Tracing via trace-id January 2024

 [I-D.rogaglia-netconf-restconf-trace-ctx-headers]
 Gagliano, R., Larsson, K., and J. Lindblad, "RESTCONF
 Extension to support Trace Context Headers", Work in
 Progress, Internet-Draft, draft-rogaglia-netconf-restconf-
 trace-ctx-headers-00, 6 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-rogaglia-
 netconf-restconf-trace-ctx-headers-00>.

 [I-D.rogaglia-netconf-trace-ctx-extension]
 Gagliano, R., Larsson, K., and J. Lindblad, "NETCONF
 Extension to support Trace Context propagation", Work in
 Progress, Internet-Draft, draft-rogaglia-netconf-trace-
 ctx-extension-03, 6 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-rogaglia-
 netconf-trace-ctx-extension-03>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [W3C-Trace-Context]
 "W3C Recommendation on Trace Context", 23 November 2021,
 <https://www.w3.org/TR/2021/REC-trace-context-
 1-20211123/>.

11. Informative References

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

Quilbeuf, et al. Expires 13 July 2024 [Page 14]

Internet-Draft Configuration Tracing via trace-id January 2024

 [RFC9417] Claise, B., Quilbeuf, J., Lopez, D., Voyer, D., and T.
 Arumugam, "Service Assurance for Intent-Based Networking
 Architecture", RFC 9417, DOI 10.17487/RFC9417, July 2023,
 <https://www.rfc-editor.org/info/rfc9417>.

Appendix A. Changes between revisions

 01 -> 02

 * Switch to trace-parent instead of transaction id for tracing
 configuration

 00 -> 01

 * Define Parent and Child Transaction

 * Context for the "local-commit-id" concept

 * Feedback from Med, both in text and YANG module

Appendix B. Tracing configuration changes

Acknowledgements

 The authors would like to thank Mohamed Boucadair, Jan Linblad and
 Roque Gagliano for their reviews and propositions.

Authors’ Addresses

 Jean Quilbeuf
 Huawei
 Email: jean.quilbeuf@huawei.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

 Thomas Graf
 Swisscom
 Binzring 17
 CH-8045 Zurich
 Switzerland
 Email: thomas.graf@swisscom.com

Quilbeuf, et al. Expires 13 July 2024 [Page 15]

Internet-Draft Configuration Tracing via trace-id January 2024

 Diego R. Lopez
 Telefonica I+D
 Don Ramon de la Cruz, 82
 Madrid 28006
 Spain
 Email: diego.r.lopez@telefonica.com

 Qiong Sun
 China Telecom
 Email: sunqiong@chinatelecom.cn

Quilbeuf, et al. Expires 13 July 2024 [Page 16]

NETCONF Working Group K. Watsen
Internet-Draft Watsen Networks
Intended status: Standards Track Q. Wu
Expires: 2 September 2024 Huawei Technologies
 P. Andersson
 Cisco Systems
 O. Hagsand
 SUNET
 H. Li
 Hewlett Packard Enterprise
 1 March 2024

 List Pagination for YANG-driven Protocols
 draft-ietf-netconf-list-pagination-03

Abstract

 In some circumstances, instances of YANG modeled "list" and "leaf-
 list" nodes may contain numerous entries. Retrieval of all the
 entries can lead to inefficiencies in the server, the client, and the
 network in between.

 This document defines a model for list pagination that can be
 implemented by YANG-driven management protocols such as NETCONF and
 RESTCONF. The model supports paging over optionally filtered and/or
 sorted entries. The solution additionally enables servers to
 constrain query expressions on some "config false" lists or leaf-
 lists.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Watsen, et al. Expires 2 September 2024 [Page 1]

Internet-Draft List Pagination March 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Conventions . 4
 1.3. Adherence to the NMDA 4
 2. Solution Overview . 4
 3. Solution Details . 5
 3.1. Query Parameters for a Targeted List or Leaf-List 5
 3.2. Query Parameter for Descendant Lists and Leaf-Lists . . . 10
 3.3. Constraints on "where" and "sort-by" for "config false"
 Lists . 11
 3.3.1. Identifying Constrained "config false" Lists and
 Leaf-Lists . 11
 3.3.2. Indicating the Constraints for "where" Filters and
 "sort-by" Expressions 12
 4. The "ietf-list-pagination" Module 13
 4.1. Data Model Overview 13
 4.2. Example Usage . 13
 4.2.1. Constraining a "config false" list 13
 4.2.2. Indicating number remaining in a limited list 14
 4.3. YANG Module . 14
 5. IANA Considerations . 23
 5.1. The "IETF XML" Registry 23
 5.2. The "YANG Module Names" Registry 23
 6. Security Considerations 23
 6.1. Considerations for the "ietf-list-pagination" YANG
 Module . 23
 7. References . 24
 7.1. Normative References 24
 7.2. Informative References 25
 Appendix A. Vector Tests . 26
 A.1. Example YANG Module 27
 A.2. Example Data Set . 34

Watsen, et al. Expires 2 September 2024 [Page 2]

Internet-Draft List Pagination March 2024

 A.3. Example Queries . 39
 A.3.1. The "limit" Parameter 39
 A.3.2. The "offset" Parameter 42
 A.3.3. The "cursor" Parameter 44
 A.3.4. The "direction" Parameter 49
 A.3.5. The "sort-by" Parameter 50
 A.3.6. The "where" Parameter 54
 A.3.7. The "locale" Parameter 56
 A.3.8. The "sublist-limit" Parameter 58
 A.3.9. Combinations of Parameters 62
 Acknowledgements . 64
 Authors’ Addresses . 64

1. Introduction

 YANG modeled "list" and "leaf-list" nodes may contain a large number
 of entries. For instance, there may be thousands of entries in the
 configuration for network interfaces or access control lists. And
 time-driven logging mechanisms, such as an audit log or a traffic
 log, can contain millions of entries.

 Retrieval of all the entries can lead to inefficiencies in the
 server, the client, and the network in between. For instance,
 consider the following:

 * A client may need to filter and/or sort list entries in order to,
 e.g., present the view requested by a user.

 * A server may need to iterate over many more list entries than
 needed by a client.

 * A network may need to convey more data than needed by a client.

 Optimal global resource utilization is obtained when clients are able
 to cherry-pick just that which is needed to support the application-
 level business logic.

 This document defines a generic model for list pagination that can be
 implemented by YANG-driven management protocols such as NETCONF
 [RFC6241] and RESTCONF [RFC8040]. Details for how such protocols are
 updated are outside the scope of this document.

 The model presented in this document supports paging over optionally
 filtered and/or sorted entries. Server-side filtering and sorting is
 ideal as servers can leverage indexes maintained by a backend storage
 layer to accelerate queries.

Watsen, et al. Expires 2 September 2024 [Page 3]

Internet-Draft List Pagination March 2024

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here: client, data model, data tree, feature, extension, module,
 leaf, leaf-list, and server.

1.2. Conventions

 Various examples in this document use "BASE64VALUE=" as a placeholder
 value for binary data that has been base64 encoded (per Section 9.8
 of [RFC7950]). This placeholder value is used because real base64
 encoded structures are often many lines long and hence distracting to
 the example being presented.

1.3. Adherence to the NMDA

 This document is compliant with the Network Management Datastore
 Architecture (NMDA) [RFC8342]. The "ietf-list-pagination" module
 only defines a YANG extension and augments a couple leafs into a
 "config false" node defined by the "ietf-system-capabilities" module.

2. Solution Overview

 The solution presented in this document broadly entails a client
 sending a query to a server targeting a specific list or leaf-list
 including optional parameters guiding which entries should be
 returned.

 A secondary aspect of this solution entails a client sending a query
 parameter to a server guiding how descendent lists and leaf-lists
 should be returned. This parameter may be used on any target node,
 not just "list" and "leaf-list" nodes.

 Clients detect a server’s support for list pagination via an entry
 for the "ietf-list-pagination" module (defined in Section 4) in the
 server’s YANG Library [RFC8525] response.

 Relying on client-provided query parameters ensures servers remain
 backward compatible with legacy clients.

Watsen, et al. Expires 2 September 2024 [Page 4]

Internet-Draft List Pagination March 2024

3. Solution Details

 This section is composed of the following subsections:

 * Section 3.1 defines five query parameters clients may use to page
 through the entries of a single list or leaf-list in a data tree.

 * Section 3.2 defines one query parameter that clients may use to
 affect the content returned for descendant lists and leaf-lists.

 * Section 3.3 defines per schema-node tags enabling servers to
 indicate which "config false" lists are constrained and how they
 may be interacted with.

3.1. Query Parameters for a Targeted List or Leaf-List

 The five query parameters presented this section are listed in
 processing order. This processing order is logical, efficient, and
 matches the processing order implemented by database systems, such as
 SQL.

 The order is as follows: a server first processes the "where"
 parameter (see Section 3.1.1), then the "sort-by" parameter (see
 Section 3.1.2), then the "direction" parameter (see Section 3.1.4),
 and either a combination of the "offset" parameter (see
 Section 3.1.5) or the "cursor" parameter (see Section 3.1.6), and
 lastly "the "limit" parameter (see Section 3.1.7).

 The sorting can furthermore be configured with a locale for
 collation. This is done by setting the "locale" parameter (see
 Section 3.1.3).

3.1.1. The "where" Query Parameter

 Description
 The "where" query parameter specifies a filter expression that
 result-set entries must match.

 Default Value
 If this query parameter is unspecified, then no entries are
 filtered from the working result-set.

Watsen, et al. Expires 2 September 2024 [Page 5]

Internet-Draft List Pagination March 2024

 Allowed Values
 The allowed values are XPath 1.0 expressions. It is an error if
 the XPath expression references a node identifier that does not
 exist in the schema, is optional or conditional in the schema or,
 for constrained "config false" lists and leaf-lists (see
 Section 3.3), if the node identifier does not point to a node
 having the "indexed" extension statement applied to it (see
 Section 3.3.2).

 Conformance
 The "where" query parameter MUST be supported for all "config
 true" lists and leaf-lists and SHOULD be supported for "config
 false" lists and leaf-lists. Servers MAY disable the support for
 some or all "config false" lists and leaf-lists as described in
 Section 3.3.2.

3.1.2. The "sort-by" Query Parameter

 Description
 The "sort-by" query parameter indicates the node in the working
 result-set (i.e., after the "where" parameter has been applied)
 that entries should be sorted by. Sorts are in ascending order
 (e.g., ’1’ before ’9’, ’a’ before ’z’, etc.). Missing values are
 sorted to the end (e.g., after all nodes having values). Sub-
 sorts are not supported.

 Default Value
 If this query parameter is unspecified, then the list or leaf-
 list’s default order is used, per the YANG "ordered-by" statement
 (see Section 7.7.7 of [RFC7950]).

 Allowed Values
 The allowed values are node identifiers. It is an error if the
 specified node identifier does not exist in the schema, is
 optional or conditional in the schema or, for constrained "config
 false" lists and leaf-lists (see Section 3.3), if the node
 identifier does not point to a node having the "indexed" extension
 statement applied to it (see Section 3.3.2).

 Conformance
 The "sort-by" query parameter MUST be supported for all "config
 true" lists and leaf-lists and SHOULD be supported for "config
 false" lists and leaf-lists. Servers MAY disable the support for
 some or all "config false" lists and leaf-lists as described in
 Section 3.3.2.

Watsen, et al. Expires 2 September 2024 [Page 6]

Internet-Draft List Pagination March 2024

3.1.3. The "locale" Query Parameter

 Description
 The "locale" query parameter indicates what locale is used when
 collating the result-set.

 Default Value
 If this query parameter is unspecified, it is up to the server
 select a locale for collation. How the server chooses the locale
 used is out of scope for this document. The result-set includes
 the locale used by the server for collation with a metadata value
 [RFC7952] called "locale".

 Allowed Values
 The format is a free form string but SHOULD follow the language
 sub-tag format defined in [RFC5646]. An example is ’sv_SE’. If a
 supplied locale is unknown to the server, the "locale-unavailable"
 SHOULD be produced in the error-app-tag in the error output. Note
 that all locales are assumed to be UTF-8, since character encoding
 for YANG strings and all known YANG modelled encodings and
 protocols are required to be UTF-8 [RFC6241] [RFC7950] [RFC7951]
 [RFC8040]. A server MUST accept a known encoding with or without
 trailing ".UTF-8" and MAY emit an encoding with or without
 trailing ".UTF-8". This means a server must handle both e.g.
 "sv_SE" and "sv_SE.UTF-8" equally as output, and chooses how to
 emit used locale as output.

 Conformance
 The "locale" query parameter MUST be supported for all "config
 true" lists and leaf-lists and SHOULD be supported for "config
 false" lists and leaf-lists. Servers MAY disable the support for
 some or all "config false" lists and leaf-lists as described in
 Section 3.3.2.

3.1.4. The "direction" Query Parameter

 Description
 The "direction" query parameter indicates how the entries in the
 working result-set (i.e., after the "sort-by" parameter has been
 applied) should be traversed.

 Default Value
 If this query parameter is unspecified, the default value is
 "forwards".

 Allowed Values
 The allowed values are:

Watsen, et al. Expires 2 September 2024 [Page 7]

Internet-Draft List Pagination March 2024

 forwards
 Return entries in the forwards direction. Also known as the
 "default" or "ascending" direction.

 backwards
 Return entries in the backwards direction. Also known as the
 "reverse" or "descending" direction

 Conformance
 The "direction" query parameter MUST be supported for all lists
 and leaf-lists.

3.1.5. The "offset" Query Parameter

 Description
 The "offset" query parameter indicates the number of entries in
 the working result-set (i.e., after the "direction" parameter has
 been applied) that should be skipped over when preparing the
 response.

 Default Value
 If this query parameter is unspecified, then no entries in the
 result-set are skipped, same as when the offset value ’0’ is
 specified.

 Allowed Values
 The allowed values are unsigned integers. It is an error for the
 offset value to exceed the number of entries in the working
 result-set, and the "offset-out-of-range" identity SHOULD be
 produced in the error-app-tag in the error output when this
 occurs.

 Conformance
 The "offset" query parameter MUST be supported for all lists and
 leaf-lists.

3.1.6. The "cursor" Query Parameter

 Description
 The "cursor" query parameter indicates where to start the working
 result-set (i.e., after the "direction" parameter has been
 applied), the elements before the cursor are skipped over when
 preparing the response. Furthermore, a result set constrained
 with the "limit" query parameter includes metadata values
 [RFC7952] called "next" and "previous", which contains cursor
 values to the next and previous result-sets. These next and
 previous cursor values are opaque index values for the underlying
 system’s database, e.g. a key or other information needed to

Watsen, et al. Expires 2 September 2024 [Page 8]

Internet-Draft List Pagination March 2024

 efficiently access the selected result-set. These "next" and
 "previous" metadata values work as Hypermedia as the Engine of
 Application State (HATEOAS) links [REST-Dissertation]. This means
 that the server does not keep any stateful information about the
 "next" and "previous" cursor or the current page. Due to their
 ephemeral nature, cursor values are never cached.

 Default Value
 If this query parameter is unspecified, then no entries in the
 result-set are skipped.

 Allowed Values
 The allowed values are base64 encoded positions interpreted by the
 server to index an element in the list, e.g. a list key or other
 information to efficiently access the selected result-set. It is
 an error to supply an unkown cursor for the working result-set,
 and the "cursor-not-found" identity SHOULD be produced in the
 error-app-tag in the error output when this occurs.

 Conformance
 The "cursor" query parameter MUST be supported for all "config
 true" lists and SHOULD be supported for all "config false" lists.
 It is however optional to support the "cursor" query parameter for
 "config false" lists and the support must be signaled by the
 server per list.

 Servers indicate that they support the "cursor" query parameter
 for a "config false" list node by having the "cursor-supported"
 extension statement applied to it in the "per-node-capabilities"
 node in the "ietf-system-capabilities" model.

 Since leaf-lists might not have any unique values that can be
 indexed, the "cursor" query parameter is not relevant for the
 leaf-lists. Consider the following leaf-list [1,1,2,3,5], which
 contains elements without uniquely indexable values. It would be
 possible to use the position, but then the solution would be equal
 to using the "offset" query parameter.

3.1.7. The "limit" Query Parameter

 Description
 The "limit" query parameter limits the number of entries returned
 from the working result-set (i.e., after the "offset" parameter
 has been applied). Any list or leaf-list that is limited
 includes, somewhere in its encoding, a metadata value [RFC7952]
 called "remaining", a positive integer indicating the number of
 elements that were not included in the result-set by the "limit"
 operation, or the value "unknown" in case, e.g., the server

Watsen, et al. Expires 2 September 2024 [Page 9]

Internet-Draft List Pagination March 2024

 determines that counting would be prohibitively expensive.

 Default Value
 If this query parameter is unspecified, the number of entries that
 may be returned is unbounded.

 Allowed Values
 The allowed values are positive integers.

 Conformance
 The "limit" query parameter MUST be supported for all lists and
 leaf-lists.

3.2. Query Parameter for Descendant Lists and Leaf-Lists

 Whilst this document primarily regards pagination for a list or leaf-
 list, it begs the question for how descendant lists and leaf-lists
 should be handled, which is addressed by the "sublist-limit" query
 parameter described in this section.

3.2.1. The "sublist-limit" Query Parameter

 Description
 The "sublist-limit" parameter limits the number of entries
 returned for descendent lists and leaf-lists.

 Any descendent list or leaf-list limited by the "sublist-limit"
 parameter includes, somewhere in its encoding, a metadata value
 [RFC7952] called "remaining", a positive integer indicating the
 number of elements that were not included by the "sublist-limit"
 parameter, or the value "unknown" in case, e.g., the server
 determines that counting would be prohibitively expensive.

 When used on a list node, it only affects the list’s descendant
 nodes, not the list itself, which is only affected by the
 parameters presented in Section 3.1.

 Default Value
 If this query parameter is unspecified, the number of entries that
 may be returned for descendent lists and leaf-lists is unbounded.

 Allowed Values
 The allowed values are positive integers.

 Conformance
 The "sublist-limit" query parameter MUST be supported for all
 conventional nodes, including a datastore’s top-level node (i.e.,
 ’/’).

Watsen, et al. Expires 2 September 2024 [Page 10]

Internet-Draft List Pagination March 2024

3.3. Constraints on "where" and "sort-by" for "config false" Lists

 Some "config false" lists and leaf-lists may contain an enormous
 number of entries. For instance, a time-driven logging mechanism,
 such as an audit log or a traffic log, can contain millions of
 entries.

 In such cases, "where" and "sort-by" expressions will not perform
 well if the server must bring each entry into memory in order to
 process it.

 The server’s best option is to leverage query-optimizing features
 (e.g., indexes) built into the backend database holding the dataset.

 However, arbitrary "where" expressions and "sort-by" node identifiers
 into syntax supported by the backend database and/or query-optimizers
 may prove challenging, if not impossible, to implement.

 Thusly this section introduces mechanisms whereby a server can:

 1. Identify which "config false" lists and leaf-lists are
 constrained.

 2. Identify what node-identifiers and expressions are allowed for
 the constrained lists and leaf-lists.

 | Note: The pagination performance for "config true" lists and
 | leaf-lists is not considered as already servers must be able to
 | process them as configuration. Whilst some "config true’ lists
 | and leaf-lists may contain thousands of entries, they are well
 | within the capability of server-side processing.

3.3.1. Identifying Constrained "config false" Lists and Leaf-Lists

 Identification of which lists and leaf-lists are constrained occurs
 in the schema tree, not the data tree. However, as server abilities
 vary, it is not possible to define constraints in YANG modules
 defining generic data models.

 In order to enable servers to identify which lists and leaf-lists are
 constrained, the solution presented in this document augments the
 data model defined by the "ietf-system-capabilities" module presented
 in [RFC9196].

 Specifically, the "ietf-list-pagination" module (see Section 4)
 augments an empty leaf node called "constrained" into the "per-node-
 capabilities" node defined in the "ietf-system-capabilities" module.

Watsen, et al. Expires 2 September 2024 [Page 11]

Internet-Draft List Pagination March 2024

 The "constrained" leaf MAY be specified for any "config false" list
 or leaf-list.

 When a list or leaf-list is constrained:

 * All parts of XPath 1.0 expressions are disabled unless explicitly
 enabled by Section 3.3.2.

 * Node-identifiers used in "where" expressions and "sort-by" filters
 MUST have the "indexed" leaf applied to it (see Section 3.3.2).

 * For lists only, node-identifiers used in "where" expressions and
 "sort-by" filters MUST NOT descend past any descendent lists.
 This ensures that only indexes relative to the targeted list are
 used. Further constraints on node identifiers MAY be applied in
 Section 3.3.2.

3.3.2. Indicating the Constraints for "where" Filters and "sort-by"
 Expressions

 This section identifies how constraints for "where" filters and
 "sort-by" expressions are specified. These constraints are valid
 only if the "constrained" leaf described in the previous section
 Section 3.3.1 has been set on the immediate ancestor "list" node or,
 for "leaf-list" nodes, on itself.

3.3.2.1. Indicating Filterable/Sortable Nodes

 For "where" filters, an unconstrained XPath expressions may use any
 node in comparisons. However, efficient mappings to backend
 databases may support only a subset of the nodes.

 Similarly, for "sort-by" expressions, efficient sorts may only
 support a subset of the nodes.

 In order to enable servers to identify which nodes may be used in
 comparisons (for both "where" and "sort-by" expressions), the "ietf-
 list-pagination" module (see Section 4) augments an empty leaf node
 called "indexed" into the "per-node-capabilities" node defined in the
 "ietf-system-capabilities" module (see [RFC9196]).

 When a "list" or "leaf-list" node has the "constrained" leaf, only
 nodes having the "indexed" node may be used in "where" and/or "sort-
 by" expressions. If no nodes have the "indexed" leaf, when the
 "constrained" leaf is present, then "where" and "sort-by" expressions
 are disabled for that list or leaf-list.

Watsen, et al. Expires 2 September 2024 [Page 12]

Internet-Draft List Pagination March 2024

4. The "ietf-list-pagination" Module

 The "ietf-list-pagination" module is used by servers to indicate that
 they support pagination on YANG "list" and "leaf-list" nodes, and to
 provide an ability to indicate which "config false" list and/or
 "leaf-list" nodes are constrained and, if so, which nodes may be used
 in "where" and "sort-by" expressions.

4.1. Data Model Overview

 The following tree diagram [RFC8340] illustrates the "ietf-list-
 pagination" module:

 module: ietf-list-pagination

 augment /sysc:system-capabilities/sysc:datastore-capabilities
 /sysc:per-node-capabilities:
 +--ro constrained? empty
 +--ro indexed? empty
 +--ro cursor-supported? empty

 Comments:

 * As shown, this module augments three optional leafs into the "per-
 node-capabilities" node of the "ietf-system-capabilities" module.

 * Not shown is that the module also defines an "md:annotation"
 statement named "remaining". This annotation may be present in a
 server’s response to a client request containing either the
 "limit" (Section 3.1.7) or "sublist-limit" parameters
 (Appendix A.3.8).

4.2. Example Usage

4.2.1. Constraining a "config false" list

 The following example illustrates the "ietf-list-pagination" module’s
 augmentations of the "system-capabilities" data tree. This example
 assumes the "example-social" module defined in the Appendix A.1 is
 implemented.

Watsen, et al. Expires 2 September 2024 [Page 13]

Internet-Draft List Pagination March 2024

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <system-capabilities
 xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"
 xmlns:es="https://example.com/ns/example-social"
 xmlns:lpg="urn:ietf:params:xml:ns:yang:ietf-list-pagination">
 <datastore-capabilities>
 <datastore>ds:operational</datastore>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log</node-selector>
 <lpg:constrained/>
 </per-node-capabilities>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log/es:timestamp</node-\
 selector>
 <lpg:indexed/>
 </per-node-capabilities>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log/es:member-id</node-\
 selector>
 <lpg:indexed/>
 </per-node-capabilities>
 <per-node-capabilities>
 <node-selector>/es:audit-logs/es:audit-log/es:outcome</node-se\
 lector>
 <lpg:indexed/>
 </per-node-capabilities>
 </datastore-capabilities>
 </system-capabilities>

4.2.2. Indicating number remaining in a limited list

 FIXME: valid syntax for ’where’?

4.3. YANG Module

 This YANG module has normative references to [RFC7952] and [RFC9196].

 <CODE BEGINS> file "ietf-list-pagination@2024-03-01.yang"

 module ietf-list-pagination {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-list-pagination";
 prefix lpg;

 import ietf-datastores {

Watsen, et al. Expires 2 September 2024 [Page 14]

Internet-Draft List Pagination March 2024

 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-yang-metadata {
 prefix md;
 reference
 "RFC 7952: Defining and Using Metadata with YANG";
 }

 import ietf-system-capabilities {
 prefix sysc;
 reference
 "RFC 9196: YANG Modules Describing Capabilities for Systems and
 Datastore Update Notifications";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>";

 description
 "This module is used by servers to 1) indicate they support
 pagination on ’list’ and ’leaf-list’ resources, 2) define a
 grouping for each list-pagination parameter, and 3) indicate
 which ’config false’ lists have constrained ’where’ and
 ’sort-by’ parameters and how they may be used, if at all.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

Watsen, et al. Expires 2 September 2024 [Page 15]

Internet-Draft List Pagination March 2024

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2024-03-01 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: List Pagination for YANG-driven Protocols";
 }

 // Annotations

 md:annotation remaining {
 type union {
 type uint32;
 type enumeration {
 enum "unknown" {
 description
 "Indicates that number of remaining entries is unknown
 to the server in case, e.g., the server has determined
 that counting would be prohibitively expensive.";
 }
 }
 }
 description
 "This annotation contains the number of elements not included
 in the result set (a positive value) due to a ’limit’ or
 ’sublist-limit’ operation. If no elements were removed,
 this annotation MUST NOT appear. The minimum value (0),
 which never occurs in normal operation, is reserved to
 represent ’unknown’. The maximum value (2^32-1) is
 reserved to represent any value greater than or equal
 to 2^32-1 elements.";
 }

 md:annotation next {
 type string;
 description
 "This annotation contains the base64 encoded value of the next

Watsen, et al. Expires 2 September 2024 [Page 16]

Internet-Draft List Pagination March 2024

 cursor in the pagination.";
 }

 md:annotation previous {
 type string;
 description
 "This annotation contains the base64 encoded value of the
 previous cursor in the pagination.";
 }

 md:annotation locale {
 type string;
 description
 "This annotation contains the locale used when sorting.

 The format is a free form string but SHOULD follow the
 language sub-tag format defined in RFC 5646.
 An example is ’sv_SE’.

 For further details see references:
 RFC 5646: Tags for identifying Languages
 RFC 6365: Technology Used in Internationalization in the
 IETF";
 }

 // Identities

 identity list-pagination-error {
 description
 "Base identity for list-pagination errors.";
 }

 identity offset-out-of-range {
 base list-pagination-error;
 description
 "The ’offset’ query parameter value is greater than the number
 of instances in the target list or leaf-list resource.";
 }

 identity cursor-not-found {
 base list-pagination-error;
 description
 "The ’cursor’ query parameter value is unknown for the target
 list.";
 }

 identity locale-unavailable {
 base list-pagination-error;

Watsen, et al. Expires 2 September 2024 [Page 17]

Internet-Draft List Pagination March 2024

 description
 "The ’locale’ query parameter input is not a valid
 locale or the locale is not available on the system.";
 }

 // Groupings

 grouping where-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf where {
 type union {
 type yang:xpath1.0;
 type enumeration {
 enum "unfiltered" {
 description
 "Indicates that no entries are to be filtered
 from the working result-set.";
 }
 }
 }
 default "unfiltered";
 description
 "The ’where’ parameter specifies a boolean expression
 that result-set entries must match.

 It is an error if the XPath expression references a node
 identifier that does not exist in the schema, is optional
 or conditional in the schema or, for constrained ’config
 false’ lists and leaf-lists, if the node identifier does
 not point to a node having the ’indexed’ extension
 statement applied to it (see RFC XXXX).";
 }
 }

 grouping locale-param-grouping {
 description
 "The grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf locale {
 type string;
 description
 "The ’locale’ parameter indicates the locale which the
 entries in the working result-set should be collated.";
 }
 }

Watsen, et al. Expires 2 September 2024 [Page 18]

Internet-Draft List Pagination March 2024

 grouping sort-by-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf sort-by {
 type union {
 type string {
 // An RFC 7950 ’descendant-schema-nodeid’.
 pattern ’([0-9a-fA-F]*:)?[0-9a-fA-F]*’
 + ’(/([0-9a-fA-F]*:)?[0-9a-fA-F]*)*’;
 }
 type enumeration {
 enum "none" {
 description
 "Indicates that the list or leaf-list’s default
 order is to be used, per the YANG ’ordered-by’
 statement.";
 }
 }
 }
 default "none";
 description
 "The ’sort-by’ parameter indicates the node in the
 working result-set (i.e., after the ’where’ parameter
 has been applied) that entries should be sorted by.

 Sorts are in ascending order (e.g., ’1’ before ’9’,
 ’a’ before ’z’, etc.). Missing values are sorted to
 the end (e.g., after all nodes having values).";
 }
 }

 grouping direction-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf direction {
 type enumeration {
 enum forwards {
 description
 "Indicates that entries should be traversed from
 the first to last item in the working result set.";
 }
 enum backwards {
 description
 "Indicates that entries should be traversed from
 the last to first item in the working result set.";
 }

Watsen, et al. Expires 2 September 2024 [Page 19]

Internet-Draft List Pagination March 2024

 }
 default "forwards";
 description
 "The ’direction’ parameter indicates how the entries in the
 working result-set (i.e., after the ’sort-by’ parameter
 has been applied) should be traversed.";
 }
 }

 grouping cursor-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf cursor {
 type string;
 description
 "The ’cursor’ parameter indicates where to start the working
 result-set (i.e. after the ’direction’ parameter has been
 applied), the elements before the cursor are skipped over
 when preparing the response. Furthermare the result-set is
 annotated with attributes for the next and previous cursors
 following a result-set constrained with the ’limit’ query
 parameter.";
 }
 }

 grouping offset-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf offset {
 type uint32;
 default 0;
 description
 "The ’offset’ parameter indicates the number of entries
 in the working result-set (i.e., after the ’direction’
 parameter has been applied) that should be skipped over
 when preparing the response.";
 }
 }

 grouping limit-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf limit {
 type union {
 type uint32 {

Watsen, et al. Expires 2 September 2024 [Page 20]

Internet-Draft List Pagination March 2024

 range "1..max";
 }
 type enumeration {
 enum "unbounded" {
 description
 "Indicates that the number of entries that may be
 returned is unbounded.";
 }
 }
 }
 default "unbounded";
 description
 "The ’limit’ parameter limits the number of entries returned
 from the working result-set (i.e., after the ’offset’
 parameter has been applied).

 Any result-set that is limited includes, somewhere in its
 encoding, the metadata value ’remaining’ to indicate the
 number entries not included in the result set.";
 }
 }

 grouping sublist-limit-param-grouping {
 description
 "This grouping may be used by protocol-specific YANG modules
 to define a protocol-specific query parameter.";
 leaf sublist-limit {
 type union {
 type uint32 {
 range "1..max";
 }
 type enumeration {
 enum "unbounded" {
 description
 "Indicates that the number of entries that may be
 returned is unbounded.";
 }
 }
 }
 default "unbounded";
 description
 "The ’sublist-limit’ parameter limits the number of entries
 for descendent lists and leaf-lists.

 Any result-set that is limited includes, somewhere in
 its encoding, the metadata value ’remaining’ to indicate
 the number entries not included in the result set.";
 }

Watsen, et al. Expires 2 September 2024 [Page 21]

Internet-Draft List Pagination March 2024

 }

 // Protocol-accessible nodes

 augment
 "/sysc:system-capabilities/sysc:datastore-capabilities"
 + "/sysc:per-node-capabilities" {

 // Ensure the following nodes are only used for the
 // <operational> datastore.
 when "/sysc:system-capabilities/sysc:datastore-capabilities"
 + "/sysc:datastore = ’ds:operational’";

 description
 "Defines some leafs that MAY be used by the server to
 describe constraints imposed of the ’where’ filters and
 ’sort-by’ parameters used in list pagination queries.";

 leaf constrained {
 type empty;
 description
 "Indicates that ’where’ filters and ’sort-by’ parameters
 on the targeted ’config false’ list node are constrained.
 If a list is not ’constrained’, then full XPath 1.0
 expressions may be used in ’where’ filters and all node
 identifiers are usable by ’sort-by’.";
 }
 leaf indexed {
 type empty;
 description
 "Indicates that the targeted descendent node of a
 ’constrained’ list (see the ’constrained’ leaf) may be
 used in ’where’ filters and/or ’sort-by’ parameters.
 If a descendent node of a ’constrained’ list is not
 ’indexed’, then it MUST NOT be used in ’where’ filters
 or ’sort-by’ parameters.";
 }
 leaf cursor-supported {
 type empty;
 description
 "Indicates that the targeted list node supports the
 ’cursor’ parameter.";
 }
 }
 }

 <CODE ENDS>

Watsen, et al. Expires 2 September 2024 [Page 22]

Internet-Draft List Pagination March 2024

5. IANA Considerations

5.1. The "IETF XML" Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688] maintained at
 https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns.
 Following the format in [RFC3688], the following registration is
 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-list-pagination
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

5.2. The "YANG Module Names" Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020] maintained at https://www.iana.org/assignments/
 yang-parameters/yang-parameters.xhtml. Following the format defined
 in [RFC6020], the below registration is requested:

 name: ietf-list-pagination
 namespace: urn:ietf:params:xml:ns:yang:ietf-list-pagination
 prefix: lpg
 RFC: XXXX

6. Security Considerations

6.1. Considerations for the "ietf-list-pagination" YANG Module

 This section follows the template defined in Section 3.7.1 of
 [RFC8407].

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

Watsen, et al. Expires 2 September 2024 [Page 23]

Internet-Draft List Pagination March 2024

 All protocol-accessible data nodes in this module are read-only and
 cannot be modified. Access control may be configured to avoid
 exposing any read-only data that is defined by the augmenting module
 documentation as being security sensitive.

 Since this module also defines groupings, these considerations are
 primarily for the designers of other modules that use these
 groupings.

 None of the readable data nodes defined in this YANG module are
 considered sensitive or vulnerable in network environments. The NACM
 "default-deny-all" extension has not been set for any data nodes
 defined in this module.

 This module does not define any RPCs or actions or notifications, and
 thus the security consideration for such is not provided here.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

Watsen, et al. Expires 2 September 2024 [Page 24]

Internet-Draft List Pagination March 2024

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC9196] Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
 Describing Capabilities for Systems and Datastore Update
 Notifications", RFC 9196, DOI 10.17487/RFC9196, February
 2022, <https://www.rfc-editor.org/info/rfc9196>.

7.2. Informative References

 [I-D.ietf-netconf-list-pagination-nc]
 Watsen, K., Wu, Q., Hagsand, O., Li, H., and P. Andersson,
 "NETCONF Extensions to Support List Pagination", Work in
 Progress, Internet-Draft, draft-ietf-netconf-list-
 pagination-nc-02, 22 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 list-pagination-nc-02>.

 [I-D.ietf-netconf-list-pagination-rc]
 Watsen, K., Wu, Q., Hagsand, O., Li, H., and P. Andersson,
 "RESTCONF Extensions to Support List Pagination", Work in

Watsen, et al. Expires 2 September 2024 [Page 25]

Internet-Draft List Pagination March 2024

 Progress, Internet-Draft, draft-ietf-netconf-list-
 pagination-rc-02, 22 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 list-pagination-rc-02>.

 [I-D.ietf-netconf-restconf-collection]
 Bierman, A., Björklund, M., and K. Watsen, "RESTCONF
 Collection Resource", Work in Progress, Internet-Draft,
 draft-ietf-netconf-restconf-collection-00, 30 January
 2015, <https://datatracker.ietf.org/doc/html/draft-ietf-
 netconf-restconf-collection-00>.

 [REST-Dissertation]
 Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", 2000,
 <http://www.ics.uci.edu/˜fielding/pubs/dissertation/
 top.htm>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in
 Internationalization in the IETF", BCP 166, RFC 6365,
 DOI 10.17487/RFC6365, September 2011,
 <https://www.rfc-editor.org/info/rfc6365>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

Appendix A. Vector Tests

 This normative appendix section illustrates every notable edge
 condition conceived during this document’s production.

Watsen, et al. Expires 2 September 2024 [Page 26]

Internet-Draft List Pagination March 2024

 Test inputs and outputs are provided in a manner that is both generic
 and concise.

 Management protocol specific documents need only reproduce as many of
 these tests as necessary to convey pecularities presented by the
 protocol.

 Implementations are RECOMMENDED to implement the tests presented in
 this document, in addition to any tests that may be presented in
 protocol specific documents.

A.1. Example YANG Module

 The vector tests assume the "example-social" YANG module defined in
 this section.

 This module has been specially crafted to cover every notable edge
 condition, especially with regards to the types of the data nodes.

 Following is the tree diagram [RFC8340] for the "example-social"
 module:

Watsen, et al. Expires 2 September 2024 [Page 27]

Internet-Draft List Pagination March 2024

 module: example-social
 +--rw members
 | +--rw member* [member-id]
 | +--rw member-id string
 | +--rw email-address inet:email-address
 | +--rw password ianach:crypt-hash
 | +--rw avatar? binary
 | +--rw tagline? string
 | +--rw privacy-settings
 | | +--rw hide-network? boolean
 | | +--rw post-visibility? enumeration
 | +--rw following* -> /members/member/member-id
 | +--rw posts
 | | +--rw post* [timestamp]
 | | +--rw timestamp yang:date-and-time
 | | +--rw title? string
 | | +--rw body string
 | +--rw favorites
 | | +--rw uint8-numbers* uint8
 | | +--rw uint64-numbers* uint64
 | | +--rw int8-numbers* int8
 | | +--rw int64-numbers* int64
 | | +--rw decimal64-numbers* decimal64
 | | +--rw bits* bits
 | +--ro stats
 | +--ro joined yang:date-and-time
 | +--ro membership-level enumeration
 | +--ro last-activity? yang:date-and-time
 +--ro audit-logs
 +--ro audit-log* []
 +--ro timestamp yang:date-and-time
 +--ro member-id string
 +--ro source-ip inet:ip-address
 +--ro request string
 +--ro outcome boolean

 Following is the YANG [RFC7950] for the "example-social" module:

 module example-social {
 yang-version 1.1;
 namespace "https://example.com/ns/example-social";
 prefix es;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

Watsen, et al. Expires 2 September 2024 [Page 28]

Internet-Draft List Pagination March 2024

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import iana-crypt-hash {
 prefix ianach;
 reference
 "RFC 7317: A YANG Data Model for System Management";
 }

 organization "Example, Inc.";
 contact "support@example.com";
 description "Example Social Data Model.";

 revision YYYY-MM-DD {
 description
 "Initial version.";
 reference
 "RFC XXXX: Example social module.";
 }

 container members {
 description
 "Container for list of members.";
 list member {
 key "member-id";
 description
 "List of members.";

 leaf member-id {
 type string {
 length "1..80";
 pattern ’.*[\n].*’ {
 modifier invert-match;
 }
 }
 description
 "The member’s identifier.";
 }

 leaf email-address {
 type inet:email-address;
 mandatory true;
 description
 "The member’s email address.";
 }

Watsen, et al. Expires 2 September 2024 [Page 29]

Internet-Draft List Pagination March 2024

 leaf password {
 type ianach:crypt-hash;
 mandatory true;
 description
 "The member’s hashed-password.";
 }

 leaf avatar {
 type binary;
 description
 "An binary image file.";
 }

 leaf tagline {
 type string {
 length "1..80";
 pattern ’.*[\n].*’ {
 modifier invert-match;
 }
 }
 description
 "The member’s tagline.";
 }

 container privacy-settings {
 leaf hide-network {
 type boolean;
 description
 "Hide who you follow and who follows you.";
 }
 leaf post-visibility {
 type enumeration {
 enum public {
 description
 "Posts are public.";
 }
 enum unlisted {
 description
 "Posts are unlisted, though visable to all.";
 }
 enum followers-only {
 description
 "Posts only visible to followers.";
 }
 }
 default public;
 description
 "The post privacy setting.";

Watsen, et al. Expires 2 September 2024 [Page 30]

Internet-Draft List Pagination March 2024

 }
 description
 "Preferences for the member.";
 }

 leaf-list following {
 type leafref {
 path "/members/member/member-id";
 }
 description
 "Other members this members is following.";
 }

 container posts {
 description
 "The member’s posts.";
 list post {
 key timestamp;
 leaf timestamp {
 type yang:date-and-time;
 description
 "The timestamp for the member’s post.";
 }
 leaf title {
 type string {
 length "1..80";
 pattern ’.*[\n].*’ {
 modifier invert-match;
 }
 }
 description
 "A one-line title.";
 }
 leaf body {
 type string;
 mandatory true;
 description
 "The body of the post.";
 }
 description
 "A list of posts.";
 }
 }

 container favorites {
 description
 "The member’s favorites.";
 leaf-list uint8-numbers {

Watsen, et al. Expires 2 September 2024 [Page 31]

Internet-Draft List Pagination March 2024

 type uint8;
 ordered-by user;
 description
 "The member’s favorite uint8 numbers.";
 }
 leaf-list uint64-numbers {
 type uint64;
 ordered-by user;
 description
 "The member’s favorite uint64 numbers.";
 }
 leaf-list int8-numbers {
 type int8;
 ordered-by user;
 description
 "The member’s favorite int8 numbers.";
 }
 leaf-list int64-numbers {
 type int64;
 ordered-by user;
 description
 "The member’s favorite uint64 numbers.";
 }
 leaf-list decimal64-numbers {
 type decimal64 {
 fraction-digits 5;
 }
 ordered-by user;
 description
 "The member’s favorite decimal64 numbers.";
 }
 leaf-list bits {
 type bits {
 bit zero {
 position 0;
 description "zero";
 }
 bit one {
 position 1;
 description "one";
 }
 bit two {
 position 2;
 description "two";
 }
 }
 ordered-by user;
 description

Watsen, et al. Expires 2 September 2024 [Page 32]

Internet-Draft List Pagination March 2024

 "The member’s favorite bits.";
 }
 }

 container stats {
 config false;
 description
 "Operational state members values.";
 leaf joined {
 type yang:date-and-time;
 mandatory true;
 description
 "Timestamp when member joined.";
 }
 leaf membership-level {
 type enumeration {
 enum admin {
 description
 "Site administrator.";
 }
 enum standard {
 description
 "Standard membership level.";
 }
 enum pro {
 description
 "Professional membership level.";
 }
 }
 mandatory true;
 description
 "The membership level for this member.";
 }
 leaf last-activity {
 type yang:date-and-time;
 description
 "Timestamp of member’s last activity.";
 }
 }
 }
 }

 container audit-logs {
 config false;
 description
 "Audit log configuration";
 list audit-log {
 description

Watsen, et al. Expires 2 September 2024 [Page 33]

Internet-Draft List Pagination March 2024

 "List of audit logs.";
 leaf timestamp {
 type yang:date-and-time;
 mandatory true;
 description
 "The timestamp for the event.";
 }
 leaf member-id {
 type string;
 mandatory true;
 description
 "The ’member-id’ of the member.";
 }
 leaf source-ip {
 type inet:ip-address;
 mandatory true;
 description
 "The apparent IP address the member used.";
 }
 leaf request {
 type string;
 mandatory true;
 description
 "The member’s request.";
 }
 leaf outcome {
 type boolean;
 mandatory true;
 description
 "Indicate if request was permitted.";
 }
 }
 }
 }

A.2. Example Data Set

 The examples assume the server’s operational state as follows.

 The data is provided in JSON only for convenience and, in particular,
 has no bearing on the "generic" nature of the tests themselves.

 {
 "example-social:members": {
 "member": [
 {
 "member-id": "bob",
 "email-address": "bob@example.com",

Watsen, et al. Expires 2 September 2024 [Page 34]

Internet-Draft List Pagination March 2024

 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 },
 {
 "timestamp": "2020-08-14T03:33:55Z",
 "body": "What’s new?"
 },
 {
 "timestamp": "2020-08-14T03:34:30Z",
 "body": "I’m bored..."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159", "2.71828"]
 },
 "stats": {
 "joined": "2020-08-14T03:30:00Z",
 "membership-level": "standard",
 "last-activity": "2020-08-14T03:34:30Z"
 }
 },
 {
 "member-id": "eric",
 "email-address": "eric@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Go to bed with dreams; wake up with a purpose.",
 "following": ["alice"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-09-17T18:02:04Z",
 "title": "Son, brother, husband, father",
 "body": "What’s your story?"
 }
]
 },
 "favorites": {
 "bits": ["two", "one", "zero"]
 },
 "stats": {

Watsen, et al. Expires 2 September 2024 [Page 35]

Internet-Draft List Pagination March 2024

 "joined": "2020-09-17T19:38:32Z",
 "membership-level": "pro",
 "last-activity": "2020-09-17T18:02:04Z"
 }
 },
 {
 "member-id": "alice",
 "email-address": "alice@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Every day is a new day",
 "privacy-settings": {
 "hide-network": false,
 "post-visibility": "public"
 },
 "following": ["bob", "eric", "lin"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-07-08T13:12:45Z",
 "title": "My first post",
 "body": "Hiya all!"
 },
 {
 "timestamp": "2020-07-09T01:32:23Z",
 "title": "Sleepy...",
 "body": "Catch y’all tomorrow."
 }
]
 },
 "favorites": {
 "uint8-numbers": [17, 13, 11, 7, 5, 3],
 "int8-numbers": [-5, -3, -1, 1, 3, 5]
 },
 "stats": {
 "joined": "2020-07-08T12:38:32Z",
 "membership-level": "admin",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "lin",
 "email-address": "lin@example.com",
 "password": "$0$1543",
 "privacy-settings": {
 "hide-network": true,
 "post-visibility": "followers-only"
 },

Watsen, et al. Expires 2 September 2024 [Page 36]

Internet-Draft List Pagination March 2024

 "following": ["joe", "eric", "alice"],
 "stats": {
 "joined": "2020-07-09T12:38:32Z",
 "membership-level": "standard",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "joe",
 "email-address": "joe@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Greatness is measured by courage and heart.",
 "privacy-settings": {
 "post-visibility": "unlisted"
 },
 "following": ["bob"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-10-17T18:02:04Z",
 "body": "What’s your status?"
 }
]
 },
 "stats": {
 "joined": "2020-10-08T12:38:32Z",
 "membership-level": "pro",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "åsa",
 "email-address": "asa@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "privacy-settings": {
 "post-visibility": "unlisted"
 },
 "following": ["alice", "bob"],
 "stats": {
 "joined": "2022-02-19T13:12:00Z",
 "membership-level": "standard",
 "last-activity": "2022-04-19T13:12:59Z"
 }
 }
]
 },

Watsen, et al. Expires 2 September 2024 [Page 37]

Internet-Draft List Pagination March 2024

 "example-social:audit-logs": {
 "audit-log": [
 {
 "timestamp": "2020-10-11T06:47:59Z",
 "member-id": "alice",
 "source-ip": "192.168.0.92",
 "request": "POST /groups/group/2043",
 "outcome": true
 },
 {
 "timestamp": "2020-11-01T15:22:01Z",
 "member-id": "bob",
 "source-ip": "192.168.2.16",
 "request": "POST /groups/group/123",
 "outcome": false
 },
 {
 "timestamp": "2020-12-12T21:00:28Z",
 "member-id": "eric",
 "source-ip": "192.168.254.1",
 "request": "POST /groups/group/10",
 "outcome": true
 },
 {
 "timestamp": "2021-01-03T06:47:59Z",
 "member-id": "alice",
 "source-ip": "192.168.0.92",
 "request": "POST /groups/group/333",
 "outcome": true
 },
 {
 "timestamp": "2021-01-21T10:00:00Z",
 "member-id": "bob",
 "source-ip": "192.168.2.16",
 "request": "POST /groups/group/42",
 "outcome": true
 },
 {
 "timestamp": "2020-02-07T09:06:21Z",
 "member-id": "alice",
 "source-ip": "192.168.0.92",
 "request": "POST /groups/group/1202",
 "outcome": true
 },
 {
 "timestamp": "2020-02-28T02:48:11Z",
 "member-id": "bob",
 "source-ip": "192.168.2.16",

Watsen, et al. Expires 2 September 2024 [Page 38]

Internet-Draft List Pagination March 2024

 "request": "POST /groups/group/345",
 "outcome": true
 }
]
 }
 }

A.3. Example Queries

 The following sections are presented in reverse query-parameters
 processing order. Starting with the simplest (limit) and ending with
 the most complex (where).

 All the vector tests are presented in a protocol-independent manner.
 JSON is used only for its conciseness.

A.3.1. The "limit" Parameter

 Noting that "limit" must be a positive number, the edge condition
 values are ’1’, ’2’, num-elements-1, num-elements, and num-
 elements+1.

 | If ’0’ were a valid limit value, it would always return an
 | empty result set. Any value greater than or equal to num-
 | elements results the entire result set, same as when "limit" is
 | unspecified.

 These vector tests assume the target "/example-
 social:members/member=alice/favorites/uint8-numbers", which has six
 values, thus the edge condition "limit" values are: ’1’, ’2’, ’5’,
 ’6’, and ’7’.

A.3.1.1. limit=1

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 1

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 39]

Internet-Draft List Pagination March 2024

 {
 "example-social:uint8-numbers": [17],
 "@example-social:uint8-numbers": [
 {
 "ietf-list-pagination:remaining": 5
 }
]
 }

A.3.1.2. limit=2

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13],
 "@example-social:uint8-numbers": [
 {
 "ietf-list-pagination:remaining": 4
 }
]
 }

A.3.1.3. limit=5

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 5

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 40]

Internet-Draft List Pagination March 2024

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5],
 "@example-social:uint8-numbers": [
 {
 "ietf-list-pagination:remaining": 1
 }
]
 }

A.3.1.4. limit=6

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 6

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.1.5. limit=7

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 7

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

Watsen, et al. Expires 2 September 2024 [Page 41]

Internet-Draft List Pagination March 2024

A.3.2. The "offset" Parameter

 Noting that "offset" must be an unsigned number less than or equal to
 the num-elements, the edge condition values are ’0’, ’1’, ’2’, num-
 elements-1, num-elements, and num-elements+1.

 These vector tests again assume the target "/example-
 social:members/member=alice/favorites/uint8-numbers", which has six
 values, thus the edge condition "limit" values are: ’0’, ’1’, ’2’,
 ’5’, ’6’, and ’7’.

A.3.2.1. offset=0

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 0
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.2.2. offset=1

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 1
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [13, 11, 7, 5, 3]
 }

Watsen, et al. Expires 2 September 2024 [Page 42]

Internet-Draft List Pagination March 2024

A.3.2.3. offset=2

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 2
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [11, 7, 5, 3]
 }

A.3.2.4. offset=5

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 5
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [3]
 }

A.3.2.5. offset=6

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 6
 Limit: -

Watsen, et al. Expires 2 September 2024 [Page 43]

Internet-Draft List Pagination March 2024

 RESPONSE

 {
 "example-social:uint8-numbers": []
 }

A.3.2.6. offset=7

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: 7
 Limit: -

 RESPONSE

 ERROR

A.3.3. The "cursor" Parameter

 Noting that "cursor" must be an base64 encoded opaque value which
 addresses an element in a list.

 | The default value is empty, which is the same as supplying the
 | cursor value for the first element in the list.

 These vector tests assume the target "/example-social:members/member"
 which has five members.

 | Note that response has added attributes describing the result
 | set and position in pagination.

A.3.3.1. cursor=&limit=2

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2
 Cursor: -

Watsen, et al. Expires 2 September 2024 [Page 44]

Internet-Draft List Pagination March 2024

 RESPONSE

 {
 "example-social:member": [
 {
 "member-id": "bob",
 "email-address": "bob@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 },
 {
 "timestamp": "2020-08-14T03:33:55Z",
 "body": "What’s new?"
 },
 {
 "timestamp": "2020-08-14T03:34:30Z",
 "body": "I’m bored..."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159", "2.71828"]
 },
 "stats": {
 "joined": "2020-08-14T03:30:00Z",
 "membership-level": "standard",
 "last-activity": "2020-08-14T03:34:30Z"
 }
 },
 {
 "member-id": "eric",
 "email-address": "eric@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Go to bed with dreams; wake up with a purpose.",
 "following": ["alice"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-09-17T18:02:04Z",
 "title": "Son, brother, husband, father",
 "body": "What’s your story?"

Watsen, et al. Expires 2 September 2024 [Page 45]

Internet-Draft List Pagination March 2024

 }
]
 },
 "favorites": {
 "bits": ["two", "one", "zero"]
 },
 "stats": {
 "joined": "2020-09-17T19:38:32Z",
 "membership-level": "pro",
 "last-activity": "2020-09-17T18:02:04Z"
 }
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:remaining": 3,
 "ietf-list-pagination:previous": "",
 "ietf-list-pagination:next": "YWxpY2U=" // alice
 }
]
 }

A.3.3.2. cursor="YWxpY2U="&limit=2

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2
 Cursor: YWxpY2U=

 RESPONSE

 {
 "example-social:member": [
 {
 "member-id": "alice",
 "email-address": "alice@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Every day is a new day",
 "privacy-settings": {
 "hide-network": false,
 "post-visibility": "public"

Watsen, et al. Expires 2 September 2024 [Page 46]

Internet-Draft List Pagination March 2024

 },
 "following": ["bob", "eric", "lin"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-07-08T13:12:45Z",
 "title": "My first post",
 "body": "Hiya all!"
 },
 {
 "timestamp": "2020-07-09T01:32:23Z",
 "title": "Sleepy...",
 "body": "Catch y’all tomorrow."
 }
]
 },
 "favorites": {
 "uint8-numbers": [17, 13, 11, 7, 5, 3],
 "int8-numbers": [-5, -3, -1, 1, 3, 5]
 },
 "stats": {
 "joined": "2020-07-08T12:38:32Z",
 "membership-level": "admin",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 },
 {
 "member-id": "lin",
 "email-address": "lin@example.com",
 "password": "$0$1543",
 "privacy-settings": {
 "hide-network": true,
 "post-visibility": "followers-only"
 },
 "following": ["joe", "eric", "alice"],
 "stats": {
 "joined": "2020-07-09T12:38:32Z",
 "membership-level": "standard",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:remaining": 1,
 "ietf-list-pagination:previous": "ZXJpYw==", // eric
 "ietf-list-pagination:next": "am9l" // joe
 }

Watsen, et al. Expires 2 September 2024 [Page 47]

Internet-Draft List Pagination March 2024

]
 }

A.3.3.3. cursor="am9l"&limit=2

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: 2
 Cursor: am9l

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 48]

Internet-Draft List Pagination March 2024

 {
 "example-social:member": [
 {
 "member-id": "joe",
 "email-address": "joe@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Greatness is measured by courage and heart.",
 "privacy-settings": {
 "post-visibility": "unlisted"
 },
 "following": ["bob"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-10-17T18:02:04Z",
 "body": "What’s your status?"
 }
]
 },
 "stats": {
 "joined": "2020-10-08T12:38:32Z",
 "membership-level": "pro",
 "last-activity": "2021-04-01T02:51:11Z"
 }
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:remaining": 0,
 "ietf-list-pagination:previous": "bGlu", // lin
 "ietf-list-pagination:next": ""
 }
]
 }

A.3.4. The "direction" Parameter

 Noting that "direction" is an enumeration with two values, the edge
 condition values are each defined enumeration.

 | The value "forwards" is sometimes known as the "default" value,
 | as it produces the same result set as when "direction" is
 | unspecified.

 These vector tests again assume the target "/example-
 social:members/member=alice/favorites/uint8-numbers". The number of
 elements is relevant to the edge condition values.

Watsen, et al. Expires 2 September 2024 [Page 49]

Internet-Draft List Pagination March 2024

 | It is notable that "uint8-numbers" is an "ordered-by" user
 | leaf-list. Traversals are over the user-specified order, not
 | the numerically-sorted order, which is what the "sort-by"
 | parameter addresses. If this were an "ordered-by system" leaf-
 | list, then the traversals would be over the system-specified
 | order, again not a numerically-sorted order.

A.3.4.1. direction=forwards

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: forwards
 Offset: -
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [17, 13, 11, 7, 5, 3]
 }

A.3.4.2. direction=backwards

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: backwards
 Offset: -
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [3, 5, 7, 11, 13, 17]
 }

A.3.5. The "sort-by" Parameter

 Noting that the "sort-by" parameter is a node identifier, there is
 not so much "edge conditions" as there are "interesting conditions".
 This section provides examples for some interesting conditions.

Watsen, et al. Expires 2 September 2024 [Page 50]

Internet-Draft List Pagination March 2024

A.3.5.1. the target node’s type

 The section provides three examples, one for a "leaf-list" and two
 for a "list", with one using a direct descendent and the other using
 an indirect descendent.

A.3.5.1.1. type is a "leaf-list"

 This example illustrates when the target node’s type is a "leaf-
 list". Note that a single period (i.e., ’.’) is used to represent
 the nodes to be sorted.

 This test again uses the target "/example-
 social:members/member=alice/favorites/uint8-numbers", which is a
 leaf-list.

 REQUEST

 Target: /example-social:members/member=alice/favorites/uint8-numbers
 Pagination Parameters:
 Where: -
 Sort-by: .
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 {
 "example-social:uint8-numbers": [3, 5, 7, 11, 13, 17]
 }

A.3.5.1.2. type is a "list" and sort-by node is a direct descendent

 This example illustrates when the target node’s type is a "list" and
 a direct descendent is the "sort-by" node.

 This vector test uses the target "/example-social:members/member",
 which is a "list", and the sort-by descendent node "member-id", which
 is the "key" for the list.

 REQUEST

Watsen, et al. Expires 2 September 2024 [Page 51]

Internet-Draft List Pagination March 2024

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: member-id
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an ellipse (i.e.,
 | "...") is used to represent a missing subtree of data.

 {
 "example-social:member": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "joe",
 ...
 },
 {
 "member-id": "lin",
 ...
 }
]
 }

A.3.5.1.3. type is a "list" and sort-by node is an indirect descendent

 This example illustrates when the target node’s type is a "list" and
 an indirect descendent is the "sort-by" node.

 This vector test uses the target "/example-social:members/member",
 which is a "list", and the sort-by descendent node "stats/joined",
 which is a "config false" descendent leaf. Due to "joined" being a
 "config false" node, this request would have to target the "member"
 node in the <operational> datastore.

Watsen, et al. Expires 2 September 2024 [Page 52]

Internet-Draft List Pagination March 2024

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: stats/joined
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an elipse (i.e.,
 | "...") is used to represent a missing subtree of data.

 {
 "example-social:member": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "lin",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "joe",
 ...
 }
]
 }

A.3.5.2. handling missing entries

 The section provides one example for when the "sort-by" node is not
 present in the data set.

 FIXME: need to finish this section...

Watsen, et al. Expires 2 September 2024 [Page 53]

Internet-Draft List Pagination March 2024

A.3.6. The "where" Parameter

 The "where" is an XPath 1.0 expression, there are numerous edge
 conditions to consider, e.g., the types of the nodes that are
 targeted by the expression.

A.3.6.1. match of leaf-list’s values

 FIXME

A.3.6.2. match on descendent string containing a substring

 This example selects members that have an email address containing
 "@example.com".

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: //.[contains (@email-address,’@example.com’)]
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an elipse (i.e.,
 | "...") is used to represent a missing subtree of data.

Watsen, et al. Expires 2 September 2024 [Page 54]

Internet-Draft List Pagination March 2024

 {
 "example-social:member": [
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "joe",
 ...
 },
 {
 "member-id": "lin",
 ...
 }
]
 }

A.3.6.3. match on decendent timestamp starting with a substring

 This example selects members that have a posting whose timestamp
 begins with the string "2020".

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: //posts//post[starts-with(@timestamp,’2020’)]
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

 | To make the example more understandable, an elipse (i.e.,
 | "...") is used to represent a missing subtree of data.

Watsen, et al. Expires 2 September 2024 [Page 55]

Internet-Draft List Pagination March 2024

 {
 "example-social:member": [
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "joe",
 ...
 }
]
 }

A.3.7. The "locale" Parameter

 The "locale" parameter may be used on any target node.

 | If this parameter is omitted, there is no default value it is
 | up to the server chooses a locale. This locale is then
 | reported in the result-set as the "locale" metadata value.

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -
 Sort-locale: sv_SE

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 56]

Internet-Draft List Pagination March 2024

 {
 "example-social:member": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "joe",
 ...
 },
 {
 "member-id": "lin",
 ...
 },
 {
 "member-id": "åsa",
 ...
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:locale": "sv_SE"
 }
]
 }

 REQUEST

 Target: /example-social:members/member
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -
 Sort-locale: en_US

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 57]

Internet-Draft List Pagination March 2024

 {
 "example-social:member": [
 {
 "member-id": "alice",
 ...
 },
 {
 "member-id": "åsa",
 ...
 },
 {
 "member-id": "bob",
 ...
 },
 {
 "member-id": "eric",
 ...
 },
 {
 "member-id": "joe",
 ...
 },
 {
 "member-id": "lin",
 ...
 }
],
 "@example-social:member": [
 {
 "ietf-list-pagination:locale": "en_US"
 }
]
 }

A.3.8. The "sublist-limit" Parameter

 The "sublist-limit" parameter may be used on any target node.

A.3.8.1. target is a list entry

 This example uses the target node ’/example-social:members/
 member=alice’ in the <intended> datastore.

 | The target node is a specific list entry/element node, not the
 | YANG "list" node.

 This example sets the sublist-limit value ’1’, which returns just the
 first entry for all descendent lists and leaf-lists.

Watsen, et al. Expires 2 September 2024 [Page 58]

Internet-Draft List Pagination March 2024

 Note that, in the response, the "remaining" metadata value is set on
 the first element of each descendent list and leaf-list having more
 than one value.

 REQUEST

 Datastore: <intended>
 Target: /example-social:members/member=alice
 Sublist-limit: 1
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 59]

Internet-Draft List Pagination March 2024

 {
 "example-social:member": [
 {
 "member-id": "alice",
 "email-address": "alice@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Every day is a new day",
 "privacy-settings": {
 "hide-network": "false",
 "post-visibility": "public"
 },
 "following": ["bob"],
 "@following": [
 {
 "ietf-list-pagination:remaining": "2"
 }
],
 "posts": {
 "post": [
 {
 "@": {
 "ietf-list-pagination:remaining": "1"
 },
 "timestamp": "2020-07-08T13:12:45Z",
 "title": "My first post",
 "body": "Hiya all!"
 }
]
 },
 "favorites": {
 "uint8-numbers": [17],
 "int8-numbers": [-5],
 "@uint8-numbers": [
 {
 "ietf-list-pagination:remaining": "5"
 }
],
 "@int8-numbers": [
 {
 "ietf-list-pagination:remaining": "5"
 }
]
 }
 }
]
 }

Watsen, et al. Expires 2 September 2024 [Page 60]

Internet-Draft List Pagination March 2024

A.3.8.2. target is a datastore

 This example uses the target node <intended>.

 This example sets the sublist-limit value ’1’, which returns just the
 first entry for all descendent lists and leaf-lists.

 Note that, in the response, the "remaining" metadata value is set on
 the first element of each descendent list and leaf-list having more
 than one value.

 REQUEST

 Datastore: <intended>
 Target: /
 Sublist-limit: 1
 Pagination Parameters:
 Where: -
 Sort-by: -
 Direction: -
 Offset: -
 Limit: -

 RESPONSE

Watsen, et al. Expires 2 September 2024 [Page 61]

Internet-Draft List Pagination March 2024

 {
 "example-social:members": {
 "member": [
 {
 "@": {
 "ietf-list-pagination:remaining": "4"
 },
 "member-id": "bob",
 "email-address": "bob@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "@": {
 "ietf-list-pagination:remaining": "2"
 },
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159"],
 "@decimal64-numbers": [
 {
 "ietf-list-pagination:remaining": "1"
 }
]
 }
 }
]
 }
 }

A.3.9. Combinations of Parameters

A.3.9.1. All six parameters at once

 REQUEST

Watsen, et al. Expires 2 September 2024 [Page 62]

Internet-Draft List Pagination March 2024

 Datastore: <operational>
 Target: /example-social:members/member
 Sublist-limit: 1
 Pagination Parameters:
 Where: //stats//joined[starts-with(@timestamp,’2020’)]
 Sort-by: member-id
 Direction: backwards
 Offset: 2
 Limit: 2

 RESPONSE

 {
 "example-social:member": [
 {
 "@": {
 "ietf-list-pagination:remaining": "1"
 },
 "member-id": "eric",
 "email-address": "eric@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Go to bed with dreams; wake up with a purpose.",
 "following": ["alice"],
 "posts": {
 "post": [
 {
 "timestamp": "2020-09-17T18:02:04Z",
 "title": "Son, brother, husband, father",
 "body": "What’s your story?"
 }
]
 },
 "favorites": {
 "bits": ["two"],
 "@bits": [
 {
 "ietf-list-pagination:remaining": "2"
 }
]
 },
 "stats": {
 "joined": "2020-09-17T19:38:32Z",
 "membership-level": "pro",
 "last-activity": "2020-09-17T18:02:04Z"
 }
 },
 {

Watsen, et al. Expires 2 September 2024 [Page 63]

Internet-Draft List Pagination March 2024

 "member-id": "bob",
 "email-address": "bob@example.com",
 "password": "$0$1543",
 "avatar": "BASE64VALUE=",
 "tagline": "Here and now, like never before.",
 "posts": {
 "post": [
 {
 "@": {
 "ietf-list-pagination:remaining": "2"
 },
 "timestamp": "2020-08-14T03:32:25Z",
 "body": "Just got in."
 }
]
 },
 "favorites": {
 "decimal64-numbers": ["3.14159"],
 "@decimal64-numbers": [
 {
 "ietf-list-pagination:remaining": "1"
 }
]
 },
 "stats": {
 "joined": "2020-08-14T03:30:00Z",
 "membership-level": "standard",
 "last-activity": "2020-08-14T03:34:30Z"
 }
 }
 }
 }

Acknowledgements

 The authors would like to thank the following for lively discussions
 on list (ordered by first name): Andy Bierman, Martin Björklund, and
 Robert Varga.

Authors’ Addresses

 Kent Watsen
 Watsen Networks
 Email: kent+ietf@watsen.net

 Qin Wu
 Huawei Technologies

Watsen, et al. Expires 2 September 2024 [Page 64]

Internet-Draft List Pagination March 2024

 Email: bill.wu@huawei.com

 Per Andersson
 Cisco Systems
 Email: perander@cisco.com

 Olof Hagsand
 SUNET
 Email: olof@hagsand.se

 Hongwei Li
 Hewlett Packard Enterprise
 Email: flycoolman@gmail.com

Watsen, et al. Expires 2 September 2024 [Page 65]

NETCONF Working Group K. Watsen

Internet-Draft Watsen Networks

Intended status: Standards Track Q. Wu

Expires: 2 September 2024 Huawei

 P. Andersson

 Cisco Systems

 O. Hagsand

 SUNET

 H. Li

 HPE

 1 March 2024

 NETCONF Extensions to Support List Pagination

 draft-ietf-netconf-list-pagination-nc-03

Abstract

 This document defines a mapping of the list pagination mechanism

 defined in [I-D.ietf-netconf-list-pagination] to NETCONF [RFC6241].

 This document updates [RFC6241], to augment the <get> and <get-

 config> "rpc" statements, and [RFC8526], to augment the <get-data>

 "rpc" statement, to define input parameters necessary for list

 pagination.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Watsen, et al. Expires 2 September 2024 [Page 1]

Internet-Draft NETCONF Pagination Support March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Terminology . 3

 1.2. Conventions . 3

 2. Updates to NETCONF operations 3

 2.1. Updates to RFC 6241 3

 2.2. Updates to RFC 8526 3

 3. List Pagination for NETCONF 3

 4. Error Reporting . 5

 5. YANG Module for List Pagination in NETCONF 5

 6. IANA Considerations . 7

 6.1. The "IETF XML" Registry 7

 6.2. The "YANG Module Names" Registry 8

 7. Security Considerations 8

 7.1. The "ietf-netconf-list-pagination" YANG Module 8

 8. References . 8

 8.1. Normative References 8

 8.2. Informative References 10

 Appendix A. Open Issues . 10

 Appendix B. Example YANG Module 10

 Appendix C. Example Data Set 10

 Appendix D. Example Queries 10

 D.1. List pagination with all query parameters 10

 Acknowledgements . 12

 Authors’ Addresses . 12

1. Introduction

 This document defines a mapping of the list pagination mechanism

 defined in [I-D.ietf-netconf-list-pagination] to NETCONF [RFC6241].

 This document updates [RFC6241] and [RFC8526], as described in

 Section 2.

 While the pagination mechanism defined in this document is designed

 for the NETCONF protocol [RFC6241], the augmented RPCs MAY be used by

 the RESTCONF protocol [RFC8040] if the RESTCONF server implements the

 "ietf-list-pagination-nc" module.

Watsen, et al. Expires 2 September 2024 [Page 2]

Internet-Draft NETCONF Pagination Support March 2024

 The YANG data model in this document conforms to the Network

 Management Datastore Architecture defined in [RFC8342]

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

1.2. Conventions

 Various examples in this document use "BASE64VALUE=" as a placeholder

 value for binary data that has been base64 encoded (per Section 9.8

 of [RFC7950]). This placeholder value is used because real base64

 encoded structures are often many lines long and hence distracting to

 the example being presented.

2. Updates to NETCONF operations

2.1. Updates to RFC 6241

 The <get> and <get-config> rpc statements are augmented to accept

 additional input parameters, as described in Section 3.

2.2. Updates to RFC 8526

 The <get-data> rpc statement is augmented to accept additional input

 parameters, as described in in Section 3.

3. List Pagination for NETCONF

 In order for NETCONF to support [I-D.ietf-netconf-list-pagination],

 this document extends the operations <get>, <get-config> and <get-

 data> to include additional input parameters and output annotations.

 The updated operations accept a content filter parameter, similar to

 the "filter" parameter of <get-config>, but includes nodes for "list"

 and "leaf-list" filtering.

 The content filter parameter is used to specify the YANG list or

 leaf-list that is to be retrieved. This must be a path expression

 used to represent a list or leaf-list data node.

 The following tree diagram [RFC8340] illustrates the "ietf-netconf-

 list-pagination" module:

Watsen, et al. Expires 2 September 2024 [Page 3]

Internet-Draft NETCONF Pagination Support March 2024

 module: ietf-list-pagination-nc

 augment /nc:get/nc:input:

 +---w list-pagination

 +---w where? union

 +---w sort-by? union

 +---w locale? string

 +---w direction? enumeration

 +---w cursor? string

 +---w offset? uint32

 +---w limit? union

 +---w sublist-limit? union

 augment /nc:get-config/nc:input:

 +---w list-pagination

 +---w where? union

 +---w sort-by? union

 +---w locale? string

 +---w direction? enumeration

 +---w cursor? string

 +---w offset? uint32

 +---w limit? union

 +---w sublist-limit? union

 augment /ncds:get-data/ncds:input:

 +---w list-pagination

 +---w where? union

 +---w sort-by? union

 +---w locale? string

 +---w direction? enumeration

 +---w cursor? string

 +---w offset? uint32

 +---w limit? union

 +---w sublist-limit? union

 Comments:

 * This module augments three NETCONF "rpc" statements: get, get-

 config, and get-data.

 * The "get" and "get-config" augments are against the YANG module

 defined in [RFC6241]. The "get-data" augment is against the YANG

 module defined in [RFC8526].

Watsen, et al. Expires 2 September 2024 [Page 4]

Internet-Draft NETCONF Pagination Support March 2024

4. Error Reporting

 When an input query parameter is supplied with an erroneous value, an

 <rpc-error> MUST be returned containing the error-type value

 "application", the error-tag value "invalid-value", and MAY include

 the error-severity value "error". Additionally the error-app-tag

 SHOULD be set containing query parameter specific error value.

4.1. The "offset" Query Parameter

 If the "offset" query parameter value supplied is larger then the

 number of instances in the list or leaf-list target resource, the

 <rpc-error> MUST contain error-app-tag with value "offset-out-of-

 range".

5. YANG Module for List Pagination in NETCONF

 The "ietf-netconf-list-pagination-nc" module defines conceptual

 definitions within groupings, which are not meant to be implemented

 as datastore contents by a server.

 This module has normative references to [RFC6241], [RFC6243],

 [RFC6991], and [RFC8342].

 <CODE BEGINS> file "ietf-list-pagination-nc@2024-03-01.yang"

 module ietf-list-pagination-nc {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-list-pagination-nc";

 prefix lpgnc;

 import ietf-netconf {

 prefix nc;

 reference

 "RFC 6241: Network Configuration Protocol (NETCONF)";

 }

 import ietf-netconf-nmda {

 prefix ncds;

 reference

 "RFC 8526: NETCONF Extensions to Support the

 Network Management Datastore Architecture";

 }

 import ietf-list-pagination {

 prefix lpg;

 reference

 "RFC XXXX: List Pagination for YANG-driven Protocols";

Watsen, et al. Expires 2 September 2024 [Page 5]

Internet-Draft NETCONF Pagination Support March 2024

 }

 organization

 "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: https://datatracker.ietf.org/wg/netconf

 WG List: NETCONF WG list <mailto:netconf@ietf.org>";

 description

 "This module augments the <get>, <get-config>, and <get-data>

 ’rpc’ statements to support list pagination.

 Copyright (c) 2024 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2024-03-01 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: NETCONF Extensions to Support List Pagination";

 }

 grouping pagination-parameters {

 description "A grouping for list pagination parameters.";

 container list-pagination {

 description "List pagination parameters.";

 uses lpg:where-param-grouping;

 uses lpg:sort-by-param-grouping;

 uses lpg:locale-param-grouping;

Watsen, et al. Expires 2 September 2024 [Page 6]

Internet-Draft NETCONF Pagination Support March 2024

 uses lpg:direction-param-grouping;

 uses lpg:cursor-param-grouping;

 uses lpg:offset-param-grouping;

 uses lpg:limit-param-grouping;

 uses lpg:sublist-limit-param-grouping;

 }

 }

 augment "/nc:get/nc:input" {

 description

 "Allow the ’get’ operation to use content filter

 parameter for specifying the YANG list or leaf-list

 that is to be retrieved";

 uses pagination-parameters;

 }

 augment "/nc:get-config/nc:input" {

 description

 "Allow the ’get-config’ operation to use content filter

 parameter for specifying the YANG list or leaf-list

 that is to be retrieved";

 uses pagination-parameters;

 }

 augment "/ncds:get-data/ncds:input" {

 description

 "Allow the ’get-data’ operation to use content filter

 parameter for specifying the YANG list or leaf-list

 that is to be retrieved";

 uses pagination-parameters;

 }

 }

 <CODE ENDS>

6. IANA Considerations

6.1. The "IETF XML" Registry

 This document registers one URI in the "ns" subregistry of the IETF

 XML Registry [RFC3688] maintained at

 https://www.iana.org/assignments/xml-registry/xml-registry.xhtml#ns.

 Following the format in [RFC3688], the following registration is

 requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-list-pagination-nc

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

Watsen, et al. Expires 2 September 2024 [Page 7]

Internet-Draft NETCONF Pagination Support March 2024

6.2. The "YANG Module Names" Registry

 This document registers one YANG module in the YANG Module Names

 registry [RFC6020] maintained at https://www.iana.org/assignments/

 yang-parameters/yang-parameters.xhtml. Following the format defined

 in [RFC6020], the below registration is requested:

 name: ietf-list-pagination-nc

 namespace: urn:ietf:params:xml:ns:yang:ietf-list-pagination-nc

 prefix: pgnc

 RFC: XXXX

7. Security Considerations

7.1. The "ietf-netconf-list-pagination" YANG Module

 The YANG module defined in this document extends the base operations

 for NETCONF [RFC6241]. The lowest NETCONF layer is the secure

 transport layer, and the mandatory-to-implement secure transport is

 Secure Shell (SSH) [RFC6242].

 The Network Configuration Access Control Model (NACM) [RFC8341]

 provides the means to restrict access for particular NETCONF users to

 a preconfigured subset of all available NETCONF protocol operations

 and content.

 The security considerations for the base NETCONF protocol operations

 (see Section 9 of [RFC6241] and Section 6 of [RFC8526]) apply to the

 extension of operations <get>, <get-config>, and <get-data> defined

 in this document.

8. References

8.1. Normative References

 [I-D.ietf-netconf-list-pagination]

 Watsen, K., Wu, Q., Andersson, P., Hagsand, O., and H. Li,

 "List Pagination for YANG-driven Protocols", Work in

 Progress, Internet-Draft, draft-ietf-netconf-list-

 pagination-03, 1 March 2024,

 <https://datatracker.ietf.org/api/v1/doc/document/draft-

 ietf-netconf-list-pagination/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

Watsen, et al. Expires 2 September 2024 [Page 8]

Internet-Draft NETCONF Pagination Support March 2024

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure

 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for

 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,

 <https://www.rfc-editor.org/info/rfc6243>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",

 RFC 6991, DOI 10.17487/RFC6991, July 2013,

 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "Network Management Datastore Architecture

 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of

 Documents Containing YANG Data Models", BCP 216, RFC 8407,

 DOI 10.17487/RFC8407, October 2018,

 <https://www.rfc-editor.org/info/rfc8407>.

Watsen, et al. Expires 2 September 2024 [Page 9]

Internet-Draft NETCONF Pagination Support March 2024

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "NETCONF Extensions to Support the Network

 Management Datastore Architecture", RFC 8526,

 DOI 10.17487/RFC8526, March 2019,

 <https://www.rfc-editor.org/info/rfc8526>.

8.2. Informative References

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Open Issues

 Cursors (i.e.,stable result sets) are related to the topic of dynamic

 changing lists between two queries. How cursors can be supported

 using "feature"?

Appendix B. Example YANG Module

 The examples within this document use the "example-social" YANG

 module defined in Appendix A.1 of [I-D.ietf-netconf-list-pagination].

Appendix C. Example Data Set

 The Example Data Set used by the examples is defined in Appendix A.2

 of [I-D.ietf-netconf-list-pagination].

Appendix D. Example Queries

D.1. List pagination with all query parameters

 This example mimics that Appendix A.3.9 of

 [I-D.ietf-netconf-list-pagination].

Watsen, et al. Expires 2 September 2024 [Page 10]

Internet-Draft NETCONF Pagination Support March 2024

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="42">

 <get-config>

 <source>

 <running/>

 </source>

 <filter type="xpath" select="/es:members/es:member"

 xmlns:es="https://example.com/ns/example-social"/>

 <list-pagination

 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-list-paginat\

 ion">true</list-pagination>

 <where>//stats//joined[starts-with(@timestamp,’2020’)]</where>

 <sort-by>timestamp</sort-by>

 <direction>backwards</direction>

 <offset>2</offset>

 <limit>2</limit>

 <sublist-limit>1</sublist-limit>

 </filter>

 </get-config>

 </rpc>

 Response from the NETCONF server:

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <lp:xml-list xmlns:lp="urn:ietf:params:xml:ns:yang:ietf-restconf-lis\

 t-pagination"

 xmlns="https://example.com/ns/example-social">

 <member lp:remaining="1">

 <member-id>eric</member-id>

 <email-address>eric@example.com</email-address>

 <password>$0$1543</password>

 <avatar>BASE64VALUE=</avatar>

 <tagline>Go to bed with dreams; wake up with a purpose.</tagline>

 <following>alice</following>

 <posts>

 <post>

 <timestamp>2020-09-17T18:02:04Z</timestamp>

 <title>Son, brother, husband, father</title>

 <body>What’s your story?</body>

 </post>

 </posts>

 <favorites>

 <bits lp:remaining="2">two</bits>

 </favorites>

 <stats>

 <joined>2020-09-17T19:38:32Z</joined>

Watsen, et al. Expires 2 September 2024 [Page 11]

Internet-Draft NETCONF Pagination Support March 2024

 <membership-level>pro</membership-level>

 <last-activity>2020-09-17T18:02:04Z</last-activity>

 </stats>

 </member>

 <member lp:remaining="1">

 <member-id>bob</member-id>

 <email-address>bob@example.com</email-address>

 <password>$0$1543</password>

 <avatar>BASE64VALUE=</avatar>

 <tagline>Here and now, like never before.</tagline>

 <posts>

 <post lp:remaining="2">

 <timestamp>2020-08-14T03:32:25Z</timestamp>

 <body>Just got in.</body>

 </post>

 </posts>

 <favorites>

 <decimal64-numbers lp:remaining="1">3.14159</bits>

 </favorites>

 <stats>

 <joined>2020-08-14T03:30:00Z</joined>

 <membership-level>standard</membership-level>

 <last-activity>2020-08-14T03:34:30Z</last-activity>

 </stats>

 </member>

 </lp:xml-list>

Acknowledgements

 This work has benefited from the discussions of RESTCONF resource

 collection over the years, in particular, [I-D.ietf-netconf-restconf-

 collection] which provides enhanced filtering features for the

 retrieval of data nodes with the GET method and [I-D.zheng-netconf-

 fragmentation] which document large size data handling challenge.

 The authors would like to thank the following for lively discussions

 on list:

 Andy Bierman Martin Björklund Robert Varga

Authors’ Addresses

 Kent Watsen

 Watsen Networks

 Email: kent+ietf@watsen.net

 Qin Wu

 Huawei

Watsen, et al. Expires 2 September 2024 [Page 12]

Internet-Draft NETCONF Pagination Support March 2024

 Email: bill.wu@huawei.com

 Per Andersson

 Cisco Systems

 Email: perander@cisco.com

 Olof Hagsand

 SUNET

 Email: olof@hagsand.se

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Watsen, et al. Expires 2 September 2024 [Page 13]

NETCONF Working Group K. Watsen
Internet-Draft Watsen Networks
Updates: 8040 (if approved) Q. Wu
Intended status: Standards Track Huawei Technologies
Expires: 2 September 2024 O. Hagsand
 SUNET
 H. Li
 Hewlett Packard Enterprise
 P. Andersson
 Cisco Systems
 1 March 2024

 RESTCONF Extensions to Support List Pagination
 draft-ietf-netconf-list-pagination-rc-03

Abstract

 This document defines a mapping of the list pagination mechanism
 defined in [I-D.ietf-netconf-list-pagination] to RESTCONF [RFC8040].

 This document updates RFC 8040, to declare "list" and "leaf-list" as
 valid resource targets for the RESTCONF GET and DELETE operations, to
 define GET query parameters necessary for list pagination, and to
 define a media-type for XML-based lists.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Watsen, et al. Expires 2 September 2024 [Page 1]

Internet-Draft RESTCONF Pagination Support March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 1.2. Conventions . 3
 2. Updates to RFC 8040 . 3
 2.1. Resource Targets . 3
 2.2. Media Type . 3
 2.3. Query Parameters . 4
 2.3.1. The "limit" Query Parameter 6
 2.3.2. The "offset" Query Parameter 6
 2.3.3. The "cursor" Query Parameter 6
 2.3.4. The "direction" Query Parameter 7
 2.3.5. The "sort-by" Query Parameter 7
 2.3.6. The "locale" Query Parameter 7
 2.3.7. The "where" Query Parameter 7
 2.3.8. The "sublist-limit" Query Parameter 8
 3. IANA Considerations . 8
 3.1. The "RESTCONF Capability URNs" Registry 8
 3.2. The "Media Types" Registry 8
 3.2.1. Media Type "application/yang-data+xml-list" 8
 4. Security Considerations 10
 5. References . 10
 5.1. Normative References 10
 5.2. Informative References 10
 Appendix A. Example YANG Module 11
 Appendix B. Example Data Set 11
 Appendix C. Example Queries 11
 C.1. List pagination with all query parameters 11
 C.2. Deletion of a leaf-list 13
 Acknowledgements . 13
 Authors’ Addresses . 13

1. Introduction

 This document defines a mapping of the list pagination mechanism
 defined in [I-D.ietf-netconf-list-pagination] to RESTCONF [RFC8040].

 This document updates RFC 8040, as described in Section 2.

Watsen, et al. Expires 2 September 2024 [Page 2]

Internet-Draft RESTCONF Pagination Support March 2024

 Declaring "list" and "leaf-list" as valid resource targets for the
 GET operation is necessary for list pagination. Declaring these
 nodes as valid resource targets for the DELETE operation merely
 completes the solution for RESTCONF.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Conventions

 Various examples in this document use "BASE64VALUE=" as a placeholder
 value for binary data that has been base64 encoded (per Section 9.8
 of [RFC7950]). This placeholder value is used because real base64
 encoded structures are often many lines long and hence distracting to
 the example being presented.

2. Updates to RFC 8040

2.1. Resource Targets

 This document extends Section 3.5 of [RFC8040] to add "list" and
 "leaf-list" nodes (not just their entries) as valid data resources
 for the "GET" and "DELETE" operations.

2.2. Media Type

 This document extends Section 3.2 of [RFC8040] to add a new media
 type, "application/yang-data+xml-list", to encode "list" and "leaf-
 list" nodes in XML.

 The "application/yang-data+xml-list" media-type defines a pseudo top-
 level element called "xml-list" that is used to wrap the response
 set, thus ensuring that a single top-level element is returned for
 the XML encoding", as required by Section 4.3 of [RFC8040].

 For JSON, the existing "application/yang-data+json" media type is
 sufficient, as the JSON format has built-in support for encoding
 arrays.

 The "application/yang-data+xml-list" media type is registered in
 Section 3.2.1.

Watsen, et al. Expires 2 September 2024 [Page 3]

Internet-Draft RESTCONF Pagination Support March 2024

2.3. Query Parameters

 This document extends Section 4.8 of [RFC8040] to add new query
 parameters "limit", "offset", "cursor", "direction", "sort-by",
 "locale", "where", and "sublist-list".

 These six query parameters correspond to those defined in Sections
 3.1 and 3.2 in [I-D.ietf-netconf-list-pagination].

Watsen, et al. Expires 2 September 2024 [Page 4]

Internet-Draft RESTCONF Pagination Support March 2024

 +---------------+---------+---+
 | Name | Methods | Description |
 +---------------+---------+---+
limit	GET,	Limits the number of entries returned.
	HEAD	If not specified, the number of entries
		that may be returned is unbounded.
offset	GET,	Indicates the number of entries in the
	HEAD	result set that should the skipped over
		when preparing the response. If not
		specified, then no entries in the
		result set are skipped.
cursor	GET,	Indicates where to start the working
	HEAD	result set, the previous entries are
		skipped over. If not specified, then
		no entries in the result set are
		skipped over.
direction	GET,	Indicates the direction that the result
	HEAD	set is to be traversed. If not
		specified, then the result set is
		traversed in the "forwards" direction.
sort-by	GET,	Indicates the node name that the result
	HEAD	set should be sorted by. If not
		specified, then the result set’s
		default order is used, per YANG’s
		"ordered-by" statement.
locale	GET,	Specifies the locale the server should
	HEAD	use when collating the result set. If
		not specified, the server chooses what
		locale is used for collation.
where	GET,	Specifies a filter expression that
	HEAD	result set entries must match. If
		not specified, then no entries are
		filtered from the result set.
sublist-limit	GET,	Limits the number of entries returned
	HEAD	returned for descendent lists and
		leaf-lists. If not specified, the
		number of entries that may be returned
		is unbounded.
 +---------------+---------+---+

Watsen, et al. Expires 2 September 2024 [Page 5]

Internet-Draft RESTCONF Pagination Support March 2024

 For all of the query parameters, the query parameter is only allowed
 for the GET and HEAD methods on "list" and "leaf-list" data
 resources. A "400 Bad Request" status-line MUST be returned if used
 with any other method or resource type. The error-tag value
 "operation-not-supported" is used in this case.

 Per the conformance defined in Section 3.1 of
 [I-D.ietf-netconf-list-pagination], all of these parameters MUST be
 supported for all lists and leaf-lists, but servers MAY disable the
 support for some or all "config false" lists, as described in
 Section 3.3 of [I-D.ietf-netconf-list-pagination].

2.3.1. The "limit" Query Parameter

 The "limit" query parameter corresponds to the "limit" parameter
 defined in Section 3.1.7 of [I-D.ietf-netconf-list-pagination].

 If the limit value is invalid, then a "400 Bad Request" status-line
 MUST be returned with the error-type value "application" and error-
 tag value "invalid-value".

2.3.2. The "offset" Query Parameter

 The "offset" query parameter corresponds to the "offset" parameter
 defined in Section 3.1.5 of [I-D.ietf-netconf-list-pagination].

 If the offset value is invalid, a "400 Bad Request" status-line MUST
 be returned with the error-type value "application" and error-tag
 value "invalid-value".

 If the offset value exceeds the number of entries in the working
 result set, then a "416 Range Not Satisfiable" status-line MUST be
 returned with the error-type value "application", error-tag value
 "invalid-value", and SHOULD also include the "offset-out-of-range"
 identity as error-app-tag value.

2.3.3. The "cursor" Query Parameter

 The "cursor" querey parameter corresponds to the "cursor" parameter
 defined in Section 3.1.6 of [I-D.ietf-netconf-list-pagination].

 If the cursor value is unknown, i.e. the key does not exist, a "404
 Not Found" status-line MUST be returned with the error-type value
 "application" and error-tag value "invalid-value", and SHOULD also
 include the "cursor-not-found" identity as error-app-tag value.

Watsen, et al. Expires 2 September 2024 [Page 6]

Internet-Draft RESTCONF Pagination Support March 2024

 If the "cursor" query parameter is not supported on the target node,
 then a a "501 Not Implemented" status-line MUST be returned with
 error-type value "application" and error-tag value "operation-not-
 supported".

2.3.4. The "direction" Query Parameter

 The "direction" query parameter corresponds to the "direction"
 parameter defined in Section 3.1.4 of
 [I-D.ietf-netconf-list-pagination].

 If the direction value is invalid, then a "400 Bad Request" status-
 line MUST be returned with the error-type value "application" and
 error-tag value "invalid-value".

2.3.5. The "sort-by" Query Parameter

 The "sort-by" query parameter corresponds to the "sort-by" parameter
 defined in Section 3.1.2 of [I-D.ietf-netconf-list-pagination].

 If the specified node identifier is invalid, then a "400 Bad Request"
 status-line MUST be returned with the error-type value "application"
 and error-tag value "invalid-value".

2.3.6. The "locale" Query Parameter

 The "locale" query parameter corresponds to the "locale" parameter
 defined in Section 3.1.3 of [I-D.ietf-netconf-list-pagination].

 If the specified node identifier is invalid, i.e. the locale is
 unknown to the server, then a "501 Not Implemented" status-line MUST
 be returned with the error-type value "application" and error-tag
 value "invalid-value", and SHOULD also include the "locale-
 unavailable" identity in as the error-app-tag value.

2.3.7. The "where" Query Parameter

 The "where" query parameter corresponds to the "where" parameter
 defined in Section 3.1.1 of [I-D.ietf-netconf-list-pagination].

 If the specified XPath expression is invalid, then a "400 Bad
 Request" status-line MUST be returned with the error-type value
 "application" and error-tag value "invalid-value".

Watsen, et al. Expires 2 September 2024 [Page 7]

Internet-Draft RESTCONF Pagination Support March 2024

2.3.8. The "sublist-limit" Query Parameter

 The "sublist-limit" query parameter corresponds to the "sublist-
 limit" parameter defined in Section 3.2.1 of
 [I-D.ietf-netconf-list-pagination].

 If the sumlist-limit value is invalid, then a "400 Bad Request"
 status-line MUST be returned with the error-type value "application"
 and error-tag value "invalid-value".

3. IANA Considerations

3.1. The "RESTCONF Capability URNs" Registry

 This document registers six capabilities in the RESTCONF Capability
 URNs [RFC8040] maintained at https://www.iana.org/assignments/
 restconf-capability-urns/restconf-capability-urns.xhtml. Following
 the instructions defined in Section 11.4 of [RFC8040], the below
 registrations are requested:

 All the registrations are to use this document (RFC XXXX) for the
 "Reference" value.

 Index Capability Identifier
 --
 :limit urn:ietf:params:restconf:capability:limit:1.0
 :offset urn:ietf:params:restconf:capability:offset:1.0
 :cursor urn:ietf:params:restconf:capability:cursor:1.0
 :direction urn:ietf:params:restconf:capability:direction:1.0
 :sort-by urn:ietf:params:restconf:capability:sort-by:1.0
 :locale urn:ietf:params:restconf:capability:locale:1.0
 :where urn:ietf:params:restconf:capability:where:1.0
 :sublist-limit urn:ietf:params:restconf:capability:sublist-limit:1.0

3.2. The "Media Types" Registry

 This document registers one media type in the "application"
 subregistry of the Media Types registry [RFC6838] [RFC4855]
 maintained at https://www.iana.org/assignments/media-types/media-
 types.xhtml#application. Following the format defined in [RFC4855],
 the below registration is requested:

3.2.1. Media Type "application/yang-data+xml-list"

Watsen, et al. Expires 2 September 2024 [Page 8]

Internet-Draft RESTCONF Pagination Support March 2024

 Type name: application

 Subtype name: yang-data+xml-list

 Required parameters: None

 Optional parameters: None

 Encoding considerations: 8-bit
 Each conceptual YANG data node is encoded according to the
 XML Encoding Rules and Canonical Format for the specific
 YANG data node type defined in [RFC7950].

 Security considerations: Security considerations related
 to the generation and consumption of RESTCONF messages
 are discussed in Section 12 of RFC 8040. Additional
 security considerations are specific to the semantics
 of particular YANG data models. Each YANG module is
 expected to specify security considerations for the
 YANG data defined in that module.

 Interoperability considerations: RFC XXXX specifies the
 format of conforming messages and the interpretation
 thereof.

 Published specification: RFC XXXX

 Applications that use this media type: Instance document data
 parsers used within a protocol or automation tool that
 utilize the YANG Patch data structure.

 Fragment identifier considerations: Fragment identifiers for
 this type are not defined. All YANG data nodes are
 accessible as resources using the path in the request URI.

 Additional information:

 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): None
 Macintosh file type code(s): "TEXT"

 Person & email address to contact for further information:
 See the Authors’ Addresses section of RFC XXXX.

 Intended usage: COMMON

 Restrictions on usage: N/A

Watsen, et al. Expires 2 September 2024 [Page 9]

Internet-Draft RESTCONF Pagination Support March 2024

 Author: See the Authors’ Addresses section of RFC XXXX.

 Change controller: Internet Engineering Task Force
 (mailto:iesg@ietf.org).

 Provisional registration? (standards tree only): no

4. Security Considerations

 This document introduces protocol operations for paging through data
 already provided by the RESTCONF protocol, and hence does not
 introduce any new security considerations.

 This document does not define a YANG module and hence there are no
 data modeling considerations beyond those discussed in
 [I-D.ietf-netconf-list-pagination].

5. References

5.1. Normative References

 [I-D.ietf-netconf-list-pagination]
 Watsen, K., Wu, Q., Andersson, P., Hagsand, O., and H. Li,
 "List Pagination for YANG-driven Protocols", Work in
 Progress, Internet-Draft, draft-ietf-netconf-list-
 pagination-03, 1 March 2024,
 <https://datatracker.ietf.org/api/v1/doc/document/draft-
 ietf-netconf-list-pagination/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

5.2. Informative References

Watsen, et al. Expires 2 September 2024 [Page 10]

Internet-Draft RESTCONF Pagination Support March 2024

 [I-D.ietf-netconf-restconf-collection]
 Bierman, A., Björklund, M., and K. Watsen, "RESTCONF
 Collection Resource", Work in Progress, Internet-Draft,
 draft-ietf-netconf-restconf-collection-00, 30 January
 2015, <https://datatracker.ietf.org/doc/html/draft-ietf-
 netconf-restconf-collection-00>.

 [RFC4855] Casner, S., "Media Type Registration of RTP Payload
 Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007,
 <https://www.rfc-editor.org/info/rfc4855>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

Appendix A. Example YANG Module

 The examples within this document use the "example-social" YANG
 module defined in Appendix A.1 of [I-D.ietf-netconf-list-pagination].

Appendix B. Example Data Set

 The Example Data Set used by the examples is defined in Appendix A.2
 of [I-D.ietf-netconf-list-pagination].

Appendix C. Example Queries

C.1. List pagination with all query parameters

 This example mimics that Appendix A.3.9 of
 [I-D.ietf-netconf-list-pagination].

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 GET /restconf/ds/ietf-datastores:running/example-social:members/memb\
 er?where=//stats//joined[starts-with(@timestamp,’2020’)]&sort-by=tim\
 estamp&direction=backwards&offset=2&limit=2&sublist-limit=1 HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml-list

 Response from the RESTCONF server:

Watsen, et al. Expires 2 September 2024 [Page 11]

Internet-Draft RESTCONF Pagination Support March 2024

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 HTTP/1.1 200 OK
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server
 Last-Modified: Thu, 26 Jan 2017 20:55:30 GMT
 Content-Type: application/yang-data+xml-list

 <lp:xml-list xmlns:lp="urn:ietf:params:xml:ns:yang:ietf-restconf-lis\
 t-pagination"
 xmlns="https://example.com/ns/example-social">
 <member lp:remaining="1">
 <member-id>eric</member-id>
 <email-address>eric@example.com</email-address>
 <password>$0$1543</password>
 <avatar>BASE64VALUE=</avatar>
 <tagline>Go to bed with dreams; wake up with a purpose.</tagline>
 <following>alice</following>
 <posts>
 <post>
 <timestamp>2020-09-17T18:02:04Z</timestamp>
 <title>Son, brother, husband, father</title>
 <body>What’s your story?</body>
 </post>
 </posts>
 <favorites>
 <bits lp:remaining="2">two</bits>
 </favorites>
 <stats>
 <joined>2020-09-17T19:38:32Z</joined>
 <membership-level>pro</membership-level>
 <last-activity>2020-09-17T18:02:04Z</last-activity>
 </stats>
 </member>
 <member lp:remaining="1">
 <member-id>bob</member-id>
 <email-address>bob@example.com</email-address>
 <password>$0$1543</password>
 <avatar>BASE64VALUE=</avatar>
 <tagline>Here and now, like never before.</tagline>
 <posts>
 <post lp:remaining="2">
 <timestamp>2020-08-14T03:32:25Z</timestamp>
 <body>Just got in.</body>
 </post>
 </posts>
 <favorites>
 <decimal64-numbers lp:remaining="1">3.14159</bits>

Watsen, et al. Expires 2 September 2024 [Page 12]

Internet-Draft RESTCONF Pagination Support March 2024

 </favorites>
 <stats>
 <joined>2020-08-14T03:30:00Z</joined>
 <membership-level>standard</membership-level>
 <last-activity>2020-08-14T03:34:30Z</last-activity>
 </stats>
 </member>
 </lp:xml-list>

C.2. Deletion of a leaf-list

 This example illustrates using a "leaf-list" as the DELETE target.

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 DELETE /restconf/ds/ietf-datastores:running/example-social:members/m\
 ember=bob/favorites/decimal64-numbers HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml

 Response from the RESTCONF server:

 HTTP/1.1 204 No Content
 Date: Thu, 26 Jan 2017 20:56:30 GMT
 Server: example-server

Acknowledgements

 This work has benefited from the discussions of restconf resource
 collection over the years, in particular,
 [I-D.ietf-netconf-restconf-collection]. The authors additionally
 thank the following for lively discussions on list (ordered by first
 name): Andy Bierman, Martin Björklund, and Robert Varga

Authors’ Addresses

 Kent Watsen
 Watsen Networks
 Email: kent+ietf@watsen.net

 Qin Wu
 Huawei Technologies
 Email: bill.wu@huawei.com

 Olof Hagsand
 SUNET

Watsen, et al. Expires 2 September 2024 [Page 13]

Internet-Draft RESTCONF Pagination Support March 2024

 Email: olof@hagsand.se

 Hongwei Li
 Hewlett Packard Enterprise
 Email: flycoolman@gmail.com

 Per Andersson
 Cisco Systems
 Email: perander@cisco.com

Watsen, et al. Expires 2 September 2024 [Page 14]

Internet Engineering Task Force JG. Cumming

Internet-Draft Nokia

Intended status: Standards Track R. Wills

Expires: 2 September 2024 Cisco Systems

 1 March 2024

 NETCONF Private Candidates

 draft-ietf-netconf-privcand-02

Abstract

 This document provides a mechanism to extend the Network

 Configuration Protocol (NETCONF) and RESTCONF protocol to support

 multiple clients making configuration changes simultaneously and

 ensuring that they commit only those changes that they defined.

 This document addresses two specific aspects: The interaction with a

 private candidate over the NETCONF and RESTCONF protocols and the

 methods to identify and resolve conflicts between clients.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

Cumming & Wills Expires 2 September 2024 [Page 1]

Internet-Draft NETCONF Private Candidates March 2024

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Requirements Language 3

 2. Definitions and terminology 3

 2.1. Session specific datastore 3

 2.2. Shared candidate configuration 4

 2.3. Private candidate configuration 4

 3. Limitations using the shared candidate configuration for

 multiple clients . 4

 3.1. Issues . 5

 3.1.1. Unintended deployment of alternate users configuration

 changes . 5

 3.2. Current mitigation strategies 5

 3.2.1. Locking the shared candidate configuration

 datastore . 5

 3.2.2. Always use the running configuration datastore . . . 6

 3.2.3. Fine-grained locking 6

 4. Private candidates solution 6

 4.1. What is a private candidate 7

 4.2. When is a private candidate created 7

 4.3. When is a private candidate destroyed 7

 4.4. How to signal the use of private candidates 7

 4.4.1. Server . 7

 4.4.2. NETCONF client 8

 4.4.3. RESTCONF client 9

 4.5. Interaction between running and private-candidate(s) . . 10

 4.6. Detecting and resolving conflicts 12

 4.6.1. What is a conflict? 12

 4.6.2. Detecting and reporting conflicts 13

 4.6.3. Conflict resolution 14

 4.6.4. Default resolution mode and advertisement of this

 mode . 21

 4.6.5. Supported resolution modes 21

 4.7. NETCONF operations 21

 4.7.1. New NETCONF operations 21

 4.7.2. Updated NETCONF operations 22

 5. IANA Considerations . 25

 6. Security Considerations 25

 7. References . 25

 7.1. Normative References 25

 7.2. Informative References 26

 Appendix A. Behavior with unaltered NETCONF operations 26

 A.1. <get> . 26

Cumming & Wills Expires 2 September 2024 [Page 2]

Internet-Draft NETCONF Private Candidates March 2024

 Contributors . 26

 Authors’ Addresses . 26

1. Introduction

 NETCONF [RFC6241] and RESTCONF [RFC8040] both provide a mechanism for

 one or more clients to make configuration changes to a device running

 as a NETCONF/RESTCONF server. Each client has the ability to make

 one or more configuration change to the servers shared candidate

 configuration.

 As the name shared candidate suggests, all clients have access to the

 same candidate configuration. This means that multiple clients may

 make changes to the shared candidate prior to the configuration being

 committed. This behavior may be undesirable as one client may

 unwittingly commit the configuration changes made by another client.

 NETCONF provides a way to mitigate this behavior by allowing clients

 to place a lock on the shared candidate. The placing of this lock

 means that no other client may make any changes until that lock is

 released. This behavior is, in many situations, also undesirable.

 Many network devices already support private candidates

 configurations, where a user (machine or otherwise) is able to edit a

 personal copy of a devices configuration without blocking other users

 from doing so.

 This document details the extensions to the NETCONF protocol in order

 to support the use of private candidates. It also describes how the

 RESTCONF protocol can be used on a system that implements private

 candidates.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. Definitions and terminology

2.1. Session specific datastore

 A session specific datastore is a configuration datastore that,

 unlike the candidate and running configuration datastores which have

 only one per system, is bound to the specific NETCONF session.

Cumming & Wills Expires 2 September 2024 [Page 3]

Internet-Draft NETCONF Private Candidates March 2024

2.2. Shared candidate configuration

 The candidate configuration datastore defined in [RFC6241] is

 referenced as the shared candidate configuration in this document.

2.3. Private candidate configuration

 A private candidate configuration is a session specific candidate

 configuration datastore.

 When a private candidate is used by NETCONF, the specific session

 (and user) that created the private candidate configuration is the

 only session (user) that has access to it over NETCONF. Devices may

 expose this to other users through other interfaces but this is out

 of scope for this document.

 When a private candidate is used by RESTCONF, the client that created

 the private candidate configuration is the only client that has

 access to it over RESTCONF.

 The private candidate configuration contains a full copy of the

 running configuration when it is created (in the same way as a branch

 does in a source control management system and in the same way as the

 candidate configuration datastore as defined in [RFC6241]). Any

 changes made to it, for example, through the use of operations such

 as <edit-config> and <edit-data>, are made in this private candidate

 configuration.

 Obtaining this private candidate over NETCONF or RESTCONF will

 display the entire configuration, including all changes made to it.

 Performing a <commit> operation will merge the changes from the

 private candidate into the running configuration (the same as a merge

 in source code management systems). A <discard-changes> operation

 will revert the private candidate to the branch’s initial state or

 it’s state at the last <commit> (whichever is most recent).

 All changes made to this private candidate configuration are held

 separately from any other candidate configuration changes, whether

 made by other users to the shared candidate or any other private

 candidate, and are not visible to or accessible by anyone else.

3. Limitations using the shared candidate configuration for multiple

 clients

 The following sections describe some limitations and mitigation

 factors in more detail for the use of the shared candidate

 configuration during multi-client configuration over NETCONF or

 RESTCONF.

Cumming & Wills Expires 2 September 2024 [Page 4]

Internet-Draft NETCONF Private Candidates March 2024

3.1. Issues

3.1.1. Unintended deployment of alternate users configuration changes

 Consider the following scenario:

 1. Client 1 modifies item A in the shared candidate configuration

 2. Client 2 then modifies item B in the shared candidate

 configuration

 3. Client 2 then issues a <commit> RPC

 In this situation, both client 1 and client 2 configurations will be

 committed by client 2. In a machine-to-machine environment client 2

 may not have been aware of the change to item A and, if they had been

 aware, may have decided not to proceed.

3.2. Current mitigation strategies

3.2.1. Locking the shared candidate configuration datastore

 In order to resolve unintended deployment of alternate users

 configuration changes as described above NETCONF provides the ability

 to lock a datastore in order to restrict other users from editing and

 committed changes.

 This does resolve the specific issue above, however, it introduces

 another issue. Whilst one of the clients holds a lock, no other

 client may edit the configuration. This will result in the client

 failing and having to retry. Whilst this may be a desirable

 consequence when two clients are editing the same section of the

 configuration, where they are editing different sections this

 behavior may hold up valid operational activity.

 Additionally, a lock placed on the shared candidate configuration

 must also lock the running configuration, otherwise changes committed

 directly into the running datastore may conflict.

 Finally, this locking mechanism isn’t available to RESTCONF clients.

Cumming & Wills Expires 2 September 2024 [Page 5]

Internet-Draft NETCONF Private Candidates March 2024

3.2.2. Always use the running configuration datastore

 The use of the running configuration datastore as the target for all

 configuration changes does not resolve any issues regarding blocking

 of system access in the case a lock is taken, nor does it provide a

 solution for multiple NETCONF and RESTCONF clients as each

 configuration change is applied immediately and the client has no

 knowledge of the current configuration at the point in time that they

 commenced the editing activity nor at the point they commit the

 activity.

3.2.3. Fine-grained locking

 [RFC5717] describes a partial lock mechanism that can be used on

 specific portions of the shared candidate datastore.

 Partial locking does not solve the issues of staging a set of

 configuration changes such that only those changes get committed in a

 commit operation, nor does it solve the issue of multiple clients

 editing the same parts of the configuration at the same time.

 Partial locking additionally requires that the client is aware of any

 interdependencies within the servers YANG models in order to lock all

 parts of the tree.

4. Private candidates solution

 The use of private candidates resolves the issues detailed earlier in

 this document.

 NETCONF sessions and RESTCONF clients are able to utilize the concept

 of private candidates in order to streamline network operations,

 particularly for machine-to-machine communication.

 Using this approach clients may improve their performance and reduce

 the likelihood of blocking other clients from continuing with valid

 operational activities.

 One or more private candidates may exist at any one time, however, a

 private candidate SHOULD:

 * Be accessible by one client only

 * Be visible by one client only

 Additionally, the choice of using a shared candidate configuration

 datastore or a private candidate configuration datastore MUST be for

 the entire duration of the NETCONF session.

Cumming & Wills Expires 2 September 2024 [Page 6]

Internet-Draft NETCONF Private Candidates March 2024

4.1. What is a private candidate

 A private candidate is defined earlier in the definitions and

 terminology section of this document.

4.2. When is a private candidate created

 A private candidate datastore is created when the first RPC that

 requires access to it is sent to the server. This could be, for

 example, an <edit-config>.

 When the private candidate is created a copy of the running

 configuration is made and stored in it. This can be considered the

 same as creating a branch in a source code repository.

 +----------------------------> private candidate

 /

 /

 +------+-------------------------------> running configuration

 ^

 Private candidate created

4.3. When is a private candidate destroyed

 A private candidate is valid for the duration of the NETCONF session,

 or the duration of the existence of the RESTCONF client. Issuing a

 <commit> operation will not close the private candidate but will

 issue an implicit <update> operation resyncing changes from the

 running configuration. More details on this later in this document.

 A NETCONF session that is operating using a private candidate will

 discard all uncommitted changes in that session’s private candidate

 and destroy the private candidate if the session is closed through a

 deliberate user action or disconnected for any other reason (such as

 a loss of network connectivity).

4.4. How to signal the use of private candidates

4.4.1. Server

 The server MUST signal its support for private candidates. The

 server does this by advertising a new :private-candidate capability:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 A server may also advertise the :candidate capability as defined in

 [RFC6241] if the shared candidate is also supported.

Cumming & Wills Expires 2 September 2024 [Page 7]

Internet-Draft NETCONF Private Candidates March 2024

 A non-NMDA capable NETCONF server that advertises the :private-

 candidate capability MUST also advertise the :candidate capability.

 If the server has not signalled the :private-candidate capability, or

 otherwise does not support private candidates, the server MUST:

 * Terminate the session when it receives the :private-candidate

 capability from a client in a <hello> message,

 * Return an <rpc-error> if a client attempts to interact with the

 NMDA private-candidate configuration datastore.

4.4.2. NETCONF client

 In order to utilise a private candidate configuration within a

 NETCONF session, the client must inform the server that it wishes to

 do this.

 Two approaches are available for a NETCONF client to signal that it

 wants to use a private candidate:

4.4.2.1. Client capability declaration

 When a NETCONF client connects with a server it sends a list of

 client capabilities including one of the :base NETCONF version

 capabilties.

 In order to enable private candidate mode for the duration of the

 NETCONF client session the NETCONF client sends the following

 capability:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 In order for the use of private candidates to be established using

 this approach both the NETCONF server and the NETCONF client MUST

 advertise this capability.

 When a server receives the client capability its mode of operation

 will be set to private candidate mode for the duration of the NETCONF

 session.

 All RPC requests that target the candidate configuration datastore

 will operate in exactly the same way as they would do when using the

 shared candidate configuration datastore, however, when the server

 receives a request to act upon the candidate configuration datastore

 it instead uses the session’s private candidate configuration

 datastore.

Cumming & Wills Expires 2 September 2024 [Page 8]

Internet-Draft NETCONF Private Candidates March 2024

 Using this method, the use of private candidates can be made

 available to NMDA and non-NMDA capable servers.

 No protocol extensions are required for the transitioning of

 candidates between the shared mode and the private mode and no

 extensions are required for any RPCs (including <lock>)

4.4.2.2. Private candidate datastore

 The private candidate configuration datastore is exposed as its own

 datastore similar to other NMDA [RFC8342] capable datastores. This

 datastore is called private-candidate.

 All NMDA operations that support candidate NMDA datastore SHOULD

 support the private-candidate datastore.

 Any non-NMDA aware NETCONF operations that take a source or target

 (destination) may be extended to accept the new datastore.

 The ability for the server to support private candidates is optional

 and SHOULD be signalled in NMDA supporting servers as a datastore in

 addition to the server capabilities described earlier in this

 document.

 To use this method the client is not required to send the :private-

 candidate capability.

 The first datastore referenced (either candidate or private-

 candidate) in any NETCONF operation will define which mode that

 NETCONF session will operate in for its duration. As an example,

 performing a <get-data> operation on the private-candidate datastore

 will switch the session into private candidate configuration mode and

 subsequent <edit-config> operations that reference the candidate

 configuration datastore MUST fail.

4.4.3. RESTCONF client

 RESTCONF doesn’t provide a mechanism for the client to advertise a

 capability. Therefore when a RESTCONF server advertises the

 :private-candidate capability, the decision of whether to use a

 private candidate depends on whether a datastore is explicitly

 referenced in the request using the RESTCONF extensions for NMDA

 [RFC8527].

Cumming & Wills Expires 2 September 2024 [Page 9]

Internet-Draft NETCONF Private Candidates March 2024

4.4.3.1. Datastore is not explicitly referenced

 When the server advertises the :private-candidate capability and the

 client references the "{+restconf}/data" resource described in

 Section 3.3.1 of [RFC8040], all edits are made to the client’s

 private candidate, and the private candidate is automatically

 committed.

 This ensures backwards compatibility with RESTCONF clients that are

 not aware of private candidates, because those clients will expect

 their changes to be committed immediately.

4.4.3.2. Private candidate datastore is referenced in the request

 When the private-candidate datastore is explicitly referenced as an

 NMDA datastore, edits are made to the client’s private candidate, but

 the private candidate is not committed. To commit the changes, the

 client must explicitly send a commit request.

 A commit request is of the form "{+restconf}/operations/ietf-

 netconf:commit", using the API described in Section 3.3.2 of

 [RFC8040]. The semantics are identical to the NETCONF <commit>

 operation.

 Similarly, the client can perform ietf-netconf:discard-changes, ietf-

 netconf:validate, and ietf-netconf:cancel-commit operations (if the

 appropriate capabilities are implemented). The semantics are

 identical to NETCONF.

4.4.3.3. Identifying the private candidate datastore

 Each RESTCONF client has its own private candidate datastore. The

 client (and hence the private candidate datastore) is identified

 using the mechanism described in Section 2.5 of [RFC8040].

4.5. Interaction between running and private-candidate(s)

 Multiple operations may be performed on the private candidate in

 order to stage changes ready for a commit.

 In the simplest example, a session may create a private candidate

 configuration, perform multiple operations (such as <edit-config>) on

 it and then perform a <commit> operation to merge the private

 candidate configuration into the running configuration in line with

 semantics in [RFC6241].

Cumming & Wills Expires 2 September 2024 [Page 10]

Internet-Draft NETCONF Private Candidates March 2024

 commit

 +--------------------------+--------> private candidate

 / ^ ^ \

 / edit-config edit-config

 +---+-------------------------------+------> running configuration

 ^

 edit-config

 (Private candidate created)

 More complex scenarios need to be considered, when multiple private

 candidate sessions are working on their own configuration (branches)

 and they make commits into the running configuration.

 commit

 +---------------------+----------------> private candidate 1

 / \

 / edit-config

 +---+------------+-------------+--------------> running configuration

 edit-config \

 \

 +-------------------------> private candidate 2

 In this situation, if, how and when private candidate 2 is updated

 with the information that the running configuration has changed must

 be considered.

 As described earlier, the client MUST be aware of changes to it’s

 private candidate configuration so it can be assured that it is only

 committing its own modifications. It should also be aware of any

 changes to the current running configuration.

 It is possible, during an update, for conflicts to occur and the

 detection and resolution of these is discussed later in this

 document.

 A good way to understand the interaction between candidates is to

 consider them as branches such as you might find in a source code

 management system.

 Each private candidate is treated as a separate branch and changes

 made to the running configuration are not placed into a private

 candidate datastore except in one of the following situations:

 * The client requests that the private candidate be refreshed using

 a new <update> operation

Cumming & Wills Expires 2 September 2024 [Page 11]

Internet-Draft NETCONF Private Candidates March 2024

 * <commit> is issued (which MUST automatically issue an <update>

 operation immediately prior to committing the configuration)

 * An implmentation chooses to perform an <update> operation after a

 change to the running configuration by any other client

 It is possible for a private candidate configuration to become

 significantly out of sync with the running configuration should the

 private candidate be open for a long time, however, most NETCONF

 configuration activities (between the first <edit-config>/<edit-data>

 and a <commit>) are short-lived.

 An implementation may choose, optionally, to automatically perform an

 <update> operation after a change to the running configuration from

 another client. However, this choice should be made with caution as

 it will replace, overwrite, or otherwise alter (depending on the

 servers default resolution mode, discussed later) the private

 candidate configuration without notifying the client

 A <compare> operation may be performed against:

 * The initial creation point of the private candidate’s branch

 * Against the last update point of the private candidate’s branch

 * Against the running configuration

4.6. Detecting and resolving conflicts

4.6.1. What is a conflict?

 A conflict is when the intent of the client may have been different

 had it had a different starting point. In configuration terms, a

 conflict occurs when the same set of nodes in a configuration being

 altered by one user are changed between the start of the

 configuration preparation (the first <edit-config>/<edit-data>

 operation) and the conclusion of this configuration session

 (terminated by a <commit> operation).

 The situation where conflicts have the potential of occurring are

 when multiple configuration sessions are in progress and one session

 commits changes into the running configuration after the private

 candidate (branch) was created.

 When this happens a conflict occurs if the nodes modified in the

 running configuration are the same nodes that are modified in the

 private candidate configuration.

Cumming & Wills Expires 2 September 2024 [Page 12]

Internet-Draft NETCONF Private Candidates March 2024

 Examples of conflicts include:

 * An interface has been deleted in the running configuration that

 existed when the private candidate was created. A change to a

 child node of this specific interface is made in the private

 candidate using the default merge operation would, instead of

 changing the child node, both recreate the interface and then set

 the child node.

 * A leaf has been modified in the running configuration from the

 value that it had when the private candidate was created. The

 private candidate configuration changes that leaf to another

 value.

4.6.2. Detecting and reporting conflicts

 A conflict can occur when an <update> operation is triggered. This

 can occur in a number of ways:

 * Manually triggered by the <update> NETCONF operation

 * Automatically triggered by the server running an <update>

 operation, such as when a <commit> operation is performed by the

 client in the private candidate session.

 When a conflict occurs:

 * The client MUST be given the opportunity to re-evaluate its intent

 based on the new information. The resolution of the conflict may

 be manual or automatic depending on the server and client decision

 (discussed later in this document).

 * A <commit> operation (that MUST trigger an automatic <update>

 operation immediately before) MUST fail. It MUST inform the

 client of the conflict and SHOULD detail the location of the

 conflict(s).

 * A <update> operation MUST fail unless the server has explicitly

 configured a system-wide default resolution mode of ignore or

 overwrite (discussed later in this document)

 The location of the conflict(s) should be reported as a list of

 xpaths and values.

 Note: If a server implementation has chosen to automatically issue an

 <update> operation every time a change is made to the running

 configuration the server MUST have the system-wide default resolution

 mode set to ignore or overwrite

Cumming & Wills Expires 2 September 2024 [Page 13]

Internet-Draft NETCONF Private Candidates March 2024

4.6.3. Conflict resolution

 Conflict resolution defines which configuration elements are retained

 when a conflict is resolved; those from the running configuration or

 those from the private candidate configuration.

 When a conflict is detected in any client triggered activity, the

 client MUST be informed. The client then has a number of options

 available to resolve the conflict.

 An <update> operation uses the resolution method specified in the

 request, or the system default resolution mode if not specified. The

 <update> operation is discussed later in this document.

 The following configuration data is used below to illustrate the

 behaviour of each resolution method:

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to London<description>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link to Tokyo<description>

 </interface>

 </interfaces>

 </configure>

 The example workflow is shown in this diagram and is used for the

 purpose of the examples below. In these examples the reader should

 assume that the <update> operation is manually provided by a client

 working in pruvate candidate 1.

 update commit

 +--------------------+---+------> private candidate 1

 / / \

 / edit-config /

 +---+--------+--------+--+--------+----> running configuration

 edit-config \ ^

 \ /

 +---+------------------> private candidate 2

 commit

 There are three defined resolution methods:

Cumming & Wills Expires 2 September 2024 [Page 14]

Internet-Draft NETCONF Private Candidates March 2024

4.6.3.1. Ignore

 When using the ignore resolution method items in the running

 configuration that are not in conflict with the private candidate

 configuration are merged from the running configuration into the

 private candidate configuration. Nodes that are in conflict are

 ignored and not merged. The outcome of this is that the private

 candidate configuration reflects changes in the running that were not

 being worked on and those that are being worked on in the private

 candidate remain in the private candidate. Issuing a <commit>

 operation at this point will overwrite the running configuration with

 the conflicted items from the private candidate configuration.

 Example:

 Session 1 edits the configuration by submitting the following

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 2 then edits the configuration deleting the interface

 intf_one, updating the description on interface intf_two and commits

 the configuration to the running configuration datastore.

Cumming & Wills Expires 2 September 2024 [Page 15]

Internet-Draft NETCONF Private Candidates March 2024

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name operation="delete">intf_one</name>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris</description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 1 then sends an <update> NETCONF operation.

 <rpc message-id="update"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <update>

 <resolution-mode>ignore</resolution-mode>

 </update>

 </rpc>

 The un-conflicting changes are merged and the conflicting ones are

 ignored (and not merged from the running into private candidate 1).

 The resulting data in private candidate 1 is:

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris<description>

 </interface>

 </interfaces>

 </configure>

Cumming & Wills Expires 2 September 2024 [Page 16]

Internet-Draft NETCONF Private Candidates March 2024

4.6.3.2. Overwrite

 When using the overwrite resolution method items in the running

 configuration that are not in conflict with the private candidate

 configuration are merged from the running configuration into the

 private candidate configuration. Nodes that are in conflict are

 pushed from the running configuration into the private candidate

 configuration, overwriting any previous changes in the private

 candidate configuration. The outcome of this is that the private

 candidate configuration reflects the changes in the running

 configuration that were not being worked on as well as changing those

 being worked on in the private candidate to new values.

 Example:

 Session 1 edits the configuration by submitting the following

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 2 then edits the configuration deleting the interface

 intf_one, updating the description on interface intf_two and commits

 the configuration to the running configuration datastore.

Cumming & Wills Expires 2 September 2024 [Page 17]

Internet-Draft NETCONF Private Candidates March 2024

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name operation="delete">intf_one</name>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris</description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 1 then sends an <update> NETCONF operation.

 <rpc message-id="update"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <update>

 <resolution-mode>overwrite</resolution-mode>

 </update>

 </rpc>

 The un-conflicting changes are merged and the conflicting ones are

 pushed into the private candidate 1 overwriting the existing changes.

 The resulting data in private candidate 1 is:

 <configure>

 <interfaces>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris<description>

 </interface>

 </interfaces>

 </configure>

4.6.3.3. Revert-on-conflict

 When using the revert-on-conflict resolution method an update will

 fail to complete when any conflicting node is found. The session

 issuing the update will be informed of the failure.

Cumming & Wills Expires 2 September 2024 [Page 18]

Internet-Draft NETCONF Private Candidates March 2024

 No changes, whether conflicting or un-conflicting are merged into the

 private candidate configuration.

 The owner of the private candidate session must then take deliberate

 and specific action to adjust the private candidate configuration to

 rectify the conflict. This may be by issuing further <edit-config>

 or <edit-data> operations, by issuing a <discard-changes> operation

 or by issuing an <update> operation with a different resolution

 method.

 This resolution method is the default resolution method as it

 provides for the highest level of visibility and control to ensure

 operational stability.

 This resolution method MUST be supported by a server.

 Example:

 Session 1 edits the configuration by submitting the following

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 2 then edits the configuration deleting the interface

 intf_one, updating the description on interface intf_two and commits

 the configuration to the running configuration datastore.

Cumming & Wills Expires 2 September 2024 [Page 19]

Internet-Draft NETCONF Private Candidates March 2024

 <rpc message-id="config"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target><candidate/><target>

 <config>

 <configure>

 <interfaces>

 <interface>

 <name operation="delete">intf_one</name>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link moved to Paris</description>

 </interface>

 </interfaces>

 </configure>

 </config>

 </edit-config>

 </rpc>

 Session 1 then sends an <update> NETCONF operation.

 <rpc message-id="update"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <update>

 <resolution-mode>revert-on-conflict</resolution-mode>

 </update>

 </rpc>

 A conflict is detected, the update fails with an <rpc-error> and no

 merges/overwrite operations happen.

 The resulting data in private candidate 1 is:

 <configure>

 <interfaces>

 <interface>

 <name>intf_one</name>

 <description>Link to San Francisco<description>

 </interface>

 <interface>

 <name>intf_two</name>

 <description>Link to Tokyo<description>

 </interface>

 </interfaces>

 </configure>

Cumming & Wills Expires 2 September 2024 [Page 20]

Internet-Draft NETCONF Private Candidates March 2024

4.6.4. Default resolution mode and advertisement of this mode

 The default resolution mode is revert-on-conflict, however, a system

 MAY choose to select a different default resolution mode.

 The default resolution mode MUST be advertised in the :private-

 candidate capability by adding the default-resolution-mode parameter

 if the system default is anything other than revert-on-conflict. If

 the system default resolution mode is revert-on-conflict then

 advertising this in the :private-candidate capability is optional.

 In this example, a server has configured a default system-wide

 resolution mode of overwrite which MUST be signalled with the

 :private-candidate capability as follows:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 ?default-resolution-mode=overwrite

4.6.5. Supported resolution modes

 A server SHOULD support all three resolution modes, however, if the

 server does not support all three modes, the server MUST report the

 supported modes in the :private-candidate capability using the

 supported-resolution-modes, for example:

 urn:ietf:params:netconf:capability:private-candidate:1.0

 ?supported-resolution-modes=revert-on-conflict,ignore

4.7. NETCONF operations

4.7.1. New NETCONF operations

4.7.1.1. <update>

 The <update> operation is provided to allow NETCONF clients (or

 servers) to trigger a rebase of the private candidate configuration

 against the running configuration.

 The <update> operation may be triggered manually by the client or

 automatically by the server.

 The <update> operation MUST be implicitly triggered by a specific

 NETCONF session issuing a <commit> operation when using private

 candidates. The actual order of operations in the server MUST be to

 issue the implicit <update> operation first and then the <commit>

 operation.

Cumming & Wills Expires 2 September 2024 [Page 21]

Internet-Draft NETCONF Private Candidates March 2024

 A <commit> operation that fails the implicit <update> operation

 SHOULD fail. The client is then required to make a specific decision

 to rectify the issue prior to committing. This may be to edit the

 private candidate configuration or to issue a manual <update>

 operation with a specific resolution mode selected.

4.7.1.1.1. <resolution-mode> parameter

 The <update> operation takes the optional <resolution-mode> parameter

 The resolution modes are described earlier in this document and the

 accepted inputs are:

 * revert-on-conflict (default)

 * ignore

 * overwrite

4.7.2. Updated NETCONF operations

 Specific NETCONF operations altered by this document are listed in

 this section. Any notable behavior with existing unaltered NETCONF

 operations is noted in the appendix.

4.7.2.1. <edit-config>

 The <edit-config> operation is updated to accept private-candidate as

 valid input to the <target> field.

 The use of <edit-config> will create a private candidate

 configuration if one does not already exist for that NETCONF session.

 Sending an <edit-config> request to private-candidate after one has

 been sent to the shared candidate datastore in the same session will

 fail (and visa-versa).

 Multiple <edit-config> requests may be sent to the private-candidate

 datastore in a single session.

4.7.2.2. <edit-data>

 The <edit-data> operation is updated to accept private-candidate as

 valid input to the <datastore> field. (datastore is an identityref

 and so the actual input will be ds:private-candidate).

 The use of <edit-data> will create a private candidate configuration

 if one does not already exist for that NETCONF session.

Cumming & Wills Expires 2 September 2024 [Page 22]

Internet-Draft NETCONF Private Candidates March 2024

 Multiple <edit-data> requests may be sent to the private-candidate

 datastore in a single session.

4.7.2.3. <lock> and <unlock>

 Performing a <lock> on the private-candidate datastore is a valid

 operation, although it is understood that the practical effect of

 this is a ’no op’ as only one session may edit the locked private

 candidate.

 If the client’s intention is that no other session may commit changes

 to the system then the client should issue a <lock> operation on the

 running candidate.

 Other NETCONF sessions are still able to create a new private-

 candidate configurations, make edits to them and perform operations

 on them, such as <update> or <discard-changes>.

 Performing an <unlock> on the private-candidate datastore is a valid

 operation

 Changes in the private-candidate datastore are not lost when the lock

 is released.

4.7.2.4. <compare>

 Performing a <compare> [RFC9144] operation with the private-candidate

 datastore as either the <source> or <target> is a valid operation.

 If <compare> is performed prior to a private candidate configuration

 being created, one will be created at that point.

 The <compare> operation is extended by this document to allow the

 ability to compare the private-candidate datastore (at its current

 point in time) with the same private-candidate datastore at an

 earlier point in time or with another datastore.

4.7.2.4.1. <reference-point> parameter

 This document adds the optional <reference-point> node to the input

 of the <compare> operation that accepts the following values:

 * last-update

 * creation-point

 Servers MAY support this functionality but are not required to by

 this document.

Cumming & Wills Expires 2 September 2024 [Page 23]

Internet-Draft NETCONF Private Candidates March 2024

 The last-update selection of <reference-point> will provide an output

 comparing the current private-candidate configuration datastore with

 the same private-candidate datastore at the time it was last updated

 using the <update> NETCONF operation described in this document

 (whether automatically or manually triggered).

 The creation-point selection of <reference-point> will provide an

 output comparing the current private-candidate configuration

 datastore with the same private-candidate datastore at the time this

 private-candidate was initially created.

4.7.2.5. <get-config>

 The <get-config> operation is updated to accept private-candidate as

 valid input to the <source> field.

 The use of <get-config> will create a private candidate configuration

 if one does not already exist for that NETCONF session.

 Sending an <get-config> request to private-candidate after one has

 been sent to the shared candidate datastore in the same session will

 fail (and visa-versa).

4.7.2.6. <get-data>

 The <get-data> operation accepts the private-candidate as a valid

 datastore.

 The use of <get-data> will create a private candidate configuration

 if one does not already exist for that NETCONF session.

 Sending an <get-data> request to private-candidate after one has been

 sent to the shared candidate datastore in the same session will fail

 (and visa-versa).

4.7.2.7. <copy-config>

 The <copy-config> operation is updated to accept private-candidate as

 a valid input to the <source> or <target> fields.

4.7.2.8. <delete-config>

 The <delete-config> operation is updated to accept private-candidate

 as a valid input to the <target> field.

Cumming & Wills Expires 2 September 2024 [Page 24]

Internet-Draft NETCONF Private Candidates March 2024

4.7.2.9. <commit>

 The <commit> operation MUST trigger an implicit <update> operation.

 Nothing in this document alters the standard behavior of the

 <persist> or <persist-id> options and these SHOULD work when using

 the private-candidate configuration datastore.

5. IANA Considerations

 This document requests the registration the the following NETCONF

 capabilities:

 * urn:ietf:params:netconf:capability:private-candidate:1.0 (Version

 1.0)

6. Security Considerations

 This document should not affect the security of the Internet.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "Network Management Datastore Architecture

 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC9144] Clemm, A., Qu, Y., Tantsura, J., and A. Bierman,

 "Comparison of Network Management Datastore Architecture

 (NMDA) Datastores", RFC 9144, DOI 10.17487/RFC9144,

 December 2021, <https://www.rfc-editor.org/info/rfc9144>.

Cumming & Wills Expires 2 September 2024 [Page 25]

Internet-Draft NETCONF Private Candidates March 2024

 [RFC5717] Lengyel, B. and M. Bjorklund, "Partial Lock Remote

 Procedure Call (RPC) for NETCONF", RFC 5717,

 DOI 10.17487/RFC5717, December 2009,

 <https://www.rfc-editor.org/info/rfc5717>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8527] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "RESTCONF Extensions to Support the Network

 Management Datastore Architecture", RFC 8527,

 DOI 10.17487/RFC8527, March 2019,

 <https://www.rfc-editor.org/info/rfc8527>.

7.2. Informative References

Appendix A. Behavior with unaltered NETCONF operations

A.1. <get>

 The <get> operation does not accept a datastore value and therefore

 this document is not applicable to this operation. The use of the

 get operation will not create a private candidate configuration.

Contributors

 The authors would like to thank Jan Lindblad, Lori-Ann McGrath, Jason

 Sterne, Kent Watsen and Rob Wilton for their contributions and

 reviews.

Authors’ Addresses

 James Cumming

 Nokia

 Email: james.cumming@nokia.com

 Robert Wills

 Cisco Systems

 Email: rowills@cisco.com

Cumming & Wills Expires 2 September 2024 [Page 26]

NETCONF J. Lindblad
Internet-Draft Cisco Systems
Intended status: Standards Track 1 March 2024
Expires: 2 September 2024

 Transaction ID Mechanism for NETCONF
 draft-ietf-netconf-transaction-id-03

Abstract

 NETCONF clients and servers often need to have a synchronized view of
 the server’s configuration data stores. The volume of configuration
 data in a server may be very large, while data store changes
 typically are small when observed at typical client resynchronization
 intervals.

 Rereading the entire data store and analyzing the response for
 changes is an inefficient mechanism for synchronization. This
 document specifies an extension to NETCONF that allows clients and
 servers to keep synchronized with a much smaller data exchange and
 without any need for servers to store information about the clients.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Network Configuration
 Working Group mailing list (netconf@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/netconf/.

 Source for this draft and an issue tracker can be found at
 https://github.com/netconf-wg/transaction-id.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Lindblad Expires 2 September 2024 [Page 1]

Internet-Draft NCTID March 2024

 This Internet-Draft will expire on 2 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Definitions 4
 3. NETCONF Txid Extension 5
 3.1. Use Cases . 5
 3.2. General Txid Principles 6
 3.3. Initial Configuration Retrieval 7
 3.4. Subsequent Configuration Retrieval 9
 3.5. Candidate Datastore Configuration Retrieval 13
 3.6. Conditional Transactions 14
 3.6.1. Error response on Out of band change 16
 3.6.2. Txid History size consideration 17
 3.7. Candidate Datastore Transactions 18
 3.8. Dependencies within Transactions 20
 3.9. Other NETCONF Operations 23
 3.10. YANG-Push Subscriptions 24
 3.11. Comparing YANG Datastores 25
 4. Txid Mechanisms . 27
 4.1. The etag attribute txid mechanism 27
 4.2. The last-modified attribute txid mechanism 28
 4.3. Common features to both etag and last-modified txid
 mechanisms . 29
 4.3.1. Candidate Datastore 30
 4.3.2. Namespaces and Attribute Placement 30
 5. Txid Mechanism Examples 31
 5.1. Initial Configuration Response 31
 5.1.1. With etag . 31
 5.1.2. With last-modified 36
 5.2. Configuration Response Pruning 39
 5.3. Configuration Change 43
 5.4. Conditional Configuration Change 47

Lindblad Expires 2 September 2024 [Page 2]

Internet-Draft NCTID March 2024

 5.5. Reading from the Candidate Datastore 50
 5.6. Commit . 53
 5.7. YANG-Push . 53
 5.8. NMDA Compare . 56
 6. YANG Modules . 58
 6.1. Base module for txid in NETCONF 58
 6.2. Additional support for txid in YANG-Push 63
 6.3. Additional support for txid in NMDA Compare 65
 7. Security Considerations 67
 7.1. NACM Access Control 67
 7.1.1. Hash-based Txid Algorithms 68
 7.2. Unchanged Configuration 68
 8. IANA Considerations . 68
 9. Changes . 69
 9.1. Major changes in -03 since -02 69
 9.2. Major changes in -02 since -01 70
 9.3. Major changes in -01 since -00 70
 9.4. Major changes in draft-ietf-netconf-transaction-id-00 since
 -02 . 71
 9.5. Major changes in -02 since -01 72
 9.6. Major changes in -01 since -00 72
 10. References . 73
 10.1. Normative References 73
 10.2. Informative References 74
 Acknowledgments . 75
 Author’s Address . 75

1. Introduction

 When a NETCONF client wishes to initiate a new configuration
 transaction with a NETCONF server, a frequently occurring use case is
 for the client to find out if the configuration has changed since the
 client last communicated with the server. Such changes could occur
 for example if another NETCONF client has made changes, or another
 system or operator made changes through other means than NETCONF.

 One way of detecting a change for a client would be to retrieve the
 entire configuration from the server, then compare the result with a
 previously stored copy at the client side. This approach is not
 popular with most NETCONF users, however, since it would often be
 very expensive in terms of communications and computation cost.

 Furthermore, even if the configuration is reported to be unchanged,
 that will not guarantee that the configuration remains unchanged when
 a client sends a subsequent change request, a few moments later.

Lindblad Expires 2 September 2024 [Page 3]

Internet-Draft NCTID March 2024

 In order to simplify the task of tracking changes, a NETCONF server
 could implement a meta level transaction tag or timestamp for an
 entire configuration datastore or YANG subtree, and offer clients a
 way to read and compare this tag or timestamp. If the tag or
 timestamp is unchanged, clients can avoid performing expensive
 operations. Such tags and timestamps are referred to as a
 transaction id (txid) in this document.

 Evidence of a transaction id feature being demanded by clients is
 that several server implementors have built proprietary and mutually
 incompatible mechanisms for obtaining a transaction id from a NETCONF
 server.

 RESTCONF, [RFC8040], defines a mechanism for detecting changes in
 configuration subtrees based on Entity-Tags (ETags) and Last-Modified
 txid values.

 In conjunction with this, RESTCONF provides a way to make
 configuration changes conditional on the server configuration being
 untouched by others. This mechanism leverages [RFC7232] "Hypertext
 Transfer Protocol (HTTP/1.1): Conditional Requests".

 This document defines similar functionality for NETCONF, [RFC6241],
 for config true data. It also ties this in with YANG-Push,
 [RFC8641], and "Comparison of Network Management Datastore
 Architecture (NMDA) Datastores", [RFC9144]. Config false data
 (operational data, state, statistics) is left out of scope from this
 document.

 This document does not change the RESTCONF protocol in any way, and
 is carefully written to allow implementations to share much of the
 code between NETCONF and RESTCONF. Note that the NETCONF txid
 mechanism described in this document uses XML attributes, but the
 RESTCONF mechanism relies on HTTP Headers instead, and use none of
 the XML attributes described in this document, nor JSON Metadata (see
 [RFC7952]).

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document uses the terminology defined in [RFC6241], [RFC7950],
 [RFC7952], [RFC8040], [RFC8641], and [RFC9144].

Lindblad Expires 2 September 2024 [Page 4]

Internet-Draft NCTID March 2024

 In addition, this document defines the following terms:

 Versioned node A node in the instantiated YANG data tree for which
 the server maintains a transaction id (txid) value.

 Transaction-id Mechanism A protocol implementation that fulfills the
 principles described in the first part, NETCONF Txid Extension
 (Section 3), of this document.

 Txid Abbreviation of Transaction-id

 C-txid Client side transaction-id, i.e. a txid value maintained or
 provided by a NETCONF client application.

 S-txid Server side transaction-id, i.e. a txid value maintained or
 sent by a NETCONF server.

 Txid History Temporally ordered list of txid values used by the
 server. Allows the server to determine if a given txid occurred
 more recently than another txid.

3. NETCONF Txid Extension

 This document describes a NETCONF extension which modifies the
 behavior of get-config, get-data, edit-config, edit-data, discard-
 changes, copy-config, delete-config and commit such that clients are
 able to conditionally retrieve and update the configuration in a
 NETCONF server.

 For servers implementing YANG-Push, an extension for conveying txid
 updates as part of subscription updates is also defined. A similar
 extension is also defined for servers implememnting "Comparison of
 NMDA Datastores".

 Several low level mechanisms could be defined to fulfill the
 requirements for efficient client-server txid synchronization. This
 document defines two such mechanisms, the etag txid mechanism and the
 last-modified txid mechanism. Additional mechanisms could be added
 in future. This document is therefore divided into a two parts; the
 first part discusses the txid mechanism in an abstract, protocol-
 neutral way. The second part, Txid Mechanisms (Section 4), then adds
 the protocol layer, and provides concrete encoding examples.

3.1. Use Cases

 The common use cases for txid mecahnisms are briefly discussed here.

 Initial configuration retrieval When the client initially connects

Lindblad Expires 2 September 2024 [Page 5]

Internet-Draft NCTID March 2024

 to a server, it may be interested to acquire a current view of
 (parts of) the server’s configuration. In order to be able to
 efficiently detect changes later, it may also be interested to
 store meta level txid information for subtrees of the
 configuration.

 Subsequent configuration retrieval When a client needs to reread
 (parts of) the server’s configuration, it may be interested to
 leverage the txid meta data it has stored by requesting the server
 to prune the response so that it does not repeat configuration
 data that the client is already aware of.

 Configuration update with txid return When a client issues a
 transaction towards a server, it may be interested to also learn
 the new txid meta data the server has stored for the updated parts
 of the configuration.

 Conditional configuration change When a client issues a transaction
 towards a server, it may specify txid meta data for the
 transaction in order to allow the server to verify that the client
 is up to date with any changes in the parts of the configuration
 that it is concerned with. If the txid meta data in the server is
 different than the client expected, the server rejects the
 transaction with a specific error message.

 Subscribe to configuration changes with txid return When a client
 subscribes to configuration change updates through YANG-Push, it
 may be interested to also learn the the updated txid meta data for
 the changed data trees.

3.2. General Txid Principles

 All servers implementing a txid mechanism MUST maintain a top level
 server side txid meta data value for each configuration datastore
 supported by the server. Server side txid is often abbreviated
 s-txid. Txid mechanism implementations MAY also maintain txid meta
 data values for nodes deeper in the YANG data tree. The nodes for
 which the server maintains txids are collectively referred to as the
 "Versioned Nodes".

 Server implementors MAY use the YANG extension statement ietf-
 netconf-txid:versioned-node to inform potential clients about which
 YANG nodes the server maintains a txid value for. Another way to
 discover (a partial) set of Versioned Nodes is for a client to
 request the current configuration with txids. The returned
 configuration will then have the Versioned Nodes decorated with their
 txid values.

Lindblad Expires 2 September 2024 [Page 6]

Internet-Draft NCTID March 2024

 Regardless of whether the server declares the Versioned Nodes or not,
 the set of Versioned Nodes in the server’s YANG tree MUST remain
 constant, except at system redefining events, such as software
 upgrades or entitlement installations or removals.

 The server returning txid values for the Versioned Nodes MUST ensure
 the txid values are changed every time there has been a configuration
 change at or below the node associated with the txid value. This
 means any update of a config true node will result in a new txid
 value for all ancestor Versioned Nodes, up to and including the
 datastore root itself.

 This also means a server MUST update the txid value for any nodes
 that change as a result of a configuration change, and their
 ancestors, regardless of source, even if the changed nodes are not
 explicitly part of the change payload. An example of this is
 dependent data under YANG [RFC7950] when- or choice-statements.

 The server MUST NOT change the txid value of a versioned node unless
 the node itself or a child node of that node has been changed. The
 server MUST NOT change any txid values due to changes in config false
 data, or any kind of metadata that the server may maintain for YANG
 data tree nodes.

3.3. Initial Configuration Retrieval

 When a NETCONF server receives a get-config or get-data request
 containing requests for txid values, it MUST, in the reply, return
 txid values for all Versioned Nodes below the point requested by the
 client.

 The exact encoding varies by mechanism, but all txid mechanisms would
 have a special "txid-request" txid value (e.g. "?") which is
 guaranteed to never be used as a normal txid value. Clients MAY use
 this special txid value associated with one or more nodes in the data
 tree to indicate to the server that they are interested in txid
 values below that point of the data tree.

Lindblad Expires 2 September 2024 [Page 7]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | get-config (txid: ?) |
 | acls |
 | |
 | <-- |
 | data (txid: 5152) |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 protocol 17 |
 | actions forwarding accept |
 | acl A2 (txid: 5152) |
 | aces (txid: 5152) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 5152) |
 | matches tcp source-port port 22 |
 | actions forwarding accept |
 v v

 Figure 1: Initial Configuration Retrieval. The client annotated
 the get-config request itself with the txid request value, which
 makes the server return all txid values in the entire datastore,
 that also fall within the requested subtree filter. The most
 recent change seems to have been an update to ace R8 and R9.

 In the call flow examples in this document we are using a 4-digit,
 monotonously increasing integer as txid. This is convenient and
 enhances readability of the examples, but does not necessarily
 reflect a typical implementation.

 In principle, txid values are opaque strings that uniquely identify a
 particular configuration state. Servers are expected to know which
 txid values it has used in the recent past, and in which order they
 were assigned to configuration change transactions. This information
 is known as the server’s Txid History.

Lindblad Expires 2 September 2024 [Page 8]

Internet-Draft NCTID March 2024

 How many historical txid values to track is up to each server
 implementor to decide, and a server MAY decide not to store any
 historical txid values at all. The more txid values in the server’s
 Txid History, the more efficient the client synchronization may be,
 as described in the coming sections.

 Some server implementors may decide to use a monotonically increasing
 integer as the txid value, or a timestamp. Doing so obviously makes
 it very easy for the server to determine the sequence of historical
 transaction ids.

 Some server implementors may decide to use a completely different
 txid value sequence, to the point that the sequence may appear
 completely random to outside observers. Clients MUST NOT generally
 assume that servers use a txid value scheme that reveals information
 about the temporal sequence of txid values.

3.4. Subsequent Configuration Retrieval

 Clients MAY request the server to return txid values in the response
 by adding one or more txid values received previously in get-config
 or get-data requests. Txid values sent by a client are often
 abbreviated c-txid.

 When a client sends in a c-txid value of a node that matches the
 server’s s-txid value for that Versioned Node, or matches a more
 recent s-txid value in the server’s Txid History, the server prunes
 (does not return) that subtree from the response. Since the client
 already knows the txid for this part of the data tree, or a txid that
 occurred more recently, it is obviosuly already up to date with that
 part of the configuration. Sending it again would be a waste of time
 and energy.

 The table below describes in detail how the client side (c-txid) and
 server side txid (s-txid) values are determined and compared when the
 server processes each data tree reply node from a get-config or get-
 data request.

 Servers MUST process each of the config true nodes as follows:

 +==========+===========================+============================+
 | Case | Condition | Behavior |
 +==========+===========================+============================+
1. NO	In its request, the	In this case, the server
CLIENT	client did not specify a	MUST return the current
TXID	c-txid value for the	node according to the
	current node, nor any	normal NETCONF
	ancestor of this node.	specifications. The

Lindblad Expires 2 September 2024 [Page 9]

Internet-Draft NCTID March 2024

		rules below do not apply
		to the current node. Any
		child nodes MUST also be
		evaluated with respect to
		these rules.
+----------+---------------------------+----------------------------+		
2.	The client did not	In this case, the current
CLIENT	specify a c-txid value	node MUST inherit the
ANCESTOR	for the current node, but	c-txid value of the
TXID	did specify a c-txid	closest ancestor node in
	value for one or more	the client’s request that
	ancestors of this node.	has a c-txid value.
		Processing of the current
		node continues according
		to the rules below.
+----------+---------------------------+----------------------------+		
3.	The node is not a	In this case, the current
SERVER	Versioned Node, i.e. the	node MUST inherit the
ANCESTOR	server does not maintain	server’s s-txid value of
TXID	a s-txid value for this	the closest ancestor that
	node.	is a Versioned Node (has
		a server side s-txid
		value). The datastore
		root is always a
		Versioned Node.
		Processing of the current
		node continues according
		to the rules below.
+----------+---------------------------+----------------------------+		
4.	The client specified	In this case the server
CLIENT	c-txid for the current	MUST return the node
TXID UP	node value is "up to	decorated with a special
TO DATE	date", i.e. it matches	"txid-match" txid value
	the server’s s-txid	(e.g. "=") to the
	value, or matches a	matching node, pruning
	s-txid value from the	any value and child
	server’s Txid History	nodes.
	that is more recent than	
	the server’s s-txid value	
	for this node.	
+----------+---------------------------+----------------------------+		
5.	The specified c-txid is	In this case the server
CLIENT	"outdated" or "unknown"	MUST return the current
TXID OUT	to the server, i.e. it	node according to the
OF DATE	does not match the	normal NETCONF
	server’s s-txid value for	specifications. If the
	this node, nor does the	current node is a
	client c-txid value match	Versioned Node, it MUST

Lindblad Expires 2 September 2024 [Page 10]

Internet-Draft NCTID March 2024

	any s-txid value in the	be decorated with the
	server’s Txid History	s-txid value. Any child
	that is more recent than	nodes MUST also be
	the server’s s-txid value	evaluated with respect to
	for this node.	these rules.
 +----------+---------------------------+----------------------------+

 Table 1: The Txid rules for response pruning.

 For list elements, pruning child nodes means that top-level key nodes
 MUST be included in the response, and other child nodes MUST NOT be
 included. For containers, child nodes MUST NOT be included.

 Here follows a couple of examples of how the rules above are applied.
 See the example above (Figure 1) for the most recent server
 configuration state that the client is aware of, before this happens:

 Client Server
 | |
 | --> |
 | get-config |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | acl A2 (txid: 5152) |
 | aces (txid: 5152) |
 | |
 | <-- |
 | data |
 | acls (txid: =) |
 v v

 Figure 2: Response Pruning. Client sends get-config request with
 known txid values. Server prunes response where the c-txid
 matches expectations. In this case, the server had no changes,
 and pruned the response at the earliest point offered by the
 client.

 In this case, the server’s txid-based pruning saved a substantial
 amount of information that is already known by the client to be sent
 to and processed by the client.

 In the following example someone has made a change to the
 configuration on the server. This server has chosen to implement a
 Txid History with up to 5 entries. The 5 most recently used s-txid
 values on this example server are currently: 4711, 5152, 5550, 6614,
 7770 (most recent). Then a client sends this request:

Lindblad Expires 2 September 2024 [Page 11]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | get-config |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | acl A2 (txid: 5152) |
 | |
 | <-- |
 | data |
 | acls (txid: 6614) |
 | acl A1 (txid: =) |
 | acl A2 (txid: 6614) |
 | aces (txid: 6614) |
 | ace R7 (txid: =) |
 | ace R8 (txid: =) |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 3: Out of band change detected. Client sends get-config
 request with known txid values. Server provides updates only
 where changes have happened.

 In the example above, the server returns the acls container because
 the client supplied c-txid value (5152) differs from the s-txid value
 held by the server (6614), and 5152 is less recent in the server’s
 Txid History than 6614. The client is apparently unaware of the
 latest config developments in this part of the server config tree.

 The server prunes list entry acl A1 is because it has the same s-txid
 value as the c-txid supplied by the client (4711). The server
 returns the list entry acl A2 because 5152 (specified by the client)
 is less recent than 6614 (held by the server).

 The container aces under acl A2 is returned because 5152 is less
 recent than 6614. The server prunes ace R7 because the c-txid for
 this node is 5152 (from acl A2), and 5152 is more recent than the
 closest ancestor Versioned Node (with txid 4711).

 The server also prunes acl R8 because the server and client txids
 exactly match (5152). Finally, acl R9 is returned because of its
 less recent c-txid value given by the client (5152, on the closest
 ancestor acl A2) than the s-txid held on the server (6614).

Lindblad Expires 2 September 2024 [Page 12]

Internet-Draft NCTID March 2024

 In the next example, the client specifies the c-txid for a node that
 the server does not maintain a s-txid for, i.e. it’s not a Versioned
 Node.

 Client Server
 | |
 | --> |
 | get-config |
 | acls |
 | acls A2 |
 | aces |
 | ace R7 |
 | matches |
 | ipv4 |
 | dscp (txid: 4711) |
 | |
 | <-- |
 | data |
 | acls |
 | acl A2 |
 | aces |
 | ace R7 |
 | matches |
 | ipv4 |
 | dscp (txid: =) |
 v v

 Figure 4: Versioned Nodes. Server lookup of dscp txid gives
 4711, as closest ancestor is ace R7 with txid 4711. Since the
 server’s and client’s txid match, the etag value is ’=’, and the
 leaf value is pruned.

 Here, the server looks up the closest ancestor node that is a
 Versioned Node. This particular server has chosen to keep a s-txid
 for the list entry ace R7, but not for any of its children. Thus the
 server finds the server side s-txid value to be 4711 (from ace R7),
 which matches the client’s c-txid value of 4711.

 Servers MUST NOT ever use the special txid values, txid-match, txid-
 request, txid-unknown (e.g. "=", "?", "!") as actual txid values.

3.5. Candidate Datastore Configuration Retrieval

 When a client retrieves the configuration from the (or a) candidate
 datastore, some of the configuration nodes may hold the same data as
 the corresponding node in the running datastore. In such cases, the
 server MUST return the same s-txid value for nodes in the candidate
 datastore as in the running datastore.

Lindblad Expires 2 September 2024 [Page 13]

Internet-Draft NCTID March 2024

 If a node in the candidate datastore holds different data than in the
 running datastore, the server has a choice of what to return.

 * The server MAY return a txid-unknown value (e.g. "!"). This may
 be convenient in servers that do not know a priori what txids will
 be used in a future, possible commit of the canidate.

 * If the txid-unknown value is not returned, the server MUST return
 the s-txid value the node will have after commit, assuming the
 client makes no further changes of the candidate datastore. If a
 client makes further changes in the candidate datastore, the
 s-txid value MAY change.

 See the example in Candidate Datastore Transactions (Section 3.7).

3.6. Conditional Transactions

 Conditional transactions are useful when a client is interested to
 make a configuration change, being sure that relevant parts of the
 server configuration have not changed since the client last inspected
 it.

 By supplying the latest c-txid values known to the client in its
 change requests (edit-config etc.), it can request the server to
 reject the transaction in case any relevant changes have occurred at
 the server that the client is not yet aware of.

 This allows a client to reliably compute and send configuration
 changes to a server without either acquiring a global datastore lock
 for a potentially extended period of time, or risk that a change from
 another client disrupts the intent in the time window between a read
 (get-config etc.) and write (edit-config etc.) operation.

 Clients that are also interested to know the s-txid assigned to the
 modified Versioned Nodes in the model immediately in the response
 could set a flag in the rpc message to request the server to return
 the new s-txid with the ok message.

Lindblad Expires 2 September 2024 [Page 14]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | edit-config (request new txid in response) |
 | config (txid: 5152) |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | |
 | <-- |
 | ok (txid: 7688) |
 v v

 Figure 5: Conditional transaction towards the Running datastore
 successfully executed. As all the txid values specified by the
 client matched those on the server, the transaction was
 successfully executed.

 After the above edit-config, the client might issues a get-config to
 observe the change. It would look like this:

Lindblad Expires 2 September 2024 [Page 15]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | get-config |
 | acls (txid: ?) |
 | |
 | <-- |
 | data |
 | acls (txid: 7688) |
 | acl A1 (txid: 7688) |
 | aces (txid: 7688) |
 | ace R1 (txid: 7688) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | acl A2 (txid: 6614) |
 | aces (txid: 6614) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 6: The txids are updated on all Versioned Nodes that were
 modified themselves or have a child node that was modified.

 When a client sends in a c-txid value of a node, the server MUST
 consider it a match if the server’s s-txid value is identical to the
 client, or if the server’s value is found earlier in the server’s
 Txid History than the value supplied by the client.

3.6.1. Error response on Out of band change

 If the server rejects the transaction because one or more of the
 configuration s-txid value(s) differs from the client’s expectation,
 the server MUST return at least one rpc-error with the following
 values:

 error-tag: operation-failed
 error-type: protocol
 error-severity: error

Lindblad Expires 2 September 2024 [Page 16]

Internet-Draft NCTID March 2024

 Additionally, the error-info tag MUST contain an sx:structure
 containing relevant details about one of the mismatching txids. A
 server MAY send multiple rpc-errors when multiple txid mismatches are
 detected.

 Client Server
 | |
 | --> |
 | edit-config |
 | config |
 | acls |
 | acl A1 (txid: 4711) |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 dscp 20 |
 | actions forwarding accept |
 | |
 | <-- |
 | rpc-error |
 | error-tag operation-failed |
 | error-type protocol |
 | error-severity error |
 | error-info |
 | mismatch-path /acls/acl[A1] |
 | mismatch-etag-value 6912 |
 v v

 Figure 7: Conditional transaction that fails a txid check. The
 client wishes to ensure there has been no changes to the
 particular acl entry it edits, and therefore sends the c-txid it
 knows for this part of the configuration. Since the s-txid has
 changed (out of band), the server rejects the configuration
 change request and reports an error with details about where the
 mismatch was detected.

3.6.2. Txid History size consideration

 It may be tempting for a client implementor to send only the top
 level c-txid value for the tree being edited. In most cases, that
 would certainly work just fine. This is a way for the client to
 request the server to go ahead with the change as long as there has
 not been any changes more recent than the client provided c-txid.

 Here the client is sending the same change as in the example above
 (Figure 5), but with only one top level c-txid value.

Lindblad Expires 2 September 2024 [Page 17]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | edit-config (request new txid in response) |
 | config (txid: 5152) |
 | acls |
 | acl A1 |
 | aces |
 | ace R1 |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | |
 | <-- |
 | ok (txid: 7688) |
 v v

 Figure 8: Conditional transaction towards the Running datastore
 successfully executed. As all the c-txid values specified by the
 client were the same or more recent in the server’s Txid History,
 so the transaction was successfully executed.

 This approach works well because the top level value is inherited
 down in the child nodes and the server finds this value to either
 match exactly or be a more recent s-txid value in the server’s Txid
 History.

 The only caveat is that by relying on the server’s Txid History being
 long enough, the change could be rejected if the top level c-txid has
 fallen out of the server’s Txid History. Some servers may have a
 Txid History size of zero. A client specifying a single top-level
 c-txid value towards such a server would not be able to get the
 transaction accepted.

3.7. Candidate Datastore Transactions

 When working with the (or a) Candidate datastore, the txid validation
 happens at commit time, rather than at individual edit-config or
 edit-data operations. Clients add their c-txid attributes to the
 configuration payload the same way. In case a client specifies
 different c-txid values for the same element in successive edit-
 config or edit-data operations, the c-txid value specified last MUST
 be used by the server at commit time.

Lindblad Expires 2 September 2024 [Page 18]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | edit-config (operation: merge) |
 | config (txid: 5152) |
 | acls (txid: 5152) |
 | acl A1 (txid: 4711) |
 | type ipv4 |
 | |
 | <-- |
 | ok |
 | |
 | --> |
 | edit-config (operation: merge) |
 | config |
 | acls |
 | acl A1 |
 | aces (txid: 4711) |
 | ace R1 (txid: 4711) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | |
 | <-- |
 | ok |
 | |
 | --> |
 | get-config |
 | config |
 | acls |
 | acl A1 |
 | aces (txid: ?) |
 | |
 | <-- |
 | config |
 | acls |
 | acl A1 |
 | aces (txid: 7688 or !) |
 | ace R1 (txid: 7688 or !) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | ace R2 (txid: 2219) |
 | matches ipv4 dscp 21 |
 | actions forwarding accept |
 | |
 | --> |
 | commit (request new txid in response) |
 | |
 | <-- |

Lindblad Expires 2 September 2024 [Page 19]

Internet-Draft NCTID March 2024

 | ok (txid: 7688) |
 v v

 Figure 9: Conditional transaction towards the Candidate datastore
 successfully executed. As all the c-txid values specified by the
 client matched those on the server at the time of the commit, the
 transaction was successfully executed. If a client issues a get-
 config towards the candidate datastore, the server may choose to
 return the special txid-unknown value (e.g. "!") or the s-txid
 value that would be used if the candidate was committed without
 further changes (when that s-txid value is known in advance by
 the server).

3.8. Dependencies within Transactions

 YANG modules that contain when-statements referencing remote parts of
 the model will cause the s-txid to change even in parts of the data
 tree that were not modified directly.

 Let’s say there is an energy-example.yang module that defines a
 mechanism for clients to request the server to measure the amount of
 energy that is consumed by a given access control rule. The energy-
 example module augments the access control module as follows:

 module energy-example {
 ...

 container energy {
 leaf metering-enabled {
 type boolean;
 default false;
 }
 }

 augment /acl:acls/acl:acl {
 when /energy-example:energy/energy-example:metering-enabled;
 leaf energy-tracing {
 type boolean;
 default false;
 }
 leaf energy-consumption {
 config false;
 type uint64;
 units J;
 }
 }
 }

Lindblad Expires 2 September 2024 [Page 20]

Internet-Draft NCTID March 2024

 This means there is a system wide switch leaf metering-enabled in
 energy-example which disables all energy measurements in the system
 when set to false, and that there is a boolean leaf energy-tracing
 that controls whether energy measurement is happening for each acl
 rule individually.

 In this example, we have an initial configuration like this:

 Client Server
 | |
 | --> |
 | get-config |
 | energy (txid: ?) |
 | acls (txid: ?) |
 | |
 | <-- |
 | data (txid: 7688) |
 | energy metering-enabled true (txid: 4711) |
 | acls (txid: 7688) |
 | acl A1 (txid: 7688) |
 | energy-tracing false |
 | aces (txid: 7688) |
 | ace R1 (txid: 7688) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | acl A2 (txid: 6614) |
 | energy-tracing true |
 | aces (txid: 6614) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 10: Initial configuration for the energy example. Note
 the energy metering-enabled leaf at the top and energy-tracing
 leafs under each acl.

 At this point, a client updates metering-enabled to false. This
 causes the when-expression on energy-tracing to turn false, removing
 the leaf entirely. This counts as a configuration change, and the
 s-txid MUST be updated appropriately.

Lindblad Expires 2 September 2024 [Page 21]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | edit-config (request new txid in response) |
 | config |
 | energy metering-enabled false |
 | |
 | <-- |
 | ok (txid: 9118) |
 v v

 Figure 11: Transaction changing a single leaf. This leaf is the
 target of a when-statement, however, which means other leafs
 elsewhere may be indirectly modified by this change. Such
 indirect changes will also result in s-txid changes.

 After the transaction above, the new configuration state has the
 energy-tracing leafs removed. Every such removal or (re)introduction
 of a node counts as a configuration change from a txid perspective,
 regardless of whether the change has any net configuration change
 effect in the server.

Lindblad Expires 2 September 2024 [Page 22]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | get-config |
 | energy (txid: ?) |
 | acls (txid: ?) |
 | |
 | <-- |
 | data (txid: 9118) |
 | energy metering-enabled false (txid: 9118) |
 | acls (txid: 9118) |
 | acl A1 (txid: 9118) |
 | aces (txid: 7688) |
 | ace R1 (txid: 7688) |
 | matches ipv4 protocol 6 |
 | actions forwarding accept |
 | acl A2 (txid: 9118) |
 | aces (txid: 6614) |
 | ace R7 (txid: 4711) |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | ace R8 (txid: 5152) |
 | matches udp source-port port 22 |
 | actions forwarding accept |
 | ace R9 (txid: 6614) |
 | matches tcp source-port port 830 |
 | actions forwarding accept |
 v v

 Figure 12: The txid for the energy subtree has changed since that
 was the target of the edit-config. The txids of the ACLs have
 also changed since the energy-tracing leafs are now removed by
 the now false when- expression. Both acl A1 and acl A2 have
 their txids updated, even though energy-tracing was already false
 for acl A1.

3.9. Other NETCONF Operations

 discard-changes The discard-changes operation resets the candidate
 datastore to the contents of the running datastore. The server
 MUST ensure the txid values in the candidate datastore get the
 same txid values as in the running datastore when this operation
 runs.

 copy-config The copy-config operation can be used to copy contents
 between datastores. The server MUST ensure the txid values are
 retained and changed as if the data being copied had been sent in
 through an edit-config operation.

Lindblad Expires 2 September 2024 [Page 23]

Internet-Draft NCTID March 2024

 delete-config The server MUST ensure the datastore txid value is
 changed, unless it was already empty.

 commit At commit, with regards to the txid values, the server MUST
 treat the contents of the candidate datastore as if any txid value
 provided by the client when updating the candidate was provided in
 a single edit-config towards the running datastore. If the
 transaction is rejected due to txid value mismatch, an rpc-error
 as described in section Conditional Transactions (Section 3.6)
 MUST be sent.

3.10. YANG-Push Subscriptions

 A client issuing a YANG-Push establish-subscription or modify-
 subscription request towards a server that supports ietf-netconf-
 txid-yang-push.yang MAY request that the server provides updated txid
 values in YANG-Push on-change subscription updates.

 This functionality pertains only to on-change updates. This RPC may
 also be invoked over RESTCONF or other protocols, and might therefore
 be encoded in JSON.

 To request txid values (e.g. etag), the client adds a flag in the
 request (e.g. with-etag). The server then returns the txid (e.g.
 etag) value in the yang-patch payload (e.g. as etag-value).

Lindblad Expires 2 September 2024 [Page 24]

Internet-Draft NCTID March 2024

 Client Server
 | |
 | --> |
 | rpc |
 | establish-subscription |
 | datastore running |
 | datastore-xpath-filter /acls |
 | on-change |
 | with-etag true |
 | |
 | <-- |
 | ok |
 | |
 | <-- |
 | notification |
 | eventTime 2022-04-04T06:00:24.16Z |
 | push-change-update |
 | id 89 |
 | datastore-changes |
 | yang-patch |
 | patch-id 0 |
 | edit |
 | edit-id edit1 |
 | operation delete |
 | target /acls/acl[A1] |
 | edit |
 | edit-id edit2 |
 | operation merge |
 | target /acls/acl[A2]/ace[R7] |
 | value |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | etag-value 8008 |
 | |
 v v

 Figure 13: A client requests a YANG-Push subscription for a given
 path with txid value included. When the server delivers a push-
 change-update notification, the txid value pertaining to the
 entire patch is included.

3.11. Comparing YANG Datastores

 A client issuing an NMDA Datastore compare request towards a server
 that supports ietf-netconf-txid-nmda-compare.yang MAY request that
 the server provides updated txid values in the compare reply.
 Besides NETCONF, this RPC may also be invoked over RESTCONF or other
 protocols, and might therefore be encoded in JSON.

Lindblad Expires 2 September 2024 [Page 25]

Internet-Draft NCTID March 2024

 To request txid values (e.g. etag), the client adds a flag in the
 request (e.g. with-etag). The server then returns the txid (e.g.
 etag) value in the yang-patch payload (e.g. as etag-value).

 The txid value returned by the server MUST be the txid value
 pertaining to the target node in the source or target datastores that
 is the most recent. If one of the datastores being compared is not a
 configuration datastore, the txid in the configuration datastore MUST
 be used. If none of the datastores being compared are a
 configuration datastore, then txid values MUST NOT be returned at
 all.

 The txid to return is the one that pertains to the target node, or in
 the case of delete, the closest surviving ancestor of the target
 node.

 Client Server
 | |
 | --> |
 | rpc |
 | compare |
 | source ds:running |
 | target ds:operational |
 | with-etag true |
 | |
 | <-- |
 | differences |
 | yang-patch |
 | patch-id 0 |
 | edit |
 | edit-id edit1 |
 | operation delete |
 | target /acls/acl[A1] |
 | etag-value 8008 |
 | edit |
 | edit-id edit2 |
 | operation merge |
 | target /acls/acl[A2]/ace[R7] |
 | value |
 | matches ipv4 dscp 10 |
 | actions forwarding accept |
 | etag-value 8008 |
 | |
 v v

 Figure 14: A client requests a NMDA Datastore compare for a given
 path with txid values included. When the server delivers the
 reply, the txid is included for each edit.

Lindblad Expires 2 September 2024 [Page 26]

Internet-Draft NCTID March 2024

4. Txid Mechanisms

 This document defines two txid mechanisms:

 * The etag attribute txid mechanism

 * The last-modified attribute txid mechanism

 Servers implementing this specification MUST support the etag
 attribute txid mechanism and MAY support the last-modified attribute
 txid mechanism.

 Section NETCONF Txid Extension (Section 3) describes the logic that
 governs all txid mechanisms. This section describes the mapping from
 the generic logic to specific mechanism and encoding.

 If a client uses more than one txid mechanism, such as both etag and
 last-modified in a particular message to a server, or patricular
 commit, the result is undefined.

4.1. The etag attribute txid mechanism

 The etag txid mechanism described in this section is centered around
 a meta data XML attribute called "etag". The etag attribute is
 defined in the namespace "urn:ietf:params:xml:ns:netconf:txid:1.0".
 The etag attribute is added to XML elements in the NETCONF payload in
 order to indicate the txid value for the YANG node represented by the
 element.

 NETCONF servers that support this extension MUST announce the
 capability "urn:ietf:params:netconf:capability:txid:etag:1.0".

 The etag attribute values are opaque strings chosen freely. They
 MUST consist of ASCII printable characters (VCHAR), except that the
 etag string MUST NOT contain space, backslash or double quotes. The
 point of these restrictions is to make it easy to reuse
 implementations that adhere to section 2.3.1 in [RFC7232]. The
 probability SHOULD be made very low that an etag value that has been
 used historically by a server is used again by that server if the
 configuration is different.

Lindblad Expires 2 September 2024 [Page 27]

Internet-Draft NCTID March 2024

 It is RECOMMENDED that the same etag txid values are used across all
 management interfaces (i.e. NETCONF, RESTCONF and any other the
 server might implement), if it implements more than one. It is
 RECOMMENDED that the etag txid has an encoding specific suffix,
 especially when it is not encoded in XML. E.g. a response encoded in
 JSON might append "+json" at the end of the etag value. This is in
 line with the language in [RFC7232] and traditions in the HTTP world
 at large.

 The detailed rules for when to update the etag value are described in
 section General Txid Principles (Section 3.2). These rules are
 chosen to be consistent with the ETag mechanism in RESTCONF,
 [RFC8040], specifically sections 3.4.1.2, 3.4.1.3 and 3.5.2.

4.2. The last-modified attribute txid mechanism

 The last-modified txid mechanism described in this section is
 centered around a meta data XML attribute called "last-modified".
 The last-modified attribute is defined in the namespace
 "urn:ietf:params:xml:ns:netconf:txid:1.0". The last-modified
 attribute is added to XML elements in the NETCONF payload in order to
 indicate the txid value for the YANG node represented by the element.

 NETCONF servers that support this extension MUST announce the feature
 last-modified defined in ietf-netconf-txid.yang.

 The last-modified attribute values are yang:date-and-time values as
 defined in ietf-yang-types.yang, [RFC6991].

 "2022-04-01T12:34:56.123456Z" is an example of what this time stamp
 format looks like. It is RECOMMENDED that the time stamps provided
 by the server closely match the real world clock. Servers MUST
 ensure the timestamps provided are monotonously increasing for as
 long as the server’s operation is maintained.

 It is RECOMMENDED that server implementors choose the number of
 digits of precision used for the fractional second timestamps high
 enough so that there is no risk that multiple transactions on the
 server would get the same timestamp.

 It is RECOMMENDED that the same last-modified txid values are used
 across all management interfaces (i.e. NETCONF and any other the
 server might implement), except RESTCONF.

Lindblad Expires 2 September 2024 [Page 28]

Internet-Draft NCTID March 2024

 RESTCONF, as defined in [RFC8040], is using a different format for
 the time stamps which is limited to one second resolution. Server
 implementors that support the Last-Modified txid mechanism over both
 RESTCONF and other management protocols are RECOMMENDED to use Last-
 Modified timestamps that match the point in time referenced over
 RESTCONF, with the fractional seconds part added.

 The detailed rules for when to update the last-modified value are
 described in section General Txid Principles (Section 3.2). These
 rules are chosen to be consistent with the Last-Modified mechanism in
 RESTCONF, [RFC8040], specifically sections 3.4.1.1, 3.4.1.3 and
 3.5.1.

4.3. Common features to both etag and last-modified txid mechanisms

 Clients MAY add etag or last-modified attributes to zero or more
 individual elements in the get-config or get-data filter, in which
 case they pertain to the subtree(s) rooted at the element(s) with the
 attributes.

 Clients MAY also add such attributes directly to the get-config or
 get-data tags (e.g. if there is no filter), in which case it pertains
 to the txid value of the datastore root.

 Clients might wish to send a txid value that is guaranteed to never
 match a server constructed txid. With both the etag and last-
 modified txid mechanisms, such a txid-request value is "?".

 Clients MAY add etag or last-modified attributes to the payload of
 edit-config or edit-data requests, in which case they indicate the
 client’s txid value of that element.

 Clients MAY request servers that also implement YANG-Push to return
 configuration change subsription updates with etag or last-modified
 txid attributes. The client requests this service by adding a with-
 etag or with-last-modified flag with the value ’true’ to the
 subscription request or yang-push configuration. The server MUST
 then return such txids on the YANG Patch edit tag and to the child
 elements of the value tag. The txid attribute on the edit tag
 reflects the txid associated with the changes encoded in this edit
 section, as well as parent nodes. Later edit sections in the same
 push-update or push-change-update may still supercede the txid value
 for some or all of the nodes in the current edit section.

Lindblad Expires 2 September 2024 [Page 29]

Internet-Draft NCTID March 2024

 Servers returning txid values in get-config, edit-config, get-data,
 edit-data and commit operations MUST do so by adding etag and/or
 last-modified txid attributes to the data and ok tags. When servers
 prune output due to a matching txid value, the server MUST add a
 txid-match attribute to the pruned element, and MUST set the
 attribute value to "=", and MUST NOT send any element value.

 Servers returning a txid mismatch error MUST return an rpc-error as
 defined in section Conditional Transactions (Section 3.6) with an
 error-info tag containing a txid-value-mismatch-error-info structure.

4.3.1. Candidate Datastore

 When servers return txid values in get-config and get-data operations
 towards the candidate datastore, the txid values returned MUST adhere
 to the following rules:

 * If the versioned node holds the same data as in the running
 datastore, the same txid value as the versioned node in running
 MUST be used.

 * If the versioned node is different in the candidate store than in
 the running datastore, the server has a choice of what to return.
 The server MAY return the special "txid-unknown" value "!". If
 the txid-unknown value is not returned, the server MUST return the
 txid value the versioned node will have if the client decides to
 commit the candidate datastore without further updates.

4.3.2. Namespaces and Attribute Placement

 The txid attributes are valid on the following NETCONF tags, where
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0",
 xmlns:ncds="urn:ietf:params:xml:ns:yang:ietf-netconf-nmda",
 xmlns:sn="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications",
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push" and
 xmlns:ypatch="urn:ietf:params:xml:ns:yang:ietf-yang-patch":

 In client messages sent to a server:

 * /nc:rpc/nc:get-config

 * /nc:rpc/nc:get-config/nc:filter//*

 * /nc:rpc/ncds:get-data

 * /nc:rpc/ncds:get-data/ncds:subtree-filter//*

 * /nc:rpc/ncds:get-data/ncds:xpath-filter//*

Lindblad Expires 2 September 2024 [Page 30]

Internet-Draft NCTID March 2024

 * /nc:rpc/nc:edit-config/nc:config

 * /nc:rpc/nc:edit-config/nc:config//*

 * /nc:rpc/ncds:edit-data/ncds:config

 * /nc:rpc/ncds:edit-data/ncds:config//*

 In server messages sent to a client:

 * /nc:rpc-reply/nc:data

 * /nc:rpc-reply/nc:data//*

 * /nc:rpc-reply/ncds:data

 * /nc:rpc-reply/ncds:data//*

 * /nc:rpc-reply/nc:ok

 * /yp:push-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit

 * /yp:push-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit/ypatch:value//*

 * /yp:push-change-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit

 * /yp:push-change-update/yp:datastore-contents/ypatch:yang-patch/
 ypatch:edit/ypatch:value//*

5. Txid Mechanism Examples

5.1. Initial Configuration Response

5.1.1. With etag

 NOTE: In the etag examples below, we have chosen to use a txid value
 consisting of "nc" followed by a monotonously increasing integer.
 This is convenient for the reader trying to make sense of the
 examples, but is not an implementation requirement. An etag would
 often be implemented as a "random" string of characters.

 To retrieve etag attributes across the entire NETCONF server
 configuration, a client might send:

Lindblad Expires 2 September 2024 [Page 31]

Internet-Draft NCTID March 2024

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config txid:etag="?"/>
 </rpc>

 The server’s reply might then be:

 <rpc-reply message-id="1"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data txid:etag="nc5152">
 <acls xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="nc5152">
 <name>A2</name>
 <aces txid:etag="nc5152">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>

Lindblad Expires 2 September 2024 [Page 32]

Internet-Draft NCTID March 2024

 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>
 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>22</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"
 txid:etag="nc3072">
 <groups txid:etag="nc3072">
 <group txid:etag="nc3072">
 <name>admin</name>
 <user-name>sakura</user-name>
 <user-name>joe</user-name>
 </group>
 </groups>
 </nacm>
 </data>

Lindblad Expires 2 September 2024 [Page 33]

Internet-Draft NCTID March 2024

 </rpc>

 To retrieve etag attributes for a specific ACL using an xpath filter,
 a client might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="2"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="xpath"
 xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 select="/acl:acls/acl:acl[acl:name=’A1’]"
 txid:etag="?"/>
 </get-config>
 </rpc>

 To retrieve etag attributes for "acls", but not for "nacm", a client
 might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="3"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="?"/>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 </filter>
 </get-config>
 </rpc>

 If the server considers "acls", "acl", "aces" and "acl" to be
 Versioned Nodes, the server’s response to the request above might
 look like:

 <rpc-reply message-id="3"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">

Lindblad Expires 2 September 2024 [Page 34]

Internet-Draft NCTID March 2024

 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="nc5152">
 <name>A2</name>
 <aces txid:etag="nc5152">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>
 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">

Lindblad Expires 2 September 2024 [Page 35]

Internet-Draft NCTID March 2024

 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>22</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 <groups>
 <group>
 <name>admin</name>
 <user-name>sakura</user-name>
 <user-name>joe</user-name>
 </group>
 </groups>
 </nacm>
 </data>
 </rpc>

5.1.2. With last-modified

 To retrieve last-modified attributes for "acls", but not for "nacm",
 a client might send:

Lindblad Expires 2 September 2024 [Page 36]

Internet-Draft NCTID March 2024

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="4"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:last-modified="?"/>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 </filter>
 </get-config>
 </rpc>

 If the server considers "acls", "acl", "aces" and "acl" to be
 Versioned Nodes, the server’s response to the request above might
 look like:

 <rpc-reply message-id="4"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:last-modified="2022-04-01T12:34:56.789012Z">
 <acl txid:last-modified="2022-03-20T16:20:11.333444Z">
 <name>A1</name>
 <aces txid:last-modified="2022-03-20T16:20:11.333444Z">
 <ace txid:last-modified="2022-03-20T16:20:11.333444Z">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:last-modified="2022-04-01T12:34:56.789012Z">
 <name>A2</name>
 <aces txid:last-modified="2022-04-01T12:34:56.789012Z">

Lindblad Expires 2 September 2024 [Page 37]

Internet-Draft NCTID March 2024

 <ace txid:last-modified="2022-03-20T16:20:11.333444Z">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:last-modified="2022-04-01T12:34:56.789012Z">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>
 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:last-modified="2022-04-01T12:34:56.789012Z">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>22</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>

Lindblad Expires 2 September 2024 [Page 38]

Internet-Draft NCTID March 2024

 </acls>
 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"/>
 <groups>
 <group>
 <name>admin</name>
 <user-name>sakura</user-name>
 <user-name>joe</user-name>
 </group>
 </groups>
 </nacm>
 </data>
 </rpc>

5.2. Configuration Response Pruning

 A NETCONF client that already knows some txid values MAY request that
 the configuration retrieval request is pruned with respect to the
 client’s prior knowledge.

 To retrieve only changes for "acls" that do not have the last known
 etag txid value, a client might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="6"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711"/>
 </acl>
 <acl txid:etag="nc5152">
 <name>A2</name>
 <aces txid:etag="nc5152"/>
 </acl>
 </filter>
 </get-config>
 </rpc>

 Assuming the NETCONF server configuration is the same as in the
 previous rpc-reply example, the server’s response to request above
 might look like:

Lindblad Expires 2 September 2024 [Page 39]

Internet-Draft NCTID March 2024

 <rpc-reply message-id="6"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="="/>
 </data>
 </rpc>

 Or, if a configuration change has taken place under /acls since the
 client was last updated, the server’s response may look like:

 <rpc-reply message-id="6"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc6614">
 <acl txid:etag="=">
 <name>A1</name>
 </acl>
 <acl txid:etag="nc6614">
 <name>A2</name>
 <aces txid:etag="nc6614">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <ipv4>
 <source-port>
 <port>22</port>
 </source-port>
 </ipv4>

Lindblad Expires 2 September 2024 [Page 40]

Internet-Draft NCTID March 2024

 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc6614">
 <name>R9</name>
 <matches>
 <ipv4>
 <source-port>
 <port>830</port>
 </source-port>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

 In case the client provides a txid value for a non-versioned node,
 the server needs to treat the node as having the same txid value as
 the closest ancestor that does have a txid value.

Lindblad Expires 2 September 2024 [Page 41]

Internet-Draft NCTID March 2024

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="7"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl>
 <name>A2</name>
 <aces>
 <ace>
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp txid:etag="nc4711"/>
 </ipv4>
 </matches>
 </ace>
 </aces>
 </acl>
 </acls>
 </filter>
 </get-config>
 </rpc>

 If a txid value is specified for a leaf, and the txid value matches
 (i.e. is identical to the server’s txid value, or found earlier in
 the server’s Txid History), the leaf value is pruned.

Lindblad Expires 2 September 2024 [Page 42]

Internet-Draft NCTID March 2024

 <rpc-reply message-id="7"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl>
 <name>A2</name>
 <aces>
 <ace>
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp txid:etag="="/>
 </ipv4>
 </matches>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc-reply>

5.3. Configuration Change

 A client that wishes to update the ace R1 protocol to tcp might send:

Lindblad Expires 2 September 2024 [Page 43]

Internet-Draft NCTID March 2024

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="8">
 <edit-config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid">
 <target>
 <running/>
 </target>
 <test-option>test-then-set</test-option>
 <ietf-netconf-txid:with-etag>true</ietf-netconf-txid:with-etag>
 <config>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc5152">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </config>
 </edit-config>
 </rpc>

 The server would update the protocol leaf in the running datastore,
 and return an rpc-reply as follows:

 <rpc-reply message-id="8"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <ok txid:etag="nc7688"/>
 </rpc-reply>

 A subsequent get-config request for "acls", with txid:etag="?" might
 then return:

Lindblad Expires 2 September 2024 [Page 44]

Internet-Draft NCTID March 2024

 <rpc-reply message-id="9"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc7688">
 <acl txid:etag="nc7688">
 <name>A1</name>
 <aces txid:etag="nc7688">
 <ace txid:etag="nc7688">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="nc6614">
 <name>A2</name>
 <aces txid:etag="nc6614">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc5152">
 <name>R8</name>
 <matches>
 <udp>
 <source-port>

Lindblad Expires 2 September 2024 [Page 45]

Internet-Draft NCTID March 2024

 <port>22</port>
 </source-port>
 </udp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc6614">
 <name>R9</name>
 <matches>
 <tcp>
 <source-port>
 <port>830</port>
 </source-port>
 </tcp>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

 In case the server at this point received a configuration change from
 another source, such as a CLI operator, removing ace R8 and R9 in acl
 A2, a subsequent get-config request for acls, with txid:etag="?"
 might then return:

 <rpc-reply message-id="9"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="cli2222">
 <acl txid:etag="nc7688">
 <name>A1</name>
 <aces txid:etag="nc7688">

Lindblad Expires 2 September 2024 [Page 46]

Internet-Draft NCTID March 2024

 <ace txid:etag="nc7688">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 <acl txid:etag="cli2222">
 <name>A2</name>
 <aces txid:etag="cli2222">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

5.4. Conditional Configuration Change

 If a client wishes to delete acl A1 if and only if its configuration
 has not been altered since this client last synchronized its
 configuration with the server, at which point it received the etag
 "nc7688" for acl A1, regardless of any possible changes to other
 acls, it might send:

Lindblad Expires 2 September 2024 [Page 47]

Internet-Draft NCTID March 2024

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="10"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0"
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid">
 <edit-config>
 <target>
 <running/>
 </target>
 <test-option>test-then-set</test-option>
 <ietf-netconf-txid:with-etag>true</ietf-netconf-txid:with-etag>
 <config>
 <acls xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl nc:operation="delete"
 txid:etag="nc7688">
 <name>A1</name>
 </acl>
 </acls>
 </config>
 </edit-config>
 </rpc>

 If acl A1 now has the etag txid value "nc7688", as expected by the
 client, the transaction goes through, and the server responds
 something like:

 <rpc-reply message-id="10"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <ok txid:etag="nc8008"/>
 </rpc-reply>

 A subsequent get-config request for acls, with txid:etag="?" might
 then return:

Lindblad Expires 2 September 2024 [Page 48]

Internet-Draft NCTID March 2024

 <rpc-reply message-id="11"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc8008">
 <acl txid:etag="cli2222">
 <name>A2</name>
 <aces txid:etag="cli2222">
 <ace txid:etag="nc4711">
 <name>R7</name>
 <matches>
 <ipv4>
 <dscp>10</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc>

 In case acl A1 did not have the expected etag txid value "nc7688"
 when the server processed this request, nor was the client’s txid
 value found later in the server’s Txid History, then the server
 rejects the transaction, and might send:

Lindblad Expires 2 September 2024 [Page 49]

Internet-Draft NCTID March 2024

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid"
 message-id="11">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <ietf-netconf-txid:txid-value-mismatch-error-info>
 <ietf-netconf-txid:mismatch-path>
 /acl:acls/acl:acl[acl:name="A1"]
 </ietf-netconf-txid:mismatch-path>
 <ietf-netconf-txid:mismatch-etag-value>
 cli6912
 </ietf-netconf-txid:mismatch-etag-value>
 </ietf-netconf-txid:txid-value-mismatch-error-info>
 </error-info>
 </rpc-error>
 </rpc-reply>

5.5. Reading from the Candidate Datastore

 Let’s assume that a get-config towards the running datastore
 currently contains the following data and txid values:

Lindblad Expires 2 September 2024 [Page 50]

Internet-Draft NCTID March 2024

 <rpc-reply message-id="12"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list"
 txid:etag="nc4711">
 <acl txid:etag="nc4711">
 <name>A1</name>
 <aces txid:etag="nc4711">
 <ace txid:etag="nc4711">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>17</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc2219">
 <name>R2</name>
 <matches>
 <ipv4>
 <dscp>21</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc-reply>

Lindblad Expires 2 September 2024 [Page 51]

Internet-Draft NCTID March 2024

 A client issues discard-changes (to make the candidate datastore
 equal to the running datastore), and issues an edit-config to change
 the R1 protocol from udp (17) to tcp (6), and then executes a get-
 config with the txid-request attribute "?" set on the acl A1, the
 server might respond:

 <rpc-reply message-id="13"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <data>
 <acls
 xmlns="urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <acl txid:etag="!">
 <name>A1</name>
 <aces txid:etag="!">
 <ace txid:etag="!">
 <name>R1</name>
 <matches>
 <ipv4>
 <protocol>6</protocol>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 <ace txid:etag="nc2219">
 <name>R2</name>
 <matches>
 <ipv4>
 <dscp>21</dscp>
 </ipv4>
 </matches>
 <actions>
 <forwarding xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 acl:accept
 <forwarding>
 </actions>
 </ace>
 </aces>
 </acl>
 </acls>
 </data>
 </rpc-reply>

Lindblad Expires 2 September 2024 [Page 52]

Internet-Draft NCTID March 2024

 Here, the txid-unknown value "!" is sent by the server. This
 particular server implementation does not know beforehand which txid
 value would be used for this versioned node after commit. It will be
 a value different from the current corresponding txid value in the
 running datastore.

 In case the server is able to predict the txid value that would be
 used for the versioned node after commit, it could respond with that
 value instead. Let’s say the server knows the txid would be "7688"
 if the candidate datastore was committed without further changes,
 then it would respond with that value in each place where the example
 shows "!" above.

5.6. Commit

 The client MAY request that the new etag txid value is returned as an
 attribute on the ok response for a successful commit. The client
 requests this by adding with-etag to the commit operation.

 For example, a client might send:

 <rpc message-id="14"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 xmlns:ietf-netconf-txid=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid"
 <commit>
 <ietf-netconf-txid:with-etag>true</ietf-netconf-txid:with-etag>
 </commit>
 </rpc>

 Assuming the server accepted the transaction, it might respond:

 <rpc-reply message-id="14"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:txid="urn:ietf:params:xml:ns:netconf:txid:1.0">
 <ok txid:etag="nc8008"/>
 </rpc-reply>

5.7. YANG-Push

 A client MAY request that the updates for one or more YANG-Push
 subscriptions are annotated with the txid values. The request might
 look like this:

Lindblad Expires 2 September 2024 [Page 53]

Internet-Draft NCTID March 2024

 <netconf:rpc message-id="16"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push"
 xmlns:ietf-netconf-txid-yp=
 "urn:ietf:params:xml:ns:yang:ietf-txid-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:running
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 /acl:acls
 </yp:datastore-xpath-filter>
 <yp:on-change/>
 <ietf-netconf-txid-yp:with-etag>
 true
 </ietf-netconf-txid-yp:with-etag>
 </establish-subscription>
 </netconf:rpc>

 A server might send a subscription update like this:

Lindblad Expires 2 September 2024 [Page 54]

Internet-Draft NCTID March 2024

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"
 xmlns:ietf-netconf-txid-yp=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push">
 <eventTime>2022-04-04T06:00:24.16Z</eventTime>
 <push-change-update
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>89</id>
 <datastore-changes>
 <yang-patch>
 <patch-id>0</patch-id>
 <edit>
 <edit-id>edit1</edit-id>
 <operation>delete</operation>
 <target xmlns:acl=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 /acl:acls
 </target>
 <value>
 <acl xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-access-control-list">
 <name>A1</name>
 </acl>
 </value>
 </edit>
 <ietf-netconf-txid-yp:etag-value>
 nc8008
 </ietf-netconf-txid-yp:etag-value>
 </yang-patch>
 </datastore-changes>
 </push-change-update>
 </notification>

 In case a client wishes to modify a previous subscription request in
 order to no longer receive YANG-Push subscription updates, the
 request might look like this:

Lindblad Expires 2 September 2024 [Page 55]

Internet-Draft NCTID March 2024

 <rpc message-id="17"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns=
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push"
 xmlns:ietf-netconf-txid-yp=
 "urn:ietf:params:xml:ns:yang:ietf-txid-yang-push">
 <id>1011</id>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:running
 </yp:datastore>
 <ietf-netconf-txid-yp:with-etag>
 false
 </ietf-netconf-txid-yp:with-etag>
 </modify-subscription>
 </rpc>

5.8. NMDA Compare

 The following example is taken from section 5 of [RFC9144]. It
 compares the difference between the operational and intended
 datastores for a subtree under "interfaces".

 In this version of the example, the client requests that txid values,
 in this case etag-values, are annotated to the result.

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <compare xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores"
 xmlns:ietf-netconf-txid-nmda-compare=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare">
 <source>ds:operational</source>
 <target>ds:intended</target>
 <report-origin/>
 <ietf-netconf-txid-nmda-compare:with-etag>
 true
 </ietf-netconf-txid-nmda-compare:with-etag>
 <xpath-filter
 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 /if:interfaces
 </xpath-filter>
 </compare>
 </rpc>

 RPC reply when a difference is detected:

Lindblad Expires 2 September 2024 [Page 56]

Internet-Draft NCTID March 2024

 <rpc-reply
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 message-id="101">
 <differences
 xmlns="urn:ietf:params:xml:ns:yang:ietf-nmda-compare"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 xmlns:ietf-netconf-txid-nmda-compare=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare">
 <yang-patch>
 <patch-id>interface status</patch-id>
 <comment>
 diff between operational (source) and intended (target),
 with txid values taken from intended.
 </comment>
 <edit>
 <edit-id>1</edit-id>
 <operation>replace</operation>
 <target>/ietf-interfaces:interface=eth0/enabled</target>
 <value>
 <if:enabled>false</if:enabled>
 </value>
 <source-value>
 <if:enabled or:origin="or:learned">true</if:enabled>
 </source-value>
 <ietf-netconf-txid-nmda-compare:etag-value>
 4004
 </ietf-netconf-txid-nmda-compare:etag-value>
 </edit>
 <edit>
 <edit-id>2</edit-id>
 <operation>create</operation>
 <target>/ietf-interfaces:interface=eth0/description</target>
 <value>
 <if:description>ip interface</if:description>
 </value>
 <ietf-netconf-txid-nmda-compare:etag-value>
 8008
 </ietf-netconf-txid-nmda-compare:etag-value>
 </edit>
 </yang-patch>
 </differences>
 </rpc-reply>

 The same response in RESTCONF (using JSON format):

Lindblad Expires 2 September 2024 [Page 57]

Internet-Draft NCTID March 2024

 HTTP/1.1 200 OK
 Date: Thu, 24 Jan 2019 20:56:30 GMT
 Server: example-server
 Content-Type: application/yang-data+json

 { "ietf-nmda-compare:output" : {
 "differences" : {
 "ietf-yang-patch:yang-patch" : {
 "patch-id" : "interface status",
 "comment" : "diff between intended (source) and operational",
 "edit" : [
 {
 "edit-id" : "1",
 "operation" : "replace",
 "target" : "/ietf-interfaces:interface=eth0/enabled",
 "value" : {
 "ietf-interfaces:interface/enabled" : "false"
 },
 "source-value" : {
 "ietf-interfaces:interface/enabled" : "true",
 "@ietf-interfaces:interface/enabled" : {
 "ietf-origin:origin" : "ietf-origin:learned"
 }
 },
 "ietf-netconf-txid-nmda-compare:etag-value": "4004"
 },
 {
 "edit-id" : "2",
 "operation" : "create",
 "target" : "/ietf-interfaces:interface=eth0/description",
 "value" : {
 "ietf-interface:interface/description" : "ip interface"
 },
 "ietf-netconf-txid-nmda-compare:etag-value": "8008"
 }
]
 }
 }
 }
 }

6. YANG Modules

6.1. Base module for txid in NETCONF

Lindblad Expires 2 September 2024 [Page 58]

Internet-Draft NCTID March 2024

 <CODE BEGINS>
 module ietf-netconf-txid {
 yang-version 1.1;
 namespace
 ’urn:ietf:params:xml:ns:yang:ietf-netconf-txid’;
 prefix ietf-netconf-txid;

 import ietf-netconf {
 prefix nc;
 }

 import ietf-netconf-nmda {
 prefix ncds;
 }

 import ietf-yang-structure-ext {
 prefix sx;
 }

 import ietf-yang-types {
 prefix yang;
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 Author: Jan Lindblad
 <mailto:jlindbla@cisco.com>";

 description
 "NETCONF Transaction ID aware operations for NMDA.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

Lindblad Expires 2 September 2024 [Page 59]

Internet-Draft NCTID March 2024

 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.
 ";

 revision 2023-03-01 {
 description
 "Initial revision";
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 feature last-modified {
 description "Servers implementing this module MUST support the
 etag txid mechanism. Servers MAY also support the
 last-modified txid mechanism. Support is shown by announcing
 this feature.";
 }

 extension versioned-node {
 description "This statement is used by servers to declare that a
 the server is maintaining a Txid for the YANG node with this
 statement. Which YANG nodes are versioned nodes may be useful
 information for clients (especially during development).

 Servers are not required to use this statement to declare
 which nodes are versioned nodes.

 Example of use:

 container interfaces {
 ietf-netconf-txid:versioned-node;
 ...
 }
 ";
 }

 typedef etag-t {
 type string {
 pattern ".* .*" {
 modifier invert-match;
 }
 pattern ’.*".*’ {
 modifier invert-match;

Lindblad Expires 2 September 2024 [Page 60]

Internet-Draft NCTID March 2024

 }
 pattern ".*\\.*" {
 modifier invert-match;
 }
 }
 description
 "Unique Entity-tag txid value representing a specific
 transaction. Could be any string that does not contain
 spaces, double quotes or backslash. The txid values ’?’,
 ’!’ and ’=’ have special meaning.";
 }

 typedef last-modified-t {
 type union {
 type yang:date-and-time;
 type enumeration {
 enum ? {
 description "Txid value used by clients that is
 guaranteed not to match any txid on the server.";
 }
 enum ! {
 description "Txid value used by servers to indicate
 the node in the candidate datastore has changed
 relative the running datastore, but not yet received
 a new txid value on the server.";
 }
 enum = {
 description "Txid value used by servers to indicate
 that contents has been pruned due to txid match
 between client and server.";
 }
 }
 }
 description
 "Last-modified txid value representing a specific transaction.
 The txid values ’?’, ’!’ and ’=’ have special meaning.";
 }

 grouping txid-grouping {
 leaf with-etag {
 type boolean;
 description
 "Indicates whether the client requests the server to include
 a txid:etag txid attribute when the configuration has
 changed.";
 }
 leaf with-last-modified {
 if-feature last-modified;

Lindblad Expires 2 September 2024 [Page 61]

Internet-Draft NCTID March 2024

 type boolean;
 description
 "Indicates whether the client requests the server to include
 a txid:last-modified attribute when the configuration has
 changed.";
 }
 description
 "Grouping for txid mechanisms, to be augmented into
 rpcs that modify configuration data stores.";
 }

 grouping txid-value-grouping {
 leaf etag-value {
 type etag-t;
 description
 "Indicates server’s txid value for a YANG node.";
 }
 leaf last-modified-value {
 if-feature last-modified;
 type last-modified-t;
 description
 "Indicates server’s txid value for a YANG node.";
 }
 description
 "Grouping for txid mechanisms, to be augmented into
 output of rpcs that return txid metadata for configuration
 data stores.";
 }

 augment /nc:edit-config/nc:input {
 uses txid-grouping;
 description
 "Injects the txid mechanisms into the
 edit-config operation";
 }

 augment /nc:commit/nc:input {
 uses txid-grouping;
 description
 "Injects the txid mechanisms into the
 commit operation";
 }

 augment /ncds:edit-data/ncds:input {
 uses txid-grouping;
 description
 "Injects the txid mechanisms into the
 edit-data operation";

Lindblad Expires 2 September 2024 [Page 62]

Internet-Draft NCTID March 2024

 }

 sx:structure txid-value-mismatch-error-info {
 container txid-value-mismatch-error-info {
 description
 "This error is returned by a NETCONF server when a client
 sends a configuration change request, with the additonal
 condition that the server aborts the transaction if the
 server’s configuration has changed from what the client
 expects, and the configuration is found not to actually
 not match the client’s expectation.";
 leaf mismatch-path {
 type instance-identifier;
 description
 "Indicates the YANG path to the element with a mismatching
 etag txid value.";
 }
 leaf mismatch-etag-value {
 type etag-t;
 description
 "Indicates server’s txid value of the etag
 attribute for one mismatching element.";
 }
 leaf mismatch-last-modified-value {
 if-feature last-modified;
 type last-modified-t;
 description
 "Indicates server’s txid value of the last-modified
 attribute for one mismatching element.";
 }
 }
 }
 }
 <CODE ENDS>

6.2. Additional support for txid in YANG-Push

 <CODE BEGINS>
 module ietf-netconf-txid-yang-push {
 yang-version 1.1;
 namespace
 ’urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push’;
 prefix ietf-netconf-txid-yp;

 import ietf-subscribed-notifications {
 prefix sn;
 reference
 "RFC 8639: Subscription to YANG Notifications";

Lindblad Expires 2 September 2024 [Page 63]

Internet-Draft NCTID March 2024

 }

 import ietf-yang-push {
 prefix yp;
 reference
 "RFC 8641: Subscriptions to YANG Datastores";
 }

 import ietf-yang-patch {
 prefix ypatch;
 reference
 "RFC 8072: YANG Patch Media Type";
 }

 import ietf-netconf-txid {
 prefix ietf-netconf-txid;
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 Author: Jan Lindblad
 <mailto:jlindbla@cisco.com>";

 description
 "NETCONF Transaction ID aware operations for YANG Push.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

Lindblad Expires 2 September 2024 [Page 64]

Internet-Draft NCTID March 2024

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.
 ";

 revision 2022-04-01 {
 description
 "Initial revision";
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 augment "/sn:establish-subscription/sn:input" {
 description
 "This augmentation adds additional subscription parameters
 that apply specifically to datastore updates to RPC input.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/sn:modify-subscription/sn:input" {
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/sn:subscriptions/sn:subscription" {
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/yp:push-change-update/yp:datastore-changes/" +
 "yp:yang-patch" {
 description
 "This augmentation makes it possible for servers to return
 txid-values.";
 uses ietf-netconf-txid:txid-value-grouping;
 }
 }
 <CODE ENDS>

6.3. Additional support for txid in NMDA Compare

Lindblad Expires 2 September 2024 [Page 65]

Internet-Draft NCTID March 2024

 <CODE BEGINS>
 module ietf-netconf-txid-nmda-compare {
 yang-version 1.1;
 namespace
 ’urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare’;
 prefix ietf-netconf-txid-nmda-compare;

 import ietf-nmda-compare {
 prefix cmp;
 reference
 "RFC 9144: Comparison of Network Management Datastore
 Architecture (NMDA) Datastores";
 }

 import ietf-netconf-txid {
 prefix ietf-netconf-txid;
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <netconf@ietf.org>

 Author: Jan Lindblad
 <mailto:jlindbla@cisco.com>";

 description
 "NETCONF Transaction ID aware operations for NMDA Compare.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

Lindblad Expires 2 September 2024 [Page 66]

Internet-Draft NCTID March 2024

 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.
 ";

 revision 2023-05-01 {
 description
 "Initial revision";
 reference
 "RFC XXXX: Xxxxxxxxx";
 }

 augment "/cmp:compare/cmp:input" {
 description
 "This augmentation makes it possible for clients to request
 txids to be returned.";
 uses ietf-netconf-txid:txid-grouping;
 }
 augment "/cmp:compare/cmp:output/cmp:compare-response/" +
 "cmp:differences/cmp:differences/cmp:yang-patch/cmp:edit" {
 description
 "This augmentation makes it possible for servers to return
 txid-values.";
 container most-recent {
 description "The txid value returned by the server MUST be the
 txid value pertaining to the target node in the source or
 target datastores that is the most recent.";
 uses ietf-netconf-txid:txid-value-grouping;
 }
 }
 }
 <CODE ENDS>

7. Security Considerations

7.1. NACM Access Control

 NACM, [RFC8341], access control processing happens as usual,
 independently of any txid handling, if supported by the server and
 enabled by the NACM configuration.

 It should be pointed out however, that when txid information is added
 to a reply, it may occasionally be possible for a client to deduce
 that a configuration change has happened in some part of the
 configuration to which it has no access rights.

Lindblad Expires 2 September 2024 [Page 67]

Internet-Draft NCTID March 2024

 For example, a client may notice that the root node txid has changed
 while none of the subtrees it has access to have changed, and thereby
 conclude that someone else has made a change to some part of the
 configuration that is not acessible by the client.

7.1.1. Hash-based Txid Algorithms

 Servers that implement NACM and choose to implement a hash-based txid
 algorithm over the configuration may reveal to a client that the
 configuration of a subtree that the client has no access to is the
 same as it was at an earlier point in time.

 For example, a client with partial access to the configuration might
 observe that the root node txid was 1234. After a few configuration
 changes by other parties, the client may again observe that the root
 node txid is 1234. It may then deduce that the configuration is the
 same as earlier, even in the parts of the configuration it has no
 access to.

 In some use cases, this behavior may be considered a feature, since
 it allows a security client to verify that the configuration is the
 same as expected, without transmitting or storing the actual
 configuration.

7.2. Unchanged Configuration

 It will also be possible for clients to deduce that a configuration
 change has not happened during some period, by simply observing that
 the root node (or other subtree) txid remains unchanged. This is
 true regardless of NACM being deployed or choice of txid algorithm.

 Again, there may be use cases where this behavior may be considered a
 feature, since it allows a security client to verify that the
 configuration is the same as expected, without transmitting or
 storing the actual configuration.

8. IANA Considerations

 This document registers the following capability identifier URN in
 the ’Network Configuration Protocol (NETCONF) Capability URNs’
 registry:

 urn:ietf:params:netconf:capability:txid:1.0

 This document registers four XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

Lindblad Expires 2 September 2024 [Page 68]

Internet-Draft NCTID March 2024

 URI: urn:ietf:params:xml:ns:netconf:txid:1.0

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-txid

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers three module names in the ’YANG Module Names’
 registry, defined in [RFC6020].

 name: ietf-netconf-txid

 prefix: ietf-netconf-txid

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-txid

 RFC: XXXX

 and

 name: ietf-netconf-txid-yp

 prefix: ietf-netconf-txid-yp

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-txid-yang-push

 RFC: XXXX

 and

 name: ietf-netconf-txid-nmda-compare

 prefix: ietf-netconf-txid-nmda-compare

 namespace:
 urn:ietf:params:xml:ns:yang:ietf-netconf-txid-nmda-compare

 RFC: XXXX

9. Changes

9.1. Major changes in -03 since -02

Lindblad Expires 2 September 2024 [Page 69]

Internet-Draft NCTID March 2024

 * Updated language slightly regarding format of etag values, and
 some recommendations for implementors that support etags in
 multiple management protocols (NETCONF, RESTCONF, ...) and
 encodings (XML, JSON, ...).

 * Added missing normative RFC references.

 * Corrected the YANG-push namespace reference.

9.2. Major changes in -02 since -01

 * Added optional to implement Txid History concept in order to make
 the algorithm both more efficient and less verbose. Servers may
 still choose a Txid History size of zero, which makes the server
 behavior the same as in earlier versions of this document.
 Implementations that use txids consisting of a monotonically
 increasing integer or timestamp will be able to determine the
 sequnce of transactions in the history directly, making this
 trivially simple to implement.

 * Added extension statement versioned-node, which servers may use to
 declare which YANG tree nodes are Versioned Nodes. This is
 entirely optional, however, but possibly useful to client
 developers.

 * Renamed YANG feature ietf-netconf-txid:txid-last-modified to ietf-
 netconf-txid:last-modified in order to reduce redundant mentions
 of "txid".

9.3. Major changes in -01 since -00

 * Changed YANG-push txid mechanism to use a simple leaf rather than
 an attribute to convey txid information. This is preferable since
 YANG-push content may be requested using other protocols than
 NETCONF and other encodings than XML. By removing the need for
 XML attributes in this context, the mechanism becomes
 significantly more portable.

 * Added a section and YANG module augmenting the RFC9144 NMDA
 datastore compare operation to allow request and reply with txid
 information. This too is done with augments of plain leafs for
 maximum portability.

 * Added note clarifying that the txid attributes used in the XML
 encoding are never used in JSON (since RESTCONF uses HTTP headers
 instead).

Lindblad Expires 2 September 2024 [Page 70]

Internet-Draft NCTID March 2024

 * Added note clarifying that pruning happens when client and server
 txids _match_, since the server sending information to the client
 only makes sense when the information on the client is out of
 date.

 * Added note clarifying that this entire document is about config
 true data only.

 * Rephrased slightly when referring to the candidate datastore to
 keep making sense in the event that private candidate datastores
 become a reality in the future.

 * Added a note early on to more clearly lay out the structure of
 this document, with a first part about the generic mechanism part,
 and a second part about the two specific txid mechanisms.

 * Corrected acl data model examples to conform to their YANG module.

9.4. Major changes in draft-ietf-netconf-transaction-id-00 since -02

 * Changed the logic around how txids are handled in the candidate
 datastore, both when reading (get-config, get-data) and writing
 (edit-config, edit-data). Introduced a special "txid-unknown"
 value "!".

 * Changed the logic of copy-config to be similar to edit-config.

 * Clarified how txid values interact with when-dependencies together
 with default values.

 * Added content to security considerations.

 * Added a high-level example for YANG-Push subscriptions with txid.

 * Updated language about error-info sent at txid mismatch in an
 edit-config: error-info with mismatch details MUST be sent when
 mismatch detected, and that the server can choose one of the txid
 mismatch occurrences if there is more than one.

 * Some rewording and minor additions for clarification, based on
 mailing list feedback.

 * Divided RFC references into normative and informative.

 * Corrected a logic error in the second figure (figure 6) in the
 "Conditional Transactions" section

Lindblad Expires 2 September 2024 [Page 71]

Internet-Draft NCTID March 2024

9.5. Major changes in -02 since -01

 * A last-modified txid mechanism has been added (back). This
 mechanism aligns well with the Last-Modified mechanism defined in
 RESTCONF [RFC8040], but is not a carbon copy.

 * YANG-Push functionality has been added. This allows YANG-Push
 users to receive txid updates as part of the configuration
 updates. This functionality comes in a separate YANG module, to
 allow implementors to cleanly keep all this functionality out.

 * Changed name of "versioned elements". They are now called
 "Versioned Nodes".

 * Clarified txid behavior for transactions toward the Candidate
 datastore, and some not so common situations, such as when a
 client specifies a txid for a non-versioned node, and when there
 are when-statement dependencies across subtrees.

 * Examples provided for the abstract mechanism level with simple
 message flow diagrams.

 * More examples on protocol level, and with ietf-interfaces as
 example target module replaced with ietf-access-control to reduce
 confusion.

 * Explicit list of XPaths to clearly state where etag or last-
 modified attributes may be added by clients and servers.

 * Document introduction restructured to remove duplication between
 sections and to allow multiple (etag and last-modified) txid
 mechanisms.

 * Moved the actual YANG module code into proper module files that
 are included in the source document. These modules can be
 compiled as proper modules without any extraction tools.

9.6. Major changes in -01 since -00

 * Updated the text on numerous points in order to answer questions
 that appeared on the mailing list.

 * Changed the document structure into a general transaction id part
 and one etag specific part.

 * Renamed entag attribute to etag, prefix to txid, namespace to
 urn:ietf:params:xml:ns:yang:ietf-netconf-txid.

Lindblad Expires 2 September 2024 [Page 72]

Internet-Draft NCTID March 2024

 * Set capability string to
 urn:ietf:params:netconf:capability:txid:1.0

 * Changed YANG module name, namespace and prefix to match names
 above.

 * Harmonized/slightly adjusted etag value space with RFC 7232 and
 RFC 8040.

 * Removed all text discussing etag values provided by the client
 (although this is still an interesting idea, if you ask the
 author)

 * Clarified the etag attribute mechanism, especially when it comes
 to matching against non-versioned elements, its cascading upwards
 in the tree and secondary effects from when- and choice-
 statements.

 * Added a mechanism for returning the server assigned etag value in
 get-config and get-data.

 * Added section describing how the NETCONF discard-changes, copy-
 config, delete-config and commit operations work with respect to
 etags.

 * Added IANA Considerations section.

 * Removed all comments about open questions.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6241>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/rfc/rfc6991>.

Lindblad Expires 2 September 2024 [Page 73]

Internet-Draft NCTID March 2024

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8040>.

 [RFC8072] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", RFC 8072, DOI 10.17487/RFC8072, February
 2017, <https://www.rfc-editor.org/rfc/rfc8072>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/rfc/rfc8526>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/rfc/rfc8639>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/rfc/rfc8641>.

 [RFC8791] Bierman, A., Björklund, M., and K. Watsen, "YANG Data
 Structure Extensions", RFC 8791, DOI 10.17487/RFC8791,
 June 2020, <https://www.rfc-editor.org/rfc/rfc8791>.

 [RFC9144] Clemm, A., Qu, Y., Tantsura, J., and A. Bierman,
 "Comparison of Network Management Datastore Architecture
 (NMDA) Datastores", RFC 9144, DOI 10.17487/RFC9144,
 December 2021, <https://www.rfc-editor.org/rfc/rfc9144>.

10.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

Lindblad Expires 2 September 2024 [Page 74]

Internet-Draft NCTID March 2024

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7232>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7952>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8341>.

Acknowledgments

 The author wishes to thank Benoit Claise for making this work happen,
 and the following individuals, who all provided helpful comments: Per
 Andersson, James Cumming, Kent Watsen, Andy Bierman, Robert Wilton,
 Qiufang Ma, Jason Sterne and Robert Varga.

Author’s Address

 Jan Lindblad
 Cisco Systems
 Email: jlindbla@cisco.com

Lindblad Expires 2 September 2024 [Page 75]

Network Working Group A. Huang Feng

Internet-Draft P. Francois

Intended status: Standards Track INSA-Lyon

Expires: 30 August 2024 K. Watsen

 Watsen Networks

 27 February 2024

 YANG Groupings for UDP Clients and UDP Servers

 draft-ietf-netconf-udp-client-server-01

Abstract

 This document defines two YANG 1.1 modules to support the

 configuration of UDP clients and UDP servers.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 30 August 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Huang Feng, et al. Expires 30 August 2024 [Page 1]

Internet-Draft udp-client-server-grouping February 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. The "ietf-udp-client" Module 2

 2.1. The "udp-client-grouping" Grouping 2

 2.2. YANG Module . 3

 3. The "ietf-udp-server" Module 4

 3.1. The "udp-server-grouping" Grouping 4

 3.2. YANG Module . 5

 4. Security Considerations 6

 5. IANA Considerations . 7

 5.1. URI . 7

 5.2. YANG module name . 7

 6. Acknowledgements . 7

 7. References . 8

 7.1. Normative References 8

 7.2. Informative References 9

 Authors’ Addresses . 9

1. Introduction

 This document defines two YANG 1.1 [RFC7950] modules to support the

 configuration of UDP clients and UDP servers [RFC768], either as

 standalone or in conjunction with configuration of other layers.

2. The "ietf-udp-client" Module

 The "ietf-udp-client" YANG module defines the "udp-client-grouping"

 grouping for configuring UDP clients with remote server information.

2.1. The "udp-client-grouping" Grouping

 The following tree diagram [RFC8340] illustrates the tree structure

 of the "udp-client-grouping" grouping:

Huang Feng, et al. Expires 30 August 2024 [Page 2]

Internet-Draft udp-client-server-grouping February 2024

 module: ietf-udp-client

 grouping udp-client-grouping:

 +-- remote-address inet:ip-address-no-zone

 +-- remote-port? inet:port-number

2.2. YANG Module

 This module imports types defined in [RFC6991].

 <CODE BEGINS> file "ietf-udp-client@2024-02-26.yang"

 module ietf-udp-client {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-udp-client";

 prefix udpc;

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http:/tools.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng

 <mailto:alex.huang-feng@insa-lyon.fr>

 Pierre Francois

 <mailto:pierre.francois@insa-lyon.fr>";

 description

 "Defines a generic grouping for UDP-based client applications.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, is permitted pursuant to, and subject to the license

 terms contained in, the Revised BSD License set forth in Section

 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC

 itself for full legal notices.";

 revision 2024-02-26 {

Huang Feng, et al. Expires 30 August 2024 [Page 3]

Internet-Draft udp-client-server-grouping February 2024

 description

 "Initial revision";

 reference

 "RFC-to-be: YANG Grouping for UDP Clients and UDP Servers";

 }

 grouping udp-client-grouping {

 description

 "Provides a reusable grouping for configuring a UDP client.";

 leaf remote-address {

 type inet:ip-address-no-zone;

 mandatory true;

 description

 "Specifies an IP address of the UDP client, which can be an

 IPv4 address or an IPv6 address.";

 }

 leaf remote-port {

 type inet:port-number;

 default "0";

 description

 "Specifies a port number of the UDP client. An invalid default

 value is used so that importing modules may ’refine’ it with

 the appropriate default port number value.";

 }

 }

 }

 <CODE ENDS>

3. The "ietf-udp-server" Module

 The "ietf-udp-server" YANG module defines the "udp-server-grouping"

 grouping for configuring UDP servers.

3.1. The "udp-server-grouping" Grouping

 The following tree diagram [RFC8340] illustrates the structure of

 "udp-server-grouping" grouping:

 module: ietf-udp-server

 grouping udp-server-grouping:

 +-- local-address inet:ip-address-no-zone

 +-- local-port? inet:port-number

Huang Feng, et al. Expires 30 August 2024 [Page 4]

Internet-Draft udp-client-server-grouping February 2024

3.2. YANG Module

 The "ietf-udp-server" imports types defined in [RFC6991].

 <CODE BEGINS> file "ietf-udp-server@2024-02-26.yang"

 module ietf-udp-server {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-udp-server";

 prefix udps;

 import ietf-inet-types {

 prefix inet;

 reference

 "RFC 6991: Common YANG Data Types";

 }

 organization "IETF NETCONF (Network Configuration) Working Group";

 contact

 "WG Web: <http:/tools.ietf.org/wg/netconf/>

 WG List: <mailto:netconf@ietf.org>

 Authors: Alex Huang Feng

 <mailto:alex.huang-feng@insa-lyon.fr>

 Pierre Francois

 <mailto:pierre.francois@insa-lyon.fr>";

 description

 "Defines a generic grouping for UDP-based server applications.

 Copyright (c) 2024 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without

 modification, is permitted pursuant to, and subject to the license

 terms contained in, the Revised BSD License set forth in Section

 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC

 itself for full legal notices.";

 revision 2024-02-26 {

 description

 "Initial revision";

 reference

 "RFC-to-be: YANG Grouping for UDP Clients and UDP Servers";

 }

Huang Feng, et al. Expires 30 August 2024 [Page 5]

Internet-Draft udp-client-server-grouping February 2024

 grouping udp-server-grouping {

 description

 "Provides a reusable grouping for configuring a UDP servers.";

 leaf local-address {

 type inet:ip-address-no-zone;

 mandatory true;

 description

 "Specifies an IP address of the UDP server, which can be an

 IPv4 address or an IPv6 address.";

 }

 leaf local-port {

 type inet:port-number;

 default "0";

 description

 "Specifies a port number of the UDP server. An invalid default

 value is used so that importing modules may ’refine’ it with

 the appropriate default port number value.";

 }

 }

 }

 <CODE ENDS>

4. Security Considerations

 The YANG module specified in this document defines a schema for data

 that is designed to be accessed via network management protocols such

 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer

 is the secure transport layer, and the mandatory-to-implement secure

 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer

 is HTTPS, and the mandatory-to-implement secure transport is TLS

 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]

 provides the means to restrict access for particular NETCONF or

 RESTCONF users to a preconfigured subset of all available NETCONF or

 RESTCONF protocol operations and content.

 Since the module in this document only define groupings, these

 considerations are primarily for the designers of other modules that

 use these groupings.

 None of the readable data nodes defined in this YANG module are

 considered sensitive or vulnerable in network environments. The NACM

 "default-deny-all" extension has not been set for any data nodes

 defined in this module.

Huang Feng, et al. Expires 30 August 2024 [Page 6]

Internet-Draft udp-client-server-grouping February 2024

 None of the writable data nodes defined in this YANG module are

 considered sensitive or vulnerable in network environments. The NACM

 "default-deny-write" extension has not been set for any data nodes

 defined in this module.

 This module does not define any RPCs, actions, or notifications, and

 thus the security consideration for such is not provided here.

5. IANA Considerations

 This document describes the URIs from IETF XML Registry and the

 registration of a two new YANG module names

5.1. URI

 IANA is requested to assign two new URI from the IETF XML Registry

 [RFC3688]. The following two URIs are suggested:

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-client

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-server

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

5.2. YANG module name

 This document also requests two new YANG module names in the YANG

 Module Names registry [RFC8342] with the following suggestions:

 name: ietf-udp-client

 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-client

 prefix: udpc

 maintained by IANA? N

 reference: RFC-to-be

 name: ietf-udp-server

 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-server

 prefix: udps

 maintained by IANA? N

 reference: RFC-to-be

6. Acknowledgements

 The authors would like to thank Mohamed Boucadair, Benoit Claise,

 Qiufang Ma and Qin Wu for their review and valuable comments.

Huang Feng, et al. Expires 30 August 2024 [Page 7]

Internet-Draft udp-client-server-grouping February 2024

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure

 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",

 RFC 6991, DOI 10.17487/RFC6991, July 2013,

 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,

 DOI 10.17487/RFC0768, August 1980,

 <https://www.rfc-editor.org/info/rfc768>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

 <https://www.rfc-editor.org/info/rfc8340>.

Huang Feng, et al. Expires 30 August 2024 [Page 8]

Internet-Draft udp-client-server-grouping February 2024

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

 and R. Wilton, "Network Management Datastore Architecture

 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

 [I-D.ietf-netconf-tls-client-server]

 Watsen, K., "YANG Groupings for TLS Clients and TLS

 Servers", Work in Progress, Internet-Draft, draft-ietf-

 netconf-tls-client-server-39, 22 February 2024,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-

 tls-client-server-39>.

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage

 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,

 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The

 Datagram Transport Layer Security (DTLS) Protocol Version

 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,

 <https://www.rfc-editor.org/info/rfc9147>.

 [RFC9325] Sheffer, Y., Saint-Andre, P., and T. Fossati,

 "Recommendations for Secure Use of Transport Layer

 Security (TLS) and Datagram Transport Layer Security

 (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November

 2022, <https://www.rfc-editor.org/info/rfc9325>.

Authors’ Addresses

 Alex Huang Feng

 INSA-Lyon

 Lyon

 France

 Email: alex.huang-feng@insa-lyon.fr

Huang Feng, et al. Expires 30 August 2024 [Page 9]

Internet-Draft udp-client-server-grouping February 2024

 Pierre Francois

 INSA-Lyon

 Lyon

 France

 Email: pierre.francois@insa-lyon.fr

 Kent Watsen

 Watsen Networks

 Email: kent+ietf@watsen.net

Huang Feng, et al. Expires 30 August 2024 [Page 10]

NETCONF G. Zheng
Internet-Draft T. Zhou
Intended status: Standards Track Huawei
Expires: 25 July 2024 T. Graf
 Swisscom
 P. Francois
 A. Huang Feng
 INSA-Lyon
 P. Lucente
 NTT
 22 January 2024

 UDP-based Transport for Configured Subscriptions
 draft-ietf-netconf-udp-notif-12

Abstract

 This document describes a UDP-based protocol for YANG notifications
 to collect data from network nodes. A shim header is proposed to
 facilitate the data streaming directly from the publishing process on
 network processor of line cards to receivers. The objective is to
 provide a lightweight approach to enable higher frequency and less
 performance impact on publisher and receiver processes compared to
 already established notification mechanisms.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Zheng, et al. Expires 25 July 2024 [Page 1]

Internet-Draft unyte-udp-notif January 2024

 This Internet-Draft will expire on 25 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Configured Subscription to UDP-Notif 4
 3. UDP-Based Transport . 5
 3.1. Design Overview . 5
 3.2. Format of the UDP-Notif Message Header 5
 3.3. Data Encoding . 8
 4. Options . 8
 4.1. Segmentation Option 9
 4.2. Private Encoding Option 10
 5. Applicability . 10
 5.1. Congestion Control 11
 5.2. Message Size . 12
 5.3. Reliability . 12
 6. Secured layer for UDP-notif 12
 6.1. Session lifecycle . 13
 6.1.1. DTLS Session Initiation 13
 6.1.2. Publish Data . 13
 6.1.3. Session termination 14
 7. A YANG Data Model for Management of UDP-Notif 14
 7.1. YANG to configure UDP-notif 14
 7.2. YANG Module . 16
 8. IANA Considerations . 19
 8.1. IANA registries . 19
 8.2. URI . 21
 8.3. YANG module name . 21
 9. Implementation Status . 21
 9.1. Open Source Publisher 21
 9.2. Open Source Receiver Library 22
 9.3. Pmacct Data Collection 22
 9.4. Huawei VRP . 22

Zheng, et al. Expires 25 July 2024 [Page 2]

Internet-Draft unyte-udp-notif January 2024

 10. Security Considerations 22
 11. Acknowledgements . 22
 12. References . 22
 12.1. Normative References 22
 12.2. Informative References 25
 Appendix A. UDP-notif Examples 26
 A.1. Configuration for UDP-notif transport with DTLS
 disabled . 26
 A.2. Configuration for UDP-notif transport with DTLS
 enabled . 27
 A.3. YANG Push message with UDP-notif transport protocol . . . 30
 Authors’ Addresses . 31

1. Introduction

 The mechanism to support a subscription of a continuous and
 customized stream of updates from a YANG datastore [RFC8342] is
 defined in [RFC8639] and [RFC8641] and is abbreviated as Sub-Notif.
 Requirements for Subscription to YANG Datastores are defined in
 [RFC7923].

 The mechanism separates the management and control of subscriptions
 from the transport used to deliver the data. Three transport
 mechanisms, namely NETCONF transport [RFC8640], RESTCONF transport
 [RFC8650], and HTTPS transport [I-D.ietf-netconf-https-notif] have
 been defined so far for such notification messages.

 While powerful in their features and general in their architecture,
 the currently available transport mechanisms need to be complemented
 to support data publications at high velocity from network nodes that
 feature a distributed architecture. The currently available
 transports are based on TCP and lack the efficiency needed to
 continuously send notifications at high velocity.

 This document specifies a transport option for Sub-Notif that
 leverages UDP. Specifically, it facilitates the distributed data
 collection mechanism described in
 [I-D.ietf-netconf-distributed-notif]. In the case of publishing from
 multiple network processors on multiple line cards, centralized
 designs require data to be internally forwarded from those network
 processors to the push server, presumably on a route processor, which
 then combines the individual data items into a single consolidated
 stream. The centralized data collection mechanism can result in a
 performance bottleneck, especially when large amounts of data are
 involved.

Zheng, et al. Expires 25 July 2024 [Page 3]

Internet-Draft unyte-udp-notif January 2024

 What is needed is a mechanism that allows for directly publishing
 from multiple network processors on line cards, without passing them
 through an additional processing stage for internal consolidation.
 The proposed UDP-based transport allows for such a distributed data
 publishing approach.

 * Firstly, a UDP approach reduces the burden of maintaining a large
 amount of active TCP connections at the receiver, notably in cases
 where it collects data from network processors on line cards from
 a large amount of network nodes.

 * Secondly, as no connection state needs to be maintained, UDP
 encapsulation can be easily implemented by the hardware of the
 publication streamer, which further improves performance.

 * Ultimately, such advantages allow for a larger data analysis
 feature set, as more voluminous, finer grained data sets can be
 streamed to the receiver.

 The transport described in this document can be used for transmitting
 notification messages over both IPv4 and IPv6.

 This document describes the notification mechanism. It is intended
 to be used in conjunction with [RFC8639], extended by
 [I-D.ietf-netconf-distributed-notif].

 Section 2 describes the control of the proposed transport mechanism.
 Section 3 details the notification mechanism and message format.
 Section 4 describes the use of options in the notification message
 header. Section 5 covers the applicability of the proposed
 mechanism. Section 6 describes a mechanism to secure the protocol in
 open networks.

2. Configured Subscription to UDP-Notif

 This section describes how the proposed mechanism can be controlled
 using subscription channels based on NETCONF or RESTCONF.

 As specified in Sub-Notif, configured subscriptions contain the
 location information of all the receivers, including the IP address
 and the port number, so that the publisher can actively send UDP-
 Notif messages to the corresponding receivers.

 Note that receivers MAY NOT be already up and running when the
 configuration of the subscription takes effect on the monitored
 network node. The first message MUST be a separate subscription-
 started notification to indicate the Receiver that the stream has
 started flowing. Then, the notifications can be sent immediately

Zheng, et al. Expires 25 July 2024 [Page 4]

Internet-Draft unyte-udp-notif January 2024

 without delay. All the subscription state notifications, as defined
 in Section 2.7 of [RFC8639], MUST be encapsulated in separate
 notification messages.

3. UDP-Based Transport

 In this section, we specify the UDP-Notif Transport behavior.
 Section 3.1 describes the general design of the solution.
 Section 3.2 specifies the UDP-Notif message format and Section 3.3
 describes the encoding of the message payload.

3.1. Design Overview

 As specified in Sub-Notif, the YANG data is encapsulated in a
 NETCONF/RESTCONF notification message, which is then encapsulated and
 carried using a transport protocols such as TLS or HTTP2. This
 document defines a UDP based transport. Figure 1 illustrates the
 structure of an UDP-Notif message.

 * The Message Header contains information that facilitate the
 message transmission before deserializing the notification
 message.

 * Notification Message is the encoded content that is transported by
 the publication stream. The common encoding methods are listed in
 Section 3.2. The structure of the Notification Message is defined
 in Section 2.6 of [RFC8639] and a YANG model has been proposed in
 [I-D.ahuang-netconf-notif-yang].
 [I-D.ietf-netconf-notification-messages] proposes a structure to
 send bundled notifications in a single message.

 +-------+ +--------------+ +--------------+
 | UDP | | Message | | Notification |
 | | | Header | | Message |
 +-------+ +--------------+ +--------------+

 Figure 1: UDP-Notif Message Overview

3.2. Format of the UDP-Notif Message Header

 The UDP-Notif Message Header contains information that facilitate the
 message transmission before deserializing the notification message.
 The data format is shown in Figure 2.

Zheng, et al. Expires 25 July 2024 [Page 5]

Internet-Draft unyte-udp-notif January 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-----+-+-------+---------------+-------------------------------+
 | Ver |S| MT | Header Len | Message Length |
 +-----+-+-------+---------------+-------------------------------+
 | Message Publisher ID |
 +---+
 | Message ID |
 +---+
 ˜ Options ˜
 +---+

 Figure 2: UDP-Notif Message Header Format

 The Message Header contains the following field:

 * Ver indicates the UDP-notif protocol header version. The values
 are allocated by the IANA registry "UDP-notif header version".
 The current header version number is 1.

 * S represents the space of media type specified in the MT field.
 When S is unset, MT represents the standard media types as defined
 in this document. When S is set, MT represents a private space to
 be freely used for non standard encodings. When S is set, the
 Private Encoding Option defined in Section 4.2 SHOULD be present
 in the UDP-notif message header.

 * MT is a 4 bit identifier to indicate the media type used for the
 Notification Message. 16 types of encoding can be expressed. When
 the S bit is unset, the following values apply:

 - 0: Reserved;

 - 1: application/yang-data+json [RFC8040]

 - 2: application/yang-data+xml [RFC8040]

 - 3: application/yang-data+cbor [RFC9254]

 * Header Len is the length of the message header in octets,
 including both the fixed header and the options.

Zheng, et al. Expires 25 July 2024 [Page 6]

Internet-Draft unyte-udp-notif January 2024

 * Message Length is the total length of the UDP-notif message within
 one UDP datagram, measured in octets, including the message
 header. When the Notification Message is segmented using the
 Segmentation Options defined in Section 4.1 the Message Length is
 the total length of the current, segmented UDP-notif message, not
 the length of the entire Notification message.

 * Message Publisher ID is a 32-bit identifier defined in
 [I-D.ietf-netconf-distributed-notif]. This identifier is unique
 to the publisher node and identifies the publishing process of the
 node to allow the disambiguation of an information source.
 Message unicity is obtained from the conjunction of the Message
 Publisher ID and the Message ID field described below. If Message
 Publisher ID unicity is not preserved through the collection
 domain, the source IP address of the UDP datagram SHOULD be used
 in addition to the Message Publisher ID to identify the
 information source. If a transport layer relay is used, Message
 Publisher ID unicity must be preserved through the collection
 domain.

 * The Message ID is generated continuously by the publisher of UDP-
 Notif messages. A publisher MUST use different Message ID values
 for different messages generated with the same Message Publisher
 ID. Note that the main purpose of the Message ID is to
 reconstruct messages which are segmented using the segmentation
 option described in section Section 4.1. The Message ID values
 SHOULD be incremented by one for each successive message
 originated with the same Message Publisher ID, so that message
 loss can be detected. When the last value (2^32-1) of Message ID
 has been generated, the Message ID wraps around and restarts at 0.
 Different subscribers MAY share the same Message ID sequence.

 * Options is a variable-length field in the TLV format. When the
 Header Length is larger than 12 octets, which is the length of the
 fixed header, Options TLVs follow directly after the fixed message
 header (i.e., Message ID). The details of the options are
 described in Section 4.

 All the binary fields MUST be encoded in network byte order (big
 endian).

Zheng, et al. Expires 25 July 2024 [Page 7]

Internet-Draft unyte-udp-notif January 2024

3.3. Data Encoding

 UDP-Notif message data can be encoded in CBOR, XML or JSON format.
 It is conceivable that additional encodings may be supported in the
 future. This can be accomplished by augmenting the subscription data
 model with additional identity statements used to refer to requested
 encodings.

 Private encodings can be using the S bit of the header. When the S
 bit is set, the value of the MT field is left to be defined and
 agreed upon by the users of the private encoding. An option is
 defined in Section 4.2 for more verbose encoding descriptions than
 what can be described with the MT field.

 Implementation MAY support multiple encoding methods per
 subscription. When bundled notifications are supported between the
 publisher and the receiver, only subscribed notifications with the
 same encoding can be bundled in a given message.

4. Options

 All the options are defined with the following format, illustrated in
 Figure 3.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+--------------------------------
 | Type | Length | Variable-length data
 +---------------+---------------+--------------------------------

 Figure 3: Generic Option Format

 * Type: 1 octet describing the option type;

 * Length: 1 octet representing the total number of octets in the
 TLV, including the Type and Length fields;

 * Variable-length data: 0 or more octets of TLV Value.

 When more than one option is used in the UDP-notif header, options
 MUST be ordered by the Type value. Messages with unordered options
 MAY be dropped by the Receiver.

Zheng, et al. Expires 25 July 2024 [Page 8]

Internet-Draft unyte-udp-notif January 2024

4.1. Segmentation Option

 The UDP payload length is limited to 65527 bytes (65535 - 8 bytes).
 Application level headers will make the actual payload shorter. Even
 though binary encodings such as CBOR may not require more space than
 what is left, more voluminous encodings such as JSON and XML may
 suffer from this size limitation. Although IPv4 and IPv6 publishers
 can fragment outgoing packets exceeding their Maximum Transmission
 Unit (MTU), fragmented IP packets may not be desired for operational
 and performance reasons.

 Consequently, implementations of the mechanism SHOULD provide a
 configurable max-segment-size option to control the maximum size of a
 payload.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-----------------------------+-+
 | Type | Length | Segment Number |L|
 +---------------+---------------+-----------------------------+-+

 Figure 4: Segmentation Option Format

 The Segmentation Option is to be included when the message content is
 segmented into multiple segments. Different segments of one message
 share the same Message ID. An illustration is provided in Figure 4.
 The fields of this TLV are:

 * Type: Generic option field which indicates a Segmentation Option.
 The Type value is to be assigned TBD1.

 * Length: Generic option field which indicates the length of this
 option. It is a fixed value of 4 octets for the Segmentation
 Option.

 * Segment Number: 15-bit value indicating the sequence number of the
 current segment. The first segment of a segmented message has a
 Segment Number value of 0. The Segment Number cannot wrap around.

 * L: is a flag to indicate whether the current segment is the last
 one of the message. When 0 is set, the current segment is not the
 last one. When 1 is set, the current segment is the last one,
 meaning that the total number of segments used to transport this
 message is the value of the current Segment Number + 1.

 An implementation of this specification SHOULD NOT rely on IP
 fragmentation by default to carry large messages. An implementation
 of this specification SHOULD either restrict the size of individual

Zheng, et al. Expires 25 July 2024 [Page 9]

Internet-Draft unyte-udp-notif January 2024

 messages carried over this protocol, or support the segmentation
 option. The implementor or user SHOULD take into account the IP
 layer header size when setting the max-segment-size parameter to
 avoid fragmentation at the IP layer.

 When a message has multiple options and is segmented using the
 described mechanism, all the options MUST be present on the first
 segment ordered by the options Type. The rest of segmented messages
 MAY include all the options ordered by options type.

 The receiver SHOULD support the reception of unordered segments. The
 implementation of the receiver SHOULD provide an option to discard
 the received segments if, after some time, one of the segments is
 still missing and the reassembly of the message is not possible.

4.2. Private Encoding Option

 The space to describe private encodings in the MT field of the UDP-
 Notif header being limited, an option is provided to describe custom
 encodings. The fields of this option are as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+--------------------------------
 | Type | Length | Variable length enc. descr.
 +---------------+---------------+--------------------------------

 Figure 5: Private Encoding Option Format

 * Type: Generic option field which indicates a Private Encoding
 Option. The Type value is to be assigned TBD2.

 * Length: Generic option field which indicates the length of this
 option. It is a variable value.

 * Enc. Descr: The description of the private encoding used for this
 message. The values to be used for such private encodings is left
 to be defined by the users of private encodings.

 This option SHOULD only be used when the S bit of the header is set,
 as providing a private encoding description for standard encodings is
 meaningless.

5. Applicability

 In this section, we provide an applicability statement for the
 proposed mechanism, following the recommendations of [RFC8085].

Zheng, et al. Expires 25 July 2024 [Page 10]

Internet-Draft unyte-udp-notif January 2024

 The proposed mechanism falls in the category of UDP applications
 "designed for use within the network of a single network operator or
 on networks of an adjacent set of cooperating network operators, to
 be deployed in controlled environments", as defined in [RFC8085].
 Implementations of the proposed mechanism SHOULD thus follow the
 recommendations in place for such specific applications. In the
 following, we discuss recommendations on congestion control, message
 size guidelines, reliability considerations and security
 considerations.

 The main use case of the proposed mechanism is the collection of
 statistical metrics for accounting purposes, where potential loss is
 not a concern, but should however be reported (such as IPFIX Flow
 Records exported with UDP [RFC7011]). Such metrics are typically
 exported in a periodical subscription as described in Section 3.1 of
 [RFC8641].

5.1. Congestion Control

 The proposed application falls into the category of applications
 performing transfer of large amounts of data. It is expected that
 the operator using the solution configures QoS on its related flows.
 As per [RFC8085], such applications MAY choose not to implement any
 form of congestion control, but follow the following principles.

 It is NOT RECOMMENDED to use the proposed mechanism over congestion-
 sensitive network paths. The only environments where UDP-Notif is
 expected to be used are managed networks. The deployments require
 that the network path has been explicitly provisioned to handle the
 traffic through traffic engineering mechanisms, such as rate limiting
 or capacity reservations.

 Implementation of the proposal SHOULD NOT push unlimited amounts of
 traffic by default, and SHOULD require the users to explicitly
 configure such a mode of operation.

 Burst mitigation through packet pacing is RECOMMENDED. Disabling
 burst mitigation SHOULD require the users to explicitly configure
 such a mode of operation.

 Applications SHOULD monitor packet losses and provide means to the
 user for retrieving information on such losses. The UDP-Notif
 Message ID can be used to deduce congestion based on packet loss
 detection. Hence the receiver can notify the Publisher to use a
 lower streaming rate. The interaction to control the streaming rate
 on the Publisher is out of the scope of this document.

Zheng, et al. Expires 25 July 2024 [Page 11]

Internet-Draft unyte-udp-notif January 2024

5.2. Message Size

 [RFC8085] recommends not to rely on IP fragmentation for messages
 whose size result in IP packets exceeding the MTU along the path.
 The segmentation option of the current specification permits
 segmentation of the UDP Notif message content without relying on IP
 fragmentation. Implementation of the current specification SHOULD
 allow for the configuration of the MTU.

 It is RECOMMENDED that the size of a Notification Message is small
 and segmentation does not result in segmenting the message into too
 much segments to avoid dropping the entire message when there is a
 lost segment. When a Notification Message is large, it is
 RECOMMENDED to use a reliable transport such as HTTPS-notif
 [I-D.ietf-netconf-https-notif].

5.3. Reliability

 A receiver implementation for this protocol SHOULD deal with
 potential loss of packets carrying a part of segmented payload, by
 discarding packets that were received, but cannot be re-assembled as
 a complete message within a given amount of time. This time SHOULD
 be configurable.

6. Secured layer for UDP-notif

 In unsecured networks, UDP-notif messages MUST be secured or
 encrypted. In this section, a mechanism using DTLS 1.3 to secure
 UDP-notif protocol is presented. The following sections defines the
 requirements for the implementation of the secured layer of DTLS for
 UDP-notif. No DTLS 1.3 extensions are defined in this document.

 The DTLS 1.3 protocol [RFC9147] is designed to meet the requirements
 of applications that need to secure datagram transport.
 Implementations using DTLS to secure UDP-notif messages MUST use DTLS
 1.3 protocol as defined in [RFC9147].

 When this security layer is used, the Publisher MUST always be a DTLS
 client, and the Receiver MUST always be a DTLS server. The Receivers
 MUST support accepting UDP-notif Messages on the specified UDP port,
 but MAY be configurable to listen on a different port. The Publisher
 MUST support sending UDP-notif messages to the specified UDP port,
 but MAY be configurable to send messages to a different port. The
 Publisher MAY use any source UDP port for transmitting messages.

Zheng, et al. Expires 25 July 2024 [Page 12]

Internet-Draft unyte-udp-notif January 2024

6.1. Session lifecycle

6.1.1. DTLS Session Initiation

 The Publisher initiates a DTLS connection by sending a DTLS
 ClientHello to the Receiver. Implementations MAY support the denial
 of service countermeasures defined by DTLS 1.3 if a given deployment
 can ensure that DoS attacks are not a concern. When these
 countermeasures are used, the Receiver responds with a DTLS
 HelloRetryRequest containing a stateless cookie. The Publisher sends
 a second DTLS ClientHello message containing the received cookie.
 Details can be found in Section 5.1 of [RFC9147].

 When DTLS is implemented, the Publisher MUST NOT send any UDP-notif
 messages before the DTLS handshake has successfully completed. Early
 data mechanism (also known as 0-RTT data) as defined in [RFC9147]
 MUST NOT be used.

 Implementations of this security layer MUST support DTLS 1.3
 [RFC9147] and MUST support the mandatory to implement cipher suite
 TLS_AES_128_GCM_SHA256 and SHOULD implement TLS_AES_256_GCM_SHA384
 and TLS_CHACHA20_POLY1305_SHA256 cipher suites, as specified in TLS
 1.3 [RFC8446]. If additional cipher suites are supported, then
 implementations MUST NOT negotiate a cipher suite that employs NULL
 integrity or authentication algorithms.

 Where confidentiality protection with DTLS is required,
 implementations must negotiate a cipher suite that employs a non-NULL
 encryption algorithm.

6.1.2. Publish Data

 When DTLS is used, all UDP-notif messages MUST be published as DTLS
 "application_data". It is possible that multiple UDP-notif messages
 are contained in one DTLS record, or that a publication message is
 transferred in multiple DTLS records. The application data is
 defined with the following ABNF [RFC5234] expression:

 APPLICATION-DATA = 1*UDP-NOTIF-FRAME

 UDP-NOTIF-FRAME = MSG-LEN SP UDP-NOTIF-MSG

 MSG-LEN = NONZERO-DIGIT *DIGIT

 SP = %d32

 NONZERO-DIGIT = %d49-57

Zheng, et al. Expires 25 July 2024 [Page 13]

Internet-Draft unyte-udp-notif January 2024

 DIGIT = %d48 / NONZERO-DIGIT

 UDP-NOTIF-MSG is defined in Section 3.

 The Publisher SHOULD attempt to avoid IP fragmentation by using the
 Segmentation Option in the UDP-notif message.

6.1.3. Session termination

 A Publisher MUST close the associated DTLS connection if the
 connection is not expected to deliver any UDP-notif Messages later.
 It MUST send a DTLS close_notify alert before closing the connection.
 A Publisher (DTLS client) MAY choose to not wait for the Receiver’s
 close_notify alert and simply close the DTLS connection. Once the
 Receiver gets a close_notify from the Publisher, it MUST reply with a
 close_notify.

 When no data is received from a DTLS connection for a long time, the
 Receiver MAY close the connection. Implementations SHOULD set the
 timeout value to 10 minutes but application specific profiles MAY
 recommend shorter or longer values. The Receiver (DTLS server) MUST
 attempt to initiate an exchange of close_notify alerts with the
 Publisher before closing the connection. Receivers that are
 unprepared to receive any more data MAY close the connection after
 sending the close_notify alert.

 Although closure alerts are a component of TLS and so of DTLS, they,
 like all alerts, are not retransmitted by DTLS and so may be lost
 over an unreliable network.

7. A YANG Data Model for Management of UDP-Notif

7.1. YANG to configure UDP-notif

 The YANG model described in Section 7.2 defines a new receiver
 instance for UDP-notif transport. When this transport is used, four
 new leaves and a dtls container allow configuring UDP-notif receiver
 parameters.

Zheng, et al. Expires 25 July 2024 [Page 14]

Internet-Draft unyte-udp-notif January 2024

 module: ietf-udp-notif-transport

 augment /sn:subscriptions/snr:receiver-instances
 /snr:receiver-instance/snr:transport-type:
 +--:(udp-notif)
 +--rw udp-notif-receiver
 +--rw remote-address inet:ip-address-no-zone
 +--rw remote-port inet:port-number
 +--rw dtls! {dtls13}?
 | +--rw client-identity!
 | | +--rw (auth-type)
 | | +--:(certificate) {client-ident-x509-cert}?
 | | | ...
 | | +--:(raw-public-key) {client-ident-raw-public-key}?
 | | | ...
 | | +--:(tls13-epsk) {client-ident-tls13-epsk}?
 | | ...
 | +--rw server-authentication
 | | +--rw ca-certs! {server-auth-x509-cert}?
 | | | +--rw (local-or-truststore)
 | | | ...
 | | +--rw ee-certs! {server-auth-x509-cert}?
 | | | +--rw (local-or-truststore)
 | | | ...
 | | +--rw raw-public-keys! {server-auth-raw-public-key}?
 | | | +--rw (local-or-truststore)
 | | | ...
 | | +--rw tls13-epsks? empty
 | | {server-auth-tls13-epsk}?
 | +--rw hello-params {tlscmn:hello-params}?
 | | +--rw tls-versions
 | | | +--rw tls-version* identityref
 | | +--rw cipher-suites
 | | +--rw cipher-suite* identityref
 | +--rw keepalives {tls-client-keepalives}?
 | +--rw peer-allowed-to-send? empty
 | +--rw test-peer-aliveness!
 | +--rw max-wait? uint16
 | +--rw max-attempts? uint8
 +--rw enable-segmentation? boolean {segmentation}?
 +--rw max-segment-size? uint32 {segmentation}?

Zheng, et al. Expires 25 July 2024 [Page 15]

Internet-Draft unyte-udp-notif January 2024

7.2. YANG Module

 This YANG module is used to configure, on a publisher, a receiver
 willing to consume notification messages. This module augments the
 "ietf-subscribed-notif-receivers" module to define a UDP-notif
 transport receiver. The grouping "udp-notif-receiver-grouping"
 defines the necessary parameters to configure the transport defined
 in this document using the generic "udp-client-grouping" grouping
 from the "ietf-udp-client" module
 [I-D.ahuang-netconf-udp-client-server] and the "tls-client-grouping"
 defined in the "ietf-tls-client" module
 [I-D.ietf-netconf-tls-client-server].

 <CODE BEGINS> file "ietf-udp-notif-transport@2024-01-22.yang"
 module ietf-udp-notif-transport {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport";
 prefix unt;
 import ietf-subscribed-notifications {
 prefix sn;
 reference
 "RFC 8639: Subscription to YANG Notifications";
 }
 import ietf-subscribed-notif-receivers {
 prefix snr;
 reference
 "RFC YYYY: An HTTPS-based Transport for
 Configured Subscriptions";
 }
 import ietf-udp-client {
 prefix udpc;
 reference
 "RFC ZZZZ: YANG Grouping for UDP Clients and UDP Servers";
 }
 import ietf-tls-client {
 prefix tlsc;
 reference
 "RFC TTTT: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Authors: Guangying Zheng
 <mailto:zhengguangying@huawei.com>

Zheng, et al. Expires 25 July 2024 [Page 16]

Internet-Draft unyte-udp-notif January 2024

 Tianran Zhou
 <mailto:zhoutianran@huawei.com>
 Thomas Graf
 <mailto:thomas.graf@swisscom.com>
 Pierre Francois
 <mailto:pierre.francois@insa-lyon.fr>
 Alex Huang Feng
 <mailto:alex.huang-feng@insa-lyon.fr>
 Paolo Lucente
 <mailto:paolo@ntt.net>";

 description
 "Defines UDP-Notif as a supported transport for subscribed
 event notifications.

 Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Revised BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC-to-be; see the RFC
 itself for full legal notices.";

 revision 2024-01-22 {
 description
 "Initial revision";
 reference
 "RFC-to-be: UDP-based Transport for Configured Subscriptions";
 }

 /*
 * FEATURES
 */
 feature encode-cbor {
 description
 "This feature indicates that CBOR encoding of notification
 messages is supported.";
 }
 feature dtls13 {
 description
 "This feature indicates that DTLS 1.3 encryption of UDP
 packets is supported.";
 }
 feature segmentation {

Zheng, et al. Expires 25 July 2024 [Page 17]

Internet-Draft unyte-udp-notif January 2024

 description
 "This feature indicates segmentation of notification messages
 is supported.";
 }

 /*
 * IDENTITIES
 */
 identity udp-notif {
 base sn:transport;
 description
 "UDP-Notif is used as transport for notification messages
 and state change notifications.";
 }

 identity encode-cbor {
 base sn:encoding;
 description
 "Encode data using CBOR as described in RFC 9254.";
 reference
 "RFC 9254: CBOR Encoding of Data Modeled with YANG";
 }

 grouping udp-notif-receiver-grouping {
 description
 "Provides a reusable description of a UDP-Notif target
 receiver.";

 uses udpc:udp-client-grouping;

 container dtls {
 if-feature dtls13;
 presence dtls;
 uses tlsc:tls-client-grouping {
 // Using tls-client-grouping without TLS1.2 parameters
 // allowing only DTLS 1.3
 refine "client-identity/auth-type/tls12-psk" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlsc:client-ident-tls12-psk";
 }
 refine "server-authentication/tls12-psks" {
 // create the logical impossibility of enabling TLS1.2
 if-feature "not tlsc:server-auth-tls12-psk";
 }
 }
 description
 "Container for configuring DTLS 1.3 parameters.";
 }

Zheng, et al. Expires 25 July 2024 [Page 18]

Internet-Draft unyte-udp-notif January 2024

 leaf enable-segmentation {
 if-feature segmentation;
 type boolean;
 default false;
 description
 "The switch for the segmentation feature. When disabled, the
 publisher will not allow fragment for a very large data";
 }

 leaf max-segment-size {
 when "../enable-segmentation = ’true’";
 if-feature segmentation;
 type uint32;
 description
 "UDP-Notif provides a configurable max-segment-size to
 control the size of each segment (UDP-Notif header, with
 options, included).";
 }
 }

 augment "/sn:subscriptions/snr:receiver-instances/" +
 "snr:receiver-instance/snr:transport-type" {
 case udp-notif {
 container udp-notif-receiver {
 description
 "The UDP-notif receiver to send notifications to.";
 uses udp-notif-receiver-grouping;
 }
 }
 description
 "Augment the transport-type choice to include the ’udp-notif’
 transport.";
 }
 }
 <CODE ENDS>

8. IANA Considerations

 This document describes several new registries, the URIs from IETF
 XML Registry and the registration of a two new YANG module names.

8.1. IANA registries

 This document is creating 3 registries called "UDP-notif media
 types", "UDP-notif option types", and "UDP-notif header version"
 under the new group "UDP-notif protocol". The registration procedure
 is made using the Standards Action process defined in [RFC8126].

Zheng, et al. Expires 25 July 2024 [Page 19]

Internet-Draft unyte-udp-notif January 2024

 The first requested registry is the following:

 Registry Name: UDP-notif media types
 Registry Category: UDP-notif protocol.
 Registration Procedure: Standard Action as defined in RFC8126
 Maximum value: 15

 These are the initial registrations for "UDP-notif media types":

 Value: 0
 Description: Reserved
 Reference: RFC-to-be

 Value: 1
 Description: media type application/yang-data+json
 Reference: <xref target="RFC8040"/>

 Value: 2
 Description: media type application/yang-data+xml
 Reference: <xref target="RFC8040"/>

 Value: 3
 Description: media type application/yang-data+cbor
 Reference: <xref target="RFC9254"/>

 The second requested registry is the following:

 Registry Name: UDP-notif option types
 Registry Category: UDP-notif protocol.
 Registration Procedure: Standard Action as defined in RFC8126
 Maximum value: 255

 These are the initial registrations for "UDP-notif options types":

 Value: 0
 Description: Reserved
 Reference: RFC-to-be

 Value: TBD1 (suggested value: 1)
 Description: Segmentation Option
 Reference: RFC-to-be

 Value: TBD2 (suggested value: 2)
 Description: Private Encoding Option
 Reference: RFC-to-be

 The third requested registry is the following:

Zheng, et al. Expires 25 July 2024 [Page 20]

Internet-Draft unyte-udp-notif January 2024

 Registry Name: UDP-notif header version
 Registry Category: UDP-notif protocol.
 Registration Procedure: Standard Action as defined in RFC8126
 Maximum value: 7

 These are the initial registrations for "UDP-notif header version":

 Value: 0
 Description: UDP based Publication Channel for Streaming Telemetry
 Reference: draft-ietf-netconf-udp-pub-channel-05

 Value: 1
 Description: UDP-based Transport for Configured Subscriptions.
 Reference: RFC-to-be

8.2. URI

 IANA is also requested to assign a two new URI from the IETF XML
 Registry [RFC3688]. The following two URIs are suggested:

 URI: urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

8.3. YANG module name

 This document also requests a two new YANG module names in the YANG
 Module Names registry [RFC8342] with the following suggestions:

 name: ietf-udp-notif
 namespace: urn:ietf:params:xml:ns:yang:ietf-udp-notif-transport
 prefix: unt
 reference: RFC-to-be

9. Implementation Status

 Note to the RFC-Editor: Please remove this section before publishing.

9.1. Open Source Publisher

 INSA Lyon implemented this document for a YANG Push publisher in an
 example implementation.

 The open source code can be obtained here: [INSA-Lyon-Publisher].

Zheng, et al. Expires 25 July 2024 [Page 21]

Internet-Draft unyte-udp-notif January 2024

9.2. Open Source Receiver Library

 INSA Lyon implemented this document for a YANG Push receiver as a
 library.

 The open source code can be obtained here: [INSA-Lyon-Receiver].

9.3. Pmacct Data Collection

 The open source YANG push receiver library has been integrated into
 the Pmacct open source Network Telemetry data collection.

9.4. Huawei VRP

 Huawei implemented this document for a YANG Push publisher in their
 VRP platform.

10. Security Considerations

 [RFC8085] states that "UDP applications that need to protect their
 communications against eavesdropping, tampering, or message forgery
 SHOULD employ end-to-end security services provided by other IETF
 protocols". As mentioned above, the proposed mechanism is designed
 to be used in controlled environments, as defined in [RFC8085] also
 known as "limited domains", as defined in [RFC8799]. Thus, a
 security layer is not necessary required. Nevertheless, a DTLS layer
 MUST be implemented in unsecured networks. A specification of udp-
 notif using DTLS is presented in Section 6.

11. Acknowledgements

 The authors of this documents would like to thank Alexander Clemm,
 Benoit Claise, Eric Voit, Huiyang Yang, Kent Watsen, Mahesh
 Jethanandani, Marco Tollini, Hannes Tschofenig, Michael Tuxen, Rob
 Wilton, Sean Turner, Stephane Frenot, Timothy Carey, Tim Jenkins, Tom
 Petch and Yunan Gu for their constructive suggestions for improving
 this document.

12. References

12.1. Normative References

Zheng, et al. Expires 25 July 2024 [Page 22]

Internet-Draft unyte-udp-notif January 2024

 [I-D.ahuang-netconf-udp-client-server]
 Feng, A. H., Francois, P., and K. Watsen, "YANG Grouping
 for UDP Clients and UDP Servers", Work in Progress,
 Internet-Draft, draft-ahuang-netconf-udp-client-server-01,
 22 January 2024,
 <https://datatracker.ietf.org/api/v1/doc/document/draft-
 ahuang-netconf-udp-client-server/>.

 [I-D.ietf-netconf-distributed-notif]
 Zhou, T., Zheng, G., Voit, E., Graf, T., and P. Francois,
 "Subscription to Distributed Notifications", Work in
 Progress, Internet-Draft, draft-ietf-netconf-distributed-
 notif-08, 6 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 distributed-notif-08>.

 [I-D.ietf-netconf-https-notif]
 Jethanandani, M. and K. Watsen, "An HTTPS-based Transport
 for YANG Notifications", Work in Progress, Internet-Draft,
 draft-ietf-netconf-https-notif-14, 18 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 https-notif-14>.

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K., "YANG Groupings for TLS Clients and TLS
 Servers", Work in Progress, Internet-Draft, draft-ietf-
 netconf-tls-client-server-34, 28 December 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 tls-client-server-34>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

Zheng, et al. Expires 25 July 2024 [Page 23]

Internet-Draft unyte-udp-notif January 2024

 [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
 Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC8085,
 March 2017, <https://www.rfc-editor.org/info/rfc8085>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8640] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Dynamic Subscription to YANG Events
 and Datastores over NETCONF", RFC 8640,
 DOI 10.17487/RFC8640, September 2019,
 <https://www.rfc-editor.org/info/rfc8640>.

 [RFC8650] Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and
 A. Bierman, "Dynamic Subscription to YANG Events and
 Datastores over RESTCONF", RFC 8650, DOI 10.17487/RFC8650,
 November 2019, <https://www.rfc-editor.org/info/rfc8650>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/info/rfc9147>.

 [RFC9254] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
 C., and M. Richardson, "Encoding of Data Modeled with YANG
 in the Concise Binary Object Representation (CBOR)",
 RFC 9254, DOI 10.17487/RFC9254, July 2022,
 <https://www.rfc-editor.org/info/rfc9254>.

Zheng, et al. Expires 25 July 2024 [Page 24]

Internet-Draft unyte-udp-notif January 2024

12.2. Informative References

 [I-D.ahuang-netconf-notif-yang]
 Feng, A. H., Francois, P., Graf, T., and B. Claise, "YANG
 model for NETCONF Event Notifications", Work in Progress,
 Internet-Draft, draft-ahuang-netconf-notif-yang-04, 22
 January 2024,
 <https://datatracker.ietf.org/api/v1/doc/document/draft-
 ahuang-netconf-notif-yang/>.

 [I-D.ietf-netconf-notification-messages]
 Voit, E., Jenkins, T., Birkholz, H., Bierman, A., and A.
 Clemm, "Notification Message Headers and Bundles", Work in
 Progress, Internet-Draft, draft-ietf-netconf-notification-
 messages-08, 17 November 2019,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 notification-messages-08>.

 [INSA-Lyon-Publisher]
 "INSA Lyon, YANG Push publisher example implementation",
 <https://github.com/network-analytics/udp-notif-scapy>.

 [INSA-Lyon-Receiver]
 "INSA Lyon, YANG Push receiver library implementation",
 <https://github.com/network-analytics/udp-notif-
 c-collector>.

 [Paolo-Lucente-Pmacct]
 "Paolo Lucente, Pmacct open source Network Telemetry Data
 Collection", <https://github.com/pmacct/pmacct>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7011] Claise, B., Ed., Trammell, B., Ed., and P. Aitken,
 "Specification of the IP Flow Information Export (IPFIX)
 Protocol for the Exchange of Flow Information", STD 77,
 RFC 7011, DOI 10.17487/RFC7011, September 2013,
 <https://www.rfc-editor.org/info/rfc7011>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

Zheng, et al. Expires 25 July 2024 [Page 25]

Internet-Draft unyte-udp-notif January 2024

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

 [RFC8799] Carpenter, B. and B. Liu, "Limited Domains and Internet
 Protocols", RFC 8799, DOI 10.17487/RFC8799, July 2020,
 <https://www.rfc-editor.org/info/rfc8799>.

Appendix A. UDP-notif Examples

 This non-normative section shows two examples of how the the "ietf-
 udp-notif-transport" YANG module can be used to configure a [RFC8639]
 based publisher to send notifications to a receiver and an example of
 a YANG Push notification message using UDP-notif transport protocol.

A.1. Configuration for UDP-notif transport with DTLS disabled

 This example shows how UDP-notif can be configured without DTLS
 encryption.

Zheng, et al. Expires 25 July 2024 [Page 26]

Internet-Draft unyte-udp-notif January 2024

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version=’1.0’ encoding=’UTF-8’?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscriptions xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-\
 notifications">
 <subscription>
 <id>6666</id>
 <stream-subtree-filter>some-subtree-filter</stream-subtree-fil\
 ter>
 <stream>some-stream</stream>
 <transport xmlns:unt="urn:ietf:params:xml:ns:yang:ietf-udp-not\
 if-transport">unt:udp-notif</transport>
 <encoding>encode-json</encoding>
 <receivers>
 <receiver>
 <name>subscription-specific-receiver-def</name>
 <receiver-instance-ref xmlns="urn:ietf:params:xml:ns:yang:\
 ietf-subscribed-notif-receivers">global-udp-notif-receiver-def</rece\
 iver-instance-ref>
 </receiver>
 </receivers>
 <periodic xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <period>6000</period>
 </periodic>
 </subscription>
 <receiver-instances xmlns="urn:ietf:params:xml:ns:yang:ietf-subs\
 cribed-notif-receivers">
 <receiver-instance>
 <name>global-udp-notif-receiver-def</name>
 <udp-notif-receiver xmlns="urn:ietf:params:xml:ns:yang:ietf-\
 udp-notif-transport">
 <remote-address>192.0.5.1</remote-address>
 <remote-port>12345</remote-port>
 <enable-segmentation>false</enable-segmentation>
 <max-segment-size/>
 </udp-notif-receiver>
 </receiver-instance>
 </receiver-instances>
 </subscriptions>
 </config>

A.2. Configuration for UDP-notif transport with DTLS enabled

 This example shows how UDP-notif can be configured with DTLS
 encryption.

Zheng, et al. Expires 25 July 2024 [Page 27]

Internet-Draft unyte-udp-notif January 2024

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version=’1.0’ encoding=’UTF-8’?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <subscriptions xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-\
 notifications">
 <subscription>
 <id>6666</id>
 <stream-subtree-filter>some-subtree-filter</stream-subtree-fil\
 ter>
 <stream>some-stream</stream>
 <transport xmlns:unt="urn:ietf:params:xml:ns:yang:ietf-udp-not\
 if-transport">unt:udp-notif</transport>
 <encoding>encode-json</encoding>
 <receivers>
 <receiver>
 <name>subscription-specific-receiver-def</name>
 <receiver-instance-ref xmlns="urn:ietf:params:xml:ns:yang:\
 ietf-subscribed-notif-receivers">global-udp-notif-receiver-dtls-def<\
 /receiver-instance-ref>
 </receiver>
 </receivers>
 <periodic xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <period>6000</period>
 </periodic>
 </subscription>
 <receiver-instances xmlns="urn:ietf:params:xml:ns:yang:ietf-subs\
 cribed-notif-receivers">
 <receiver-instance>
 <name>global-udp-notif-receiver-dtls-def</name>
 <udp-notif-receiver xmlns="urn:ietf:params:xml:ns:yang:ietf-\
 udp-notif-transport">
 <remote-address>192.0.5.1</remote-address>
 <remote-port>12345</remote-port>
 <enable-segmentation>false</enable-segmentation>
 <max-segment-size/>
 <dtls>
 <client-identity>
 <tls13-epsk>
 <local-definition>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-key>BASE64VALUE=</cleartext-key>
 </local-definition>
 <external-identity>example_external_id</external-ide\
 ntity>
 <hash>sha-256</hash>
 <context>example_context_string</context>
 <target-protocol>8443</target-protocol>

Zheng, et al. Expires 25 July 2024 [Page 28]

Internet-Draft unyte-udp-notif January 2024

 <target-kdf>12345</target-kdf>
 </tls13-epsk>
 </client-identity>
 <server-authentication>
 <ca-certs>
 <local-definition>
 <certificate>
 <name>Server Cert Issuer #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Server Cert Issuer #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </local-definition>
 </ca-certs>
 <ee-certs>
 <local-definition>
 <certificate>
 <name>My Application #1</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>My Application #2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </local-definition>
 </ee-certs>
 <raw-public-keys>
 <local-definition>
 <public-key>
 <name>corp-fw1</name>
 <public-key-format>ct:subject-public-key-info-fo\
 rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 <public-key>
 <name>corp-fw2</name>
 <public-key-format>ct:subject-public-key-info-fo\
 rmat</public-key-format>
 <public-key>BASE64VALUE=</public-key>
 </public-key>
 </local-definition>
 </raw-public-keys>
 <tls13-epsks/>
 </server-authentication>
 <keepalives>
 <test-peer-aliveness>

Zheng, et al. Expires 25 July 2024 [Page 29]

Internet-Draft unyte-udp-notif January 2024

 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>
 </test-peer-aliveness>
 </keepalives>
 </dtls>
 </udp-notif-receiver>
 </receiver-instance>
 </receiver-instances>
 </subscriptions>
 </config>

A.3. YANG Push message with UDP-notif transport protocol

 This example shows how UDP-notif is used as a transport protocol to
 send a "push-update" notification [RFC8641] encoded in JSON
 [RFC7951].

 Assuming the publisher needs to send the JSON payload showed in
 Figure 6, the UDP-notif transport is encoded following the Figure 7.
 The UDP-notif message is then encapsulated in a UDP frame.

 {
 "ietf-notification:notification": {
 "eventTime": "2023-02-10T08:00:11.22Z",
 "ietf-yang-push:push-update": {
 "id": 1011,
 "datastore-contents": {
 "ietf-interfaces:interfaces": [
 {
 "interface": {
 "name": "eth0",
 "oper-status": "up"
 }
 }
]
 }
 }
 }
 }

 Figure 6: JSON Payload to be sent

Zheng, et al. Expires 25 July 2024 [Page 30]

Internet-Draft unyte-udp-notif January 2024

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-----+-+-------+---------------+-------------------------------+
 |Ver=1|0| MT=1 | Header_Len=12 | Message_Length=230 |
 +-----+-+-------+---------------+-------------------------------+
 | Message Publisher ID=2 |
 +---+
 | Message ID=1563 |
 +---+
 | YANG Push JSON payload (Len=218 octets) |
 |{"ietf-notification:notification":{"eventTime":"2023-02-10T08:0|
 |0:11.22Z","ietf-yang-push:push-update":{"id":1011,"datastore-co|
 |ntents":{"ietf-interfaces:interfaces":[{"interface":{"name":"et|
 |h0","oper-status":"up"}}]}}}} |
 +---+

 Figure 7: UDP-notif transport message

Authors’ Addresses

 Guangying Zheng
 Huawei
 101 Yu-Hua-Tai Software Road
 Nanjing
 Jiangsu,
 China
 Email: zhengguangying@huawei.com

 Tianran Zhou
 Huawei
 156 Beiqing Rd., Haidian District
 Beijing
 China
 Email: zhoutianran@huawei.com

 Thomas Graf
 Swisscom
 Binzring 17
 CH- Zuerich 8045
 Switzerland
 Email: thomas.graf@swisscom.com

Zheng, et al. Expires 25 July 2024 [Page 31]

Internet-Draft unyte-udp-notif January 2024

 Pierre Francois
 INSA-Lyon
 Lyon
 France
 Email: pierre.francois@insa-lyon.fr

 Alex Huang Feng
 INSA-Lyon
 Lyon
 France
 Email: alex.huang-feng@insa-lyon.fr

 Paolo Lucente
 NTT
 Siriusdreef 70-72
 Hoofddorp, WT 2132
 Netherlands
 Email: paolo@ntt.net

Zheng, et al. Expires 25 July 2024 [Page 32]

NETCONF Z. Lin
Internet-Draft B. Claise
Intended status: Standards Track Huawei
Expires: 4 September 2024 I. D. Martinez-Casanueva
 Telefonica Innovacion Digital
 3 March 2024

 Augmented-by Addition into the IETF-YANG-Library
 draft-lincla-netconf-yang-library-augmentation-01

Abstract

 This document augments the ietf-yang-library in [RFC8525] to provide
 the augmented-by list. It facilitates the process of obtaining the
 entire dependencies of YANG model, by directly querying the server’s
 YANG module.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/Zephyre777/draft-lincla-netconf-yang-library-
 augmentation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 4 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Lin, et al. Expires 4 September 2024 [Page 1]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Motivation . 3
 3. Use Cases . 4
 3.1. Data Mesh Telemetry Architecture 5
 3.2. Data Catalog . 6
 4. The "ietf-yang-library-augmentedby" YANG module 7
 4.1. Data Model Overview 7
 4.1.1. Tree View . 7
 4.1.2. Full Tree View 7
 4.1.3. YANG Module . 9
 5. Implementation Status . 11
 5.1. draft repository . 11
 6. Changes . 11
 6.1. Changes from 00 to 01 11
 7. Security Considerations 11
 8. IANA Considerations . 11
 9. References . 11
 9.1. Normative References 11
 9.2. Informative References 12
 Appendix A. YANG module validation with yanglint 13
 A.1. A valid ietf-yang-library data example 13
 A.2. An invalid ietf-yang-library data example 14
 Appendix B. YANG Module augmenting RFC7895 15
 B.1. Tree View for YANG module augmenting RFC7895 15
 B.2. Full Tree View for ietf-yang-library with augmentation to
 RFC7895 . 16
 B.3. YANG module augmenting RFC7895 16
 Contributors . 19
 Acknowledgements . 19
 Authors’ Addresses . 19

Lin, et al. Expires 4 September 2024 [Page 2]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

1. Introduction

 The YANG library [RFC8525] specifies a YANG module that provides the
 information about the YANG models and datastores to facilitate a
 client application to fully utilize and understand the YANG data
 modelling language. To know the YANG dependencies, [RFC8525] has
 defined and provided the submodule list and the YANG modules
 deviation list. However, the YANG modules augmentation is not
 provided.

 According to [RFC7950], both augmentations and deviations are
 defining contents external to the model, but applying internally for
 the model. It is important to know the augmentation and deviation as
 they are dependencies of the model, but it is also difficult because
 they are defined externally. When we try to use the ietf-yang-
 library in [RFC8525] to obtain the reverse dependencies
 (Augmentations and deviations), the augmentation is not defined in
 it.

 However, the augmentation and the deviation work similarly as YANG
 modules dependency. Therefore, it is reasonable to document them the
 same way in the IETF YANG library. Besides, it will be easier to
 determine the reverse dependency if the augmentation is directly
 available, through a GET request into this new YANG model.

 This draft augment the ietf-yang-library to include the YANG modules
 augmentation information.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The terminology from [RFC8525] is used in this document

 Tree diagrams in this document use the notation defined in [RFC8340]
 .

2. Motivation

 When using one YANG model, it is important to make sure that all its
 dependencies are presented. In [RFC7950] there are four dependencies
 for one YANG mode:

Lin, et al. Expires 4 September 2024 [Page 3]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 * Import: the "import" statement allows a module or submodule to
 reference definitions defined in other modules.

 * Include: the "include" statement is used in a module to identify
 each submodule that belongs to it.

 * Augmentation: the "augment" statement defines the location in the
 data model hierarchy where additional nodes are inserted

 * Deviation: the "deviation" statement defines a hierarchy of a
 module that the server does not implement faithfully.

 The import and include are direct dependencies while the augmentation
 and deviation are reverse dependencies. To know a specific YANG
 model’s direct dependencies, we can parse this YANG model as the
 dependencies are directly specified (import and include statements").

 As for the reverse dependencies, since they are defined externally,
 we cannot parse the YANG model itself to get them. Among all the
 methods for getting reverse dependency, getting the ietf-yang-library
 content is one of the most convenient ways.

 However, the ietf-yang-library only provides the deviation list, but
 not the augmentation. It is reasonable to update it to provide the
 augmentation information since both augmentation and deviation have
 similar way of working (both are applied to the original model but
 invisible to them). A noticeable difference between deviations and
 augmentations is that the deviations are required to understand the
 API contract between the client and the server. But with some use
 cases arise as the requirement of automate network management, the
 augmentation becomes essential information for understanding the
 network, too.

3. Use Cases

 As the demand arises for YANG-based telemetry [RFC8641], there is a
 need for real-time knowledge of a specific YANG model’s dependency
 list when a specific YANG-Push message is received.

 The alternative, for a YANG-push receiver, to collect and store the
 entire module set for every single server who could be streaming
 data, is not always practical. See the following reasons:

 * For a YANG-push collector => we never know in advance which
 telemetry content will be received and from whom.

 * Querying all the YANG modules is time consuming => we lose the
 real-time.

Lin, et al. Expires 4 September 2024 [Page 4]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 With similar central idea, two use cases are introduced in this
 section. One target solving the dependencies problems in a Data Mesh
 Telemetry System while the other aims at building a data catalog
 which makes YANG model inforamtion easily accessible.

3.1. Data Mesh Telemetry Architecture

 A network analytics architecture that integrates YANG-push and Kafka
 is proposed in 2022 and is continuously growing and gaining
 influence, refer to the draft: An Architecture for YANG-Push to
 Apache Kafka Integration [I-D.netana-nmop-yang-kafka-integration].

 In this open-sourced project covering Support of Versioning in YANG
 Notifications Subscription
 [I-D.ietf-netconf-yang-notifications-versioning], Support of Network
 Observation Timestamping in YANG Notifications
 [I-D.netconf-tgraf-yang-push-observation-time], among others, the
 purpose is to provide adequate information in the YANG-Push
 notification so that when it is received, the model and its
 dependency can be parsed and found automatically from the vantage
 point. The architecture relies on the information of YANG model and
 their dependency to realize, as one of its main goals is to solve the
 problem of missing YANG semantics when data is received in Time
 Series Database in the end. To solve the problem, a schema registry
 is introduced to store YANG models and all their relationship (direct
 dependency and reverse dependency).

 Currently, the method used for finding model’s reverse dependency is
 get-all-schemas, that is to retrieve all YANG modules from the device
 to the client’s disk, enabling the client to fully understand the
 YANG model relationship. This process is heavy because in real
 situation, each device may have few thousands or even more YANG
 module implemented. Besides, pressure is also introduced due to the
 need of parsing modules and find all the dependencies.

 Considering the telemetry real-time aspects, this extra delay in
 processing the dependencies through get-all-schemas is not ideal.

 The YANG model proposed in the draft can be used in this architecture
 to release the stress of get-all-schemas and bring some extra
 benefits.

 By providing the augmentation information, it enables the collector
 to get the YANG reverse dependencies by simply sending one <get>
 query to ietf-yang-library. In this regard, the process of acquiring
 full dependency becomes real-time action.

Lin, et al. Expires 4 September 2024 [Page 5]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 Compared with get-all-schemas, it enables collector to fetch up-to-
 date data since the queries are sent at run time, while the old
 approach forces collector to always work with never updated data. On
 another hand, user do not bother waiting for ten minutes every time
 when starting collector to either get data updated or to obtain YANG
 relationship.

3.2. Data Catalog

 Finding the YANG models implemented by a network device is paramount
 for configuring and monitoring the status of a network. However,
 since the inception of YANG the network industry has experienced a
 tsunami of YANG models developed by SDOs, open-source communities,
 and network vendors. This heterogeneity of YANG models, that vary
 from one network device model to another, makes the management of a
 multi-vendor network a big challenge for operators.
 [Martinez-Casanueva2023]

 In this regard, a data catalog provides a registry of the datasets
 exposed by remote data sources for consumers to discover data of
 interest. Besides the location of the dataset (i.e., the data
 source), the data catalog registers additional metadata such as the
 data model (or schema) followed in the dataset or even related terms
 defined in a business glossary.

 Data catalog solutions typically implement collectors that ingest
 metadata from the data sources themselves and also external metadata
 sources. For example, a Kafka Schema Registry is a metadata source
 that provides metadata about the data models followed by some data
 stored in a Kafka topic.

 In this sense, a YANG-enabled network device can be considered as
 another kind of data source, which the Data Catalog can pull metadata
 from. For instance, the data catalog can include a connector that
 fetches metadata about the YANG models implemented by the network
 device. Combining these metadata with other such as the business
 concept "interface", would enable data consumers to discover which
 datasets related to the concept "interface" are exposed by the
 network device.

 Network devices that implement YANG Library expose metadata about
 which YANG modules are implemented, and which are only imported.
 However, what a data consumer needs at the end are the YANG models
 implemented by the device, hence, the combination of implemented YANG
 modules with other YANG modules that might deviate or augment the
 formers.

Lin, et al. Expires 4 September 2024 [Page 6]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 Coming back to the example of datasets related to the "interface"
 concept, say we have a network device that implements the ietf-
 interfaces module [RFC8343] and the ietf-ip module [RFC8344], where
 the latter augments the former. For a data catalog to collect these
 metadata, a connector would retrieve YANG Library data from the
 target device. However, the current version of YANG Library would
 not satisfy the use case as it would tell that the device implements
 both ietf-interfaces and ietf-ip modules, but will miss the augment
 dependency between them.

 The current workaround to this limitation is to, in combination with
 the YANG library data, additionally fetch both YANG modules and
 process them to discover that there is an augment dependency. This
 adds extra burden on the connector, which is forced to combine
 multiple metadata collection mechanisms. This process could be
 softened by extending YANG Library to also capture augment
 dependencies, in a similar fashion to deviation dependencies.

4. The "ietf-yang-library-augmentedby" YANG module

 This YANG module augments the ietf-yang-library module by adding the
 augmented-by list in the "yang-library/module-set". The name
 Augmented-by indicated the modules by which the current module is
 being augmented. Note that this module only augments the ietf-yang-
 library defined in [RFC8525]. At the time of writing this document,
 most router vendors support [RFC7895], a previous revision of the
 ietf-yang-library YANG module; The module that augments [RFC7895] is
 provided in the appendix B.

4.1. Data Model Overview

4.1.1. Tree View

 The following is the YANG tree diagram for model ietf-yang-library-
 augmentedby.

 module: ietf-yang-library-augmentedby

 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro augmented-by* -> ../../yanglib:module/name

4.1.2. Full Tree View

 The following is the YANG tree diagram[RFC8340] for the ietf-yang-
 library with the augmentation defined in module ietf-yang-library-
 augmentedby, including the RPCs and notifications.

Lin, et al. Expires 4 September 2024 [Page 7]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 module: ietf-yang-library
 +--ro yang-library
 | +--ro module-set* [name]
 | | +--ro name string
 | | +--ro module* [name]
 | | | +--ro name yang:yang-identifier
 | | | +--ro revision? revision-identifier
 | | | +--ro namespace inet:uri
 | | | +--ro location* inet:uri
 | | | +--ro submodule* [name]
 | | | | +--ro name yang:yang-identifier
 | | | | +--ro revision? revision-identifier
 | | | | +--ro location* inet:uri
 | | | +--ro feature* yang:yang-identifier
 | | | +--ro deviation* -> ../../module/name
 | | | +--ro yanglib-aug:augmented-by*
 -> ../../yanglib:module/name
 | | +--ro import-only-module* [name revision]
 | | +--ro name yang:yang-identifier
 | | +--ro revision union
 | | +--ro namespace inet:uri
 | | +--ro location* inet:uri
 | | +--ro submodule* [name]
 | | +--ro name yang:yang-identifier
 | | +--ro revision? revision-identifier
 | | +--ro location* inet:uri
 | +--ro schema* [name]
 | | +--ro name string
 | | +--ro module-set* -> ../../module-set/name
 | +--ro datastore* [name]
 | | +--ro name ds:datastore-ref
 | | +--ro schema -> ../../schema/name
 | +--ro content-id string
 x--ro modules-state
 x--ro module-set-id string
 x--ro module* [name revision]
 x--ro name yang:yang-identifier
 x--ro revision union
 +--ro schema? inet:uri
 x--ro namespace inet:uri
 x--ro feature* yang:yang-identifier
 x--ro deviation* [name revision]
 | x--ro name yang:yang-identifier
 | x--ro revision union
 x--ro conformance-type enumeration
 x--ro submodule* [name revision]
 x--ro name yang:yang-identifier
 x--ro revision union

Lin, et al. Expires 4 September 2024 [Page 8]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 +--ro schema? inet:uri

 notifications:
 +---n yang-library-update
 | +--ro content-id -> /yang-library/content-id
 x---n yang-library-change
 x--ro module-set-id -> /modules-state/module-set-id

4.1.3. YANG Module

 The YANG module source code of ietf-yang-library-augmentedby in which
 augmentation to the ietf-yang-library of [RFC8525] is defined.

 <CODE BEGINS> file "ietf-yang-library-augmentedby@2023-10-27.yang"
 module ietf-yang-library-augmentedby {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-library-augmentedby";
 prefix yanglib-aug;

 import ietf-yang-library {
 prefix yanglib;
 reference
 "RFC 8525: YANG library";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Zhuoyao Lin
 <mailto:zephyre888@gmail.com>
 Benoit Claise
 <mailto:benoit.claise@huawei.com>
 IGNACIO DOMINGUEZ MARTINEZ-CASANUEVA
 <matilto:ignacio.dominguezmartinez@telefonica.com>";

 description
 "This module augments the ietf-yang-library defined in
 [RFC8525] to provide not only the deviation list, but also
 the augmented-by list, in order to give sufficient
 information about the YANG models reverse dependency. It
 facilitates the process of obtaining the entire
 dependencies of YANG model.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

Lin, et al. Expires 4 September 2024 [Page 9]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices. ";

 revision 2023-10-27 {
 description
 "Added list augmented-by in yang-library/module-set/module to
 make the module store the entire reverse dependency information
 (augmented-by and deviation).";
 reference
 "RFC XXXX: Support of augmentedby in ietf-yang-library";
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Augment the augmented-by list from module info with the
 module-augmented-by grouping" ;

 leaf-list augmented-by {
 type leafref {
 path "../../yanglib:module/yanglib:name";
 }

 description
 "Leaf-list of the augmentation used by this server to
 modify the conformance of the module associated with
 this entry. Note that the same module can be used for
 augmented-by for multiple modules, so the same
 entry MAY appear within multiple ’module’ entries.

 This reference MUST NOT (directly or indirectly)
 refer to the module being augmented.

 Robust clients may want to make sure that they handle a
 situation where a module augments itself (directly or

Lin, et al. Expires 4 September 2024 [Page 10]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 indirectly) gracefully.";
 }
 }
 }
 <CODE ENDS>

5. Implementation Status

 Note to the RFC-Editor: Please remove this section before publishing.

5.1. draft repository

 Here is the github repository for the YANG source code of this draft:
 https://github.com/Zephyre777/draft-lincla-netconf-yang-library-
 augmentation.git.

 For the demo, please refer to the demo folder in this repository.
 There is a netopeer2 instance running with updated version of libyang
 and sysrepo(links are listed in the demo instruction).

6. Changes

6.1. Changes from 00 to 01

 The list name has been updated from "augmentation" to "augmented-by",
 in order to represent the usage clearly.

 The leafref has been changed from absolute path "/yanglib:yang-
 libraray/yanglib:module-set/yanglib:module/yanglib:name" to relative
 path "../../yanglib:module/yanglib:name". The YANG validation in the
 appendix A shows that this path can work as expected.

 Section 5 Implementation and section 6 Changes has been added.

7. Security Considerations

 TBC

8. IANA Considerations

 This document has no actions for IANA.

9. References

9.1. Normative References

Lin, et al. Expires 4 September 2024 [Page 11]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8344] Bjorklund, M., "A YANG Data Model for IP Management",
 RFC 8344, DOI 10.17487/RFC8344, March 2018,
 <https://www.rfc-editor.org/info/rfc8344>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

9.2. Informative References

 [I-D.ietf-netconf-yang-notifications-versioning]
 Graf, T., Claise, B., and A. H. Feng, "Support of
 Versioning in YANG Notifications Subscription", Work in
 Progress, Internet-Draft, draft-ietf-netconf-yang-
 notifications-versioning-03, 20 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 yang-notifications-versioning-03>.

Lin, et al. Expires 4 September 2024 [Page 12]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 [I-D.netana-nmop-yang-kafka-integration]
 Graf, T., "An Architecture for YANG-Push to Apache Kafka
 Integration", Work in Progress, Internet-Draft, draft-
 netana-nmop-yang-kafka-integration-00, 24 February 2024,
 <https://datatracker.ietf.org/doc/html/draft-netana-nmop-
 yang-kafka-integration-00>.

 [I-D.netconf-tgraf-yang-push-observation-time]
 Graf, T., Claise, B., and A. H. Feng, "Support of Network
 Observation Timestamping in YANG Notifications", Work in
 Progress, Internet-Draft, draft-netconf-tgraf-yang-push-
 observation-time-00, 6 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-netconf-
 tgraf-yang-push-observation-time-00>.

 [Martinez-Casanueva2023]
 Martinez-Casanueva, I. D., Gonzalez-Sanchez, D., Bellido,
 L., Fernandez, D., and D. R. Lopez, "Toward Building a
 Semantic Network Inventory for Model-Driven Telemetry",
 DOI 10.1109/MCOM.001.2200222, March 2023,
 <https://doi.org/10.1109/MCOM.001.2200222>. IEEE
 Communications Magazine

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Appendix A. YANG module validation with yanglint

 This section gives a few examples that the user can try themselves
 with yanglint. This is created to prove the syntax correctness.

 The valid example should pass the validation while the invalid one
 will not, because the module has augmented a module in another
 module-set, which is illegal according to the YANG source code.

A.1. A valid ietf-yang-library data example

Lin, et al. Expires 4 September 2024 [Page 13]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 <CODE BEGINS> file "example_valid.xml"
 <yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
 <content-id>1</content-id>
 <module-set>
 <name>ms1</name>
 <module>
 <name>module1</name>
 <revision>2024-02-29</revision>
 <namespace>urn:ietf:params:xml:ns:yang:module1</namespace>
 <augmented-by
 xmlns="urn:ietf:params:xml:ns:yang:
 ietf-yang-library-augmentedby">module2</augmented-by>
 <augmented-by
 xmlns="urn:ietf:params:xml:ns:yang:
 ietf-yang-library-augmentedby">module3</augmented-by>
 </module>
 <module>
 <name>module2</name>
 <revision>2024-02-29</revision>
 <namespace>urn:ietf:params:xml:ns:yang:module2</namespace>
 </module>
 <module>
 <name>module3</name>
 <revision>2024-02-29</revision>
 <namespace>urn:ietf:params:xml:ns:yang:module3</namespace>
 </module>
 </module-set>
 </yang-library>
 <modules-state xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
 <module-set-id>0</module-set-id>
 </modules-state>
 <CODE ENDS>

A.2. An invalid ietf-yang-library data example

Lin, et al. Expires 4 September 2024 [Page 14]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 <CODE BEGINS> file "example_invalid.xml"
 <yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
 <content-id>1</content-id>
 <module-set>
 <name>ms1</name>
 <module>
 <name>module1</name>
 <revision>2024-02-29</revision>
 <namespace>urn:ietf:params:xml:ns:yang:module1</namespace>
 <augmented-by
 xmlns="urn:ietf:params:xml:ns:yang:
 ietf-yang-library-augmentedby">module2</augmented-by>
 <augmented-by
 xmlns="urn:ietf:params:xml:ns:yang:
 ietf-yang-library-augmentedby">module3</augmented-by>
 </module>
 <module>
 <name>module2</name>
 <revision>2024-02-29</revision>
 <namespace>urn:ietf:params:xml:ns:yang:module2</namespace>
 </module>
 <module>
 <name>module3</name>
 <revision>2024-02-29</revision>
 <namespace>urn:ietf:params:xml:ns:yang:module3</namespace>
 </module>
 </module-set>
 </yang-library>
 <modules-state xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">
 <module-set-id>0</module-set-id>
 </modules-state>
 <CODE ENDS>

Appendix B. YANG Module augmenting RFC7895

 This section defines the ietf-yang-library-rfc7895-augmentedby that
 augments the ietf-yang-library defined in [RFC7895]. The module-
 state/module list of this YANG module version is also defined in the
 [RFC8525] version though deprecated.

B.1. Tree View for YANG module augmenting RFC7895

 The following is the YANG tree diagram for ietf-yang-library-
 rfc7895-augmentedby augmenting RFC7895.

Lin, et al. Expires 4 September 2024 [Page 15]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 module: ietf-yang-library-rfc7895-augmentedby

 augment /yanglib:modules-state/yanglib:module:
 x--ro augmentedby* [name revision]
 +--ro name -> /yanglib:modules-state/module/name
 +--ro revision -> /yanglib:modules-state/module/revision

B.2. Full Tree View for ietf-yang-library with augmentation to RFC7895

 The following is the full YANG tree diagram of ietf-yang-library-
 rfc7895-augmentedby augmenting ietf-yang-library defined in RFC7895.

 module: ietf-yang-library
 +--ro modules-state
 +--ro module-set-id string
 +--ro module* [name revision]
 +--ro name yang:yang-identifier
 +--ro revision union
 +--ro schema? inet:uri
 +--ro namespace inet:uri
 +--ro feature* yang:yang-identifier
 +--ro deviation* [name revision]
 | +--ro name yang:yang-identifier
 | +--ro revision union
 +--ro conformance-type enumeration
 +--ro submodule* [name revision]
 | +--ro name yang:yang-identifier
 | +--ro revision union
 | +--ro schema? inet:uri
 x--ro yanglib-aug:augmented-by* [name revision]
 +--ro yanglib-aug:name
 -> /yanglib:modules-state/module/name
 +--ro yanglib-aug:revision
 -> /yanglib:modules-state/module/revision

 notifications:
 +---n yang-library-change
 +--ro module-set-id -> /modules-state/module-set-id

B.3. YANG module augmenting RFC7895

 The YANG module that augments the ietf-yang-library RFC7895.

Lin, et al. Expires 4 September 2024 [Page 16]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 <CODE BEGINS>
 file "ietf-yang-library-rfc7895-augmentedby@2023-10-27.yang"
 module ietf-yang-library-rfc7895-augmentedby {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-library-rfc7895-augmentedby
";
 prefix yanglib-aug;

 import ietf-yang-library {
 prefix yanglib;
 revision-date 2016-06-21;
 reference
 "RFC 7895: YANG Module Library.";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Zhuoyao Lin
 <mailto:zephyre888@gmail.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>
 Author: IGNACIO DOMINGUEZ MARTINEZ-CASANUEVA
 <matilto:ignacio.dominguezmartinez@telefonica.com>";

 description
 "This module augments the ietf-yang-library defined in [RFC7895]
 to provide not only the deviation list, but also the
 augmentedby list, in order to give sufficient information
 about the YANG models reverse dependency. It facilitates
 the process of obtaining the entire dependencies of YANG model.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions

Lin, et al. Expires 4 September 2024 [Page 17]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC XXXX; see the
 RFC itself for full legal notices. ";

 revision 2023-10-27 {
 description
 "Added list augmentedby in yang-library/modules-state/module to
 make the module store the entire reverse dependency information
 (augmentedby and deviation).";
 reference
 "RFC XXXX: Support of augmentedby in ietf-yang-library
 defined in RFC7895";
 }

 augment "/yanglib:modules-state/yanglib:module" {
 description
 "Augment the augmentedby from module info with the
 module-augmented-by grouping" ;
 uses yanglib-aug:module-state-augmented-by;
 }

 /*
 * Groupings
 */

 grouping module-state-augmented-by {
 description
 "This grouping defines a list with keys being the module
 name and revison. The list contains the augmented-by list.";

 list augmented-by {
 key "name revision";
 status deprecated;

 description
 "List of YANG augmented-by module names and revisions
 used by this server to modify the conformance of
 the module associated with this entry. Note that
 the same module can be used for augmented-by for
 multiple modules, so the same entry MAY appear
 within multiple ’module’ entries.

 The augment module MUST be present in the ’module’
 list, with the same name and revision values.
 The ’conformance-type’ value will be ’implement’ for
 the augment module.";

Lin, et al. Expires 4 September 2024 [Page 18]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 leaf name {
 type leafref {
 path "/yanglib:modules-state/yanglib:module/yanglib:name";
 }
 description
 "Identifies a given module in the yang library by
 its name.";
 }

 leaf revision {
 type leafref {
 path "/yanglib:modules-state/yanglib:module/yanglib:revision";
 }
 description
 "Revision of the module";
 }
 }
 }
 }
 <CODE ENDS>

Contributors

 The following people all contributed to creating this document:

Acknowledgements

 The author would like to thanks Jan Lindblad and Jean Quilbeuf for
 his help during the design of the YANG module.

Authors’ Addresses

 Zhuoyao
 Huawei
 Townsend Street, 4th Floor George’s Court
 Dublin
 Ireland
 Email: zephyre888@gmail.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Lin, et al. Expires 4 September 2024 [Page 19]

Internet-Draft Augmented-by Addition into the IETF-YANG March 2024

 Ignacio Dominguez Martinez-Casanueva
 Telefonica Innovacion Digital
 Ronda de la Comunicacion, S/N
 Madrid 28050
 Spain
 Email: ignacio.dominguezmartinez@telefonica.com

Lin, et al. Expires 4 September 2024 [Page 20]

NETCONF R. Gagliano

Internet-Draft Cisco Systems

Intended status: Standards Track K. Larsson

Expires: 14 July 2024 Deutsche Telekom AG

 J. Lindblad

 Cisco Systems

 11 January 2024

 RESTCONF Extension to support Trace Context Headers

 draft-netconf-restconf-trace-ctx-headers-00

Abstract

 This document extends the RESTCONF protocol in order to support trace

 context propagation as defined by the W3C.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at TBD. Status

 information for this document may be found at

 https://datatracker.ietf.org/doc/draft-netconf-restconf-trace-ctx-

 headers/.

 Discussion of this document takes place on the NETCONF Working Group

 mailing list (mailto:netconf@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/netmod/. Subscribe at

 https://www.ietf.org/mailman/listinfo/netconf/.

 Source for this draft and an issue tracker can be found at

 https://github.com/TBD.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

Gagliano, et al. Expires 14 July 2024 [Page 1]

Internet-Draft rc_trace January 2024

 This Internet-Draft will expire on 14 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Terminology . 3

 2. RESTCONF Extensions . 3

 2.1. Errors handling . 3

 2.2. Trace Context header versionning 5

 3. Security Considerations 5

 4. IANA Considerations . 5

 5. Acknowledgments . 5

 6. References . 5

 6.1. Normative References 5

 6.2. Informative References 6

 Appendix A. Example RESTCONF calls 6

 Appendix B. Changes (to be deleted by RFC Editor) 6

 B.1. From version 00 to

 draft-netconf-restconf-trace-ctx-headers-00 6

 Appendix C. TO DO List (to be deleted by RFC Editor) 6

 Authors’ Addresses . 7

1. Introduction

 Network automation and management systems commonly consist of

 multiple sub-systems and together with the network devices they

 manage, they effectively form a distributed system. Distributed

 tracing is a methodology implemented by tracing tools to follow,

 analyze and debug operations, such as configuration transactions,

 across multiple distributed systems. An operation is uniquely

 identified by a trace-id and through a trace context, carries some

 metadata about the operation. Propagating this "trace context"

 between systems enables forming a coherent view of the entire

 operation as carried out by all involved systems.

Gagliano, et al. Expires 14 July 2024 [Page 2]

Internet-Draft rc_trace January 2024

 The W3C has defined two HTTP headers (traceparent and tracestate) for

 context propagation that are useful for distributed systems like the

 ones defined in [RFC8309]. The goal of this document is to adopt

 this W3C specification for the RESTCONF protocol.

 This document does not define new HTTP extensions but makes those

 defined in [W3C-Trace-Context] optional headers for the RESTCONF

 protocol.

 In [I-D.draft-rogaglia-netconf-trace-ctx-extension-03], the NETCONF

 protocol extension is defined and we will re-use several of the YANG

 and XML objects defined in that document for RESTCONF. Please refer

 to that document for additional context and example applications.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL

 NOT","SHOULD","SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",

 and "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2. RESTCONF Extensions

 A RESTCONF server SHOULD support trace context traceparent header as

 defined in [W3C-Trace-Context].

 A RESTCONF server SHOULD support trace context tracestate header as

 defined in [W3C-Trace-Context].

2.1. Errors handling

 The RESTCONF server SHOULD follow the "Processing Model for Working

 with Trace Context" as specified in [W3C-Trace-Context].

 If the server rejects the RPC because of the trace context headers

 values, the server MUST return an rpc-error with the following

 values:

 error-tag: operation-failed

 error-type: protocol

 error-severity: error

 Additionally, the error-info tag SHOULD contain a relevant details

 about the error.

Gagliano, et al. Expires 14 July 2024 [Page 3]

Internet-Draft rc_trace January 2024

 Finally, the sx:structure defined in

 [I-D.draft-rogaglia-netconf-trace-ctx-extension-03] SHOULD be present

 in any error message from the server.

 Example of a badly formated trace context extension using [RFC8040]

 example B.2.1:

 POST /restconf/data/example-jukebox:jukebox/library HTTP/1.1

 Host: example.com

 Content-Type: application/yang-data+json

 traceparent: SomeBadFormatHere

 tracestate: OrSomeBadFormatHere

 {

 "example-jukebox:artist" : [

 {

 "name" : "Foo Fighters"

 }

]

 }

 And the expected error message:

 HTTP/1.1 400 Bad Request

 Date: Tue, 20 Jun 2023 20:56:30 GMT

 Server: example-server

 Content-Type: application/yang-data+json

 { "ietf-restconf:errors" : {

 "error" : [

 {

 "error-type" : "protocol",

 "error-tag" : "operation-failed",

 "error-severity" : "error",

 "error-message" :

 "OTLP traceparent attribute incorrectly formatted",

 "error-info": {

 "ietf-netconf-otlp-context:meta-name" : "traceparent",

 "ietf-netconf-otlp-context:meta-value" :

 "SomeBadFormatHere",

 "ietf-netconf-otlp-context:error-type" :

 "ietf-netconf-otlp-context:bad-format"

 }

 }

]

 }

 }

Gagliano, et al. Expires 14 July 2024 [Page 4]

Internet-Draft rc_trace January 2024

2.2. Trace Context header versionning

 This extension refers to the [W3C-Trace-Context] trace context

 capability. The W3C traceparent and trace-state headers include the

 notion of versions. It would be desirable for a RESTCONF client to

 be able to discover the one or multiple versions of these headers

 supported by a server. We would like to achieve this goal avoiding

 the deffinition of new RESTCONF capabilities for each headers’

 version.

 [I-D.draft-rogaglia-netconf-trace-ctx-extension-03] defines a pair

 YANG modules that SHOULD be included in the YANG library per

 [RFC8525] of the RESTCONF server supporting the RESTCONF Trace

 Context extension that will refer to the headers’ supported versions.

 Future updates of this document could include additional YANG modules

 for new headers’ versions.

3. Security Considerations

 TODO Security

4. IANA Considerations

 This document has no IANA actions.

5. Acknowledgments

 We would like to acknowledge

6. References

6.1. Normative References

 [I-D.draft-rogaglia-netconf-trace-ctx-extension-03]

 Gagliano, R., Larsson, K., and J. Lindblad, "NETCONF

 Extension to support Trace Context propagation", Work in

 Progress, Internet-Draft, draft-rogaglia-netconf-trace-

 ctx-extension-03, 6 July 2023,

 <https://datatracker.ietf.org/doc/html/draft-rogaglia-

 netconf-trace-ctx-extension-03>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

Gagliano, et al. Expires 14 July 2024 [Page 5]

Internet-Draft rc_trace January 2024

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/rfc/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,

 and R. Wilton, "YANG Library", RFC 8525,

 DOI 10.17487/RFC8525, March 2019,

 <https://www.rfc-editor.org/rfc/rfc8525>.

 [W3C-Trace-Context]

 "W3C Recommendation on Trace Context", 23 November 2021,

 <https://www.w3.org/TR/2021/REC-trace-context-

 1-20211123/>.

6.2. Informative References

 [RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models

 Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,

 <https://www.rfc-editor.org/rfc/rfc8309>.

Appendix A. Example RESTCONF calls

 TBD

Appendix B. Changes (to be deleted by RFC Editor)

B.1. From version 00 to draft-netconf-restconf-trace-ctx-headers-00

 * Adopted by NETCONF WG

 * Moved repository to NETCONF WG

 * Changed build system to use martinthomson’s excellent framework

 * Ran make fix-lint to remove white space at EOL etc.

 * Added this change note. No other content changes.

Appendix C. TO DO List (to be deleted by RFC Editor)

 * Security Considerations

 * Example RESTCONF Calls

Gagliano, et al. Expires 14 July 2024 [Page 6]

Internet-Draft rc_trace January 2024

 * The W3C is working on a draft document to introduce the concept of

 "baggage" that we expect part of a future draft for NETCONF and

 RESTCONF

Authors’ Addresses

 Roque Gagliano

 Cisco Systems

 Avenue des Uttins 5

 CH-1180 Rolle

 Switzerland

 Email: rogaglia@cisco.com

 Kristian Larsson

 Deutsche Telekom AG

 Email: kll@dev.terastrm.net

 Jan Lindblad

 Cisco Systems

 Email: jlindbla@cisco.com

Gagliano, et al. Expires 14 July 2024 [Page 7]

NETCONF R. Gagliano
Internet-Draft Cisco Systems
Intended status: Standards Track K. Larsson
Expires: 14 July 2024 Deutsche Telekom AG
 J. Lindblad
 Cisco Systems
 11 January 2024

 NETCONF Extension to support Trace Context propagation
 draft-netconf-trace-ctx-extension-00

Abstract

 This document defines how to propagate trace context information
 across the Network Configuration Protocol (NETCONF), that enables
 distributed tracing scenarios. It is an adaption of the HTTP-based
 W3C specification.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at TBD. Status
 information for this document may be found at
 https://datatracker.ietf.org/doc/draft-netconf-trace-ctx-extension/.

 Discussion of this document takes place on the NETCONF Working Group
 mailing list (mailto:netconf@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/netmod/. Subscribe at
 https://www.ietf.org/mailman/listinfo/netconf/.

 Source for this draft and an issue tracker can be found at
 https://github.com/TBD.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Gagliano, et al. Expires 14 July 2024 [Page 1]

Internet-Draft nc_trace January 2024

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 July 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Implementation example 1: OpenTelemetry 4
 1.2. Implementation example 2: YANG DataStore 6
 1.3. Use Cases . 7
 1.3.1. Provisioning root cause analysis 7
 1.3.2. System performance profiling 8
 1.3.3. Billing and auditing 8
 1.4. Terminology . 8
 2. NETCONF Extension . 9
 2.1. Error handling . 10
 2.2. Trace Context extension versionning 11
 3. YANG Modules . 11
 3.1. YANG module for otlp-trace-context-error-info
 structure . 12
 3.2. YANG module for traceparent header version 1.0 14
 3.3. YANG module for tracestate header version 1.0 14
 4. Security Considerations 15
 5. IANA Considerations . 15
 6. Acknowledgments . 16
 7. References . 16
 7.1. Normative References 16
 7.2. Informative References 16
 Appendix A. Changes (to be deleted by RFC Editor) 17
 A.1. From version 03 to
 draft-netconf-trace-ctx-extension-00-00 17

Gagliano, et al. Expires 14 July 2024 [Page 2]

Internet-Draft nc_trace January 2024

 A.2. From version 02 to 03 17
 A.3. From version 01 to 02 17
 A.4. From version 00 to 01 18
 Appendix B. TO DO List (to be deleted by RFC Editor) 18
 Appendix C. XML Attributes vs RPCs input augmentations discussion
 (to be deleted by RFC Editor) 18
 Authors’ Addresses . 19

1. Introduction

 Network automation and management systems commonly consist of
 multiple sub-systems and together with the network devices they
 manage, they effectively form a distributed system. Distributed
 tracing is a methodology implemented by tracing tools to follow,
 analyze and debug operations, such as configuration transactions,
 across multiple distributed systems. An operation is uniquely
 identified by a trace-id and through a trace context, carries some
 metadata about the operation. Propagating this "trace context"
 between systems enables forming a coherent view of the entire
 operation as carried out by all involved systems.

 The W3C has defined two HTTP headers for context propagation that are
 useful in use case scenarios of distributed systems like the ones
 defined in [RFC8309]. This document defines an extension to the
 NETCONF protocol to add the same concepts and enable trace context
 propagation over NETCONF.

 It is worth noting that the trace context is not meant to have any
 relationship with the data that is carried with a given operation
 (including configurations, service identifiers or state information).

 A trace context also differs from [I-D.ietf-netconf-transaction-id]
 in several ways as the trace operation may involve any operation
 (including for example validate, lock, unlock, etc.) Additionally, a
 trace context scope may include the full application stack
 (orchestrator, controller, devices, etc) rather than a single NETCONF
 server, which is the scope for the transaction-id. The trace context
 is also complemetary to [I-D.ietf-netconf-transaction-id] as a given
 trace-id can be associated with the different transaction-ids as part
 of the information exported to the collector.

 The following enhancement of the reference SDN Architecture from RFC
 8309 shows the impact of distributed traces for a network operator.

Gagliano, et al. Expires 14 July 2024 [Page 3]

Internet-Draft nc_trace January 2024

 ------------------ -------------
 | Orchestrator | | |
 | | ------------> | |
 .------------------. | |
 . : . | |
 . : . | Collector |
 ------------ ------------ ------------ | (Metrics, |
 | | | | | | | Events, |
 | Controller | | Controller | | Controller | --> | Logs, |
 | | | | | | | Traces) |
 ------------ ------------ ------------ | |
 : . . : | |
 : . . : | |
 : . . : | |
 --------- --------- --------- --------- | |
 | Network | | Network | | Network | | Network | | |
 | Element | | Element | | Element | | Element | -> | |
 --------- --------- --------- --------- -------------

 Figure 1: A Sample SDN Architecture from RFC8309 augmented
 to include the export of metrics, events, logs and traces
 from the different components to a common collector.

 The network automation, management and control architectures are
 distributed in nature. In order to "manage the managers", operators
 would like to use the same techniques as any other distributed
 systems in their IT environment. Solutions for analysing Metrics,
 Events, Logs and Traces (M.E.L.T) are key for the successful
 monitoring and troubleshooting of such applications. Initiatives
 such as the OpenTelemetry [OpenTelemetry] enable rich ecosystems of
 tools that NETCONF-based applications would want to participate in.

 With the implementation of this trace context propagation extension
 to NETCONF, backend systems behind the M.E.L.T collector will be able
 to correlate information from different systems but related to a
 common context.

1.1. Implementation example 1: OpenTelemetry

 We will describe an example to show the value of trace context
 propagation in the NETCONF protocol. In Figure 2, we show a
 deployment based on Figure 1 with a single controller and two network
 elements. In this example, the NETCONF protocol is running between
 the Orchestrator and the Controller. NETCONF is also used between
 the Controller and the Network Elements.

Gagliano, et al. Expires 14 July 2024 [Page 4]

Internet-Draft nc_trace January 2024

 Let’s assume an edit-config operation between the orchestrator and
 the controller that results (either synchronously or asynchronously)
 in corresponding edit-config operations from the Controller towards
 the two network elements. All trace operations are related and will
 create M.E.L.T data.

 ------------------ -------------
 | Orchestrator | OTLP protocol | |
 | | -------------------> | |
 .------------------. | |
 . NETCONF | |
 . edit-config (trace-id "1", parent-id "A") | Collector |
 ------------ | (Metrics, |
		Events,
Controller	------------------------------------>	Logs,
	OTLP protocol	Traces)
 ------------ | |
 : . NETCONF | |
 : . edit-config (trace-id "1", parent-id "B") | |
 : . | |
 --------- --------- | |
 | Network | | Network | OTLP protocol | |
 | Element | | Element | --------------------------> | |
 --------- --------- -------------

 Figure 2: An implementation example where the NETCONF
 protocol is used between the Orchestrator and the Controller
 and also between the Controller and the Network Elements.
 Every component exports M.E.L.T information to the collector
 using the OTLP protocol.

 Each of the components in this example (Orchestrator, Controller and
 Network Elements) is exporting M.E.L.T information to the collector
 using the OpenTelemetry Protocol (OTLP).

 For every edit-config operation, the trace context is included. In
 particular, the same trace-id "1" (simplified encoding for
 documentation) is included in all related NETCONF messages, which
 enables the collector and any backend application to correlate all
 M.E.L.T messages related to this transaction in this distributed
 stack.

Gagliano, et al. Expires 14 July 2024 [Page 5]

Internet-Draft nc_trace January 2024

 Another interesting attribute is the parent-id. We can see in this
 example that the parent-id between the orchestrator and the
 controller ("A") is different from the one between the controller and
 the network elements ("B"). This attribute will help the collector
 and the backend applications to build a connectivity graph to
 understand how M.E.L.T information exported from one component
 relates to the information exported from a different component.

 With this additional metadata exchanged between the components and
 exposed to the M.E.L.T collector, there are important improvements to
 the monitoring and troubleshooting operations for the full
 application stack.

1.2. Implementation example 2: YANG DataStore

 OpenTelemetry implements the "push" model for data streaming where
 information is sent to the back-end as soon as produced and is not
 required to be stored in the system. In certain cases, a "pull"
 model may be envisioned, for example for performing forensic analysis
 while not all OTLP traces are available in the back-end systems.

 An implementation of a "pull" mechanism for M.E.L.T. information in
 general and for traces in particular, could consist of storing traces
 in a yang datastore (particularly the operational datastore.)
 Implementations should consider the use of circular buffers to avoid
 resources exhaustion. External systems could access traces (and
 particularly past traces) via NETCONF, RESTCONF, gNMI or other
 polling mechanisms. Finally, storing traces in a YANG datastore
 enables the use of YANG-Push [RFC8641] or gNMI Telemetry as an
 additional "push" mechanisms.

 This document does not specify the YANG module in which traces could
 be stored inside the different components. That said, storing the
 context information described in this document as part of the
 recorded traces would allow back-end systems to correlate the
 information from different components as in the OpenTelemetry
 implementation.

 Note to be removed in the future: Some initial ideas are under
 discussion in the IETF for defining a standard YANG data model for
 traces. For example see: I-D.quilbeuf-opsawg-configuration-tracing
 which focusses only on configuration change root cause analysis use
 case (see the use case desciption below). These ideas are
 complementary to this draft.

Gagliano, et al. Expires 14 July 2024 [Page 6]

Internet-Draft nc_trace January 2024

 ------------------ -------------
 | Orchestrator | | |
 | | NC/RC/gNMI or YP | |
 | YANG DataStore | <-------------------> | |
 .------------------. pull or push | |
 . NETCONF | |
 . edit-config (trace-id "1", parent-id "A") | Collector |
 ---------------- | (Metrics, |
	NC/RC/gNMI or YP	Events,
Controller	-------------------------------->	Logs,
YANG DataStore	pull or push	Traces)
 ---------------- | |
 : . NETCONF | |
 : . edit-config (trace-id "1", parent-id "B") | |
 : . | |
 --------- --------- | |
Network		Network	NC/RC/gNMI or YP	
Element		Element	-------------------------->	
YG DS		YG DS	pull or push	
 --------- --------- -------------

 Figure 3: An implementation example where the NETCONF
 protocol is used between the Orchestrator and the Controller
 and also between the Controller and the Network Elements.
 M.E.L.T. information is stored in local Yang Datastores and
 accessed by the collector using "pull" mechanisms using the
 NETCONF (NC), RESTCONF (RC) or gNMI protocols. A "push"
 strategy is also possible via YANG-Push or gNMI.

1.3. Use Cases

1.3.1. Provisioning root cause analysis

 When a provisioning activity fails, errors are typically propagated
 northbound, however this information may be difficult to troubleshoot
 and typically, operators are required to navigate logs across all the
 different components.

 With the support for trace context propagation as described in this
 document for NETCONF, the collector will be able to search every
 trace, event, metric, or log in connection to that trace-id and
 faciliate the performance of a root cause analysis due to a network
 changes. The trace information could also be included as an optional
 resource with the different NETCONF transaction ids described in
 [I-D.ietf-netconf-transaction-id].

Gagliano, et al. Expires 14 July 2024 [Page 7]

Internet-Draft nc_trace January 2024

1.3.2. System performance profiling

 When operating a distributed system such as the one shown in
 Figure 2, operators are expected to benchmark Key Performance
 Indicators (KPIs) for the most common tasks. For example, what is
 the typical delay when provisioning a VPN service across different
 controllers and devices.

 Thanks to Application Performance Management (APM) systems, from
 these KPIs, an operator can detect a normal and abnormal behaviour of
 the distributed system. Also, an operator can better plan any
 upgrades or enhancements in the platform.

 With the support for context propagation as described in this
 document for NETCONF, much richer system-wide KPIs can be defined and
 used for troubleshooting as the metrics and traces propagated by the
 different components share a common context. Troubleshooting for
 abnormal behaviours can also be troubleshot from the system view down
 to the individual element.

1.3.3. Billing and auditing

 In certain circumstances, we could envision tracing infomration used
 as additional inputs to billing systems. In particular, trace
 context information could be used to validate that a certain
 northbound order was carried out in southbound systems.

1.4. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT","SHOULD","SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
 and "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The XML prefixes used in this document are mapped as follows:

 * xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0",

 * xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0" and

 * xmlns:ietf-netconf-otlp-context=
 "urn:ietf:params:xml:ns:yang:ietf-netconf-otlp-context"

Gagliano, et al. Expires 14 July 2024 [Page 8]

Internet-Draft nc_trace January 2024

2. NETCONF Extension

 When performing NETCONF operations by sending NETCONF RPCs, a NETCONF
 client MAY include trace context information in the form of XML
 attributes. The [W3C-Trace-Context] defines two HTTP headers;
 traceparent and tracestate for this purpose. NETCONF clients that
 are taking advantage of this feature MUST add one w3ctc:traceparent
 attribute and MAY add one w3ctc:tracestate attribute to the nc:rpc
 tag.

 A NETCONF server that receives a trace context attribute in the form
 of a w3ctc:traceparent attribute SHOULD apply the mutation rules
 described in [W3C-Trace-Context]. A NETCONF server MAY add one
 w3ctc:traceparent attribute in the nc:rpc-reply response to the
 nc:rpc tag above. NETCONF servers MAY also add one w3ctc:traceparent
 attribute in notification and update message envelopes:
 notif:notification, yp:push-update and yp:push-change-update.

 For example, a NETCONF client might send:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"
 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"
 w3ctc:traceparent=
 "00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01">
 <get-config/>
 </rpc>

 In all cases above where a client or server adds a w3ctc:traceparent
 attribute to a tag, that client or server MAY also add one
 w3ctc:tracestate attribute to the same tag.

 The proper encoding and interpretation of the contents of the
 w3ctc:traceparent attribute is described in [W3C-Trace-Context]
 section 3.2 except 3.2.1. The proper encoding and interpretation of
 the contents in the w3ctc:tracestate attribute is described in
 [W3C-Trace-Context] section 3.3 except 3.3.1 and 3.3.1.1. A NETCONF
 XML tag can only have zero or one w3ctc:tracestate attributes, so its
 content MUST always be encoded as a single string. The tracestate
 field value is a list of list-members separated by commas (,). A
 list-member is a key/value pair separated by an equals sign (=).
 Spaces and horizontal tabs surrounding list-members are ignored.
 There is no limit to the number of list-members in a list.

 For example, a NETCONF client might send:

Gagliano, et al. Expires 14 July 2024 [Page 9]

Internet-Draft nc_trace January 2024

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"
 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"
 w3ctc:tracestate="rojo=00f067aa0ba902b7,congo=t61rcWkgMzE"
 w3ctc:traceparent=
 "00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01">
 <get-config/>
 </rpc>

 As in all XML documents, the order between the attributes in an XML
 tag has no significance. Clients and servers MUST be prepared to
 handle the attributes no matter in which order they appear. The
 tracestate value MAY contain double quotes in its payload. If so,
 they MUST be encoded according to XML rules, for example:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"
 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"
 w3ctc:traceparent=
 "00-4bf92f3577b34da6a3ce929d0e0e4736-00f067aa0ba902b7-01"
 w3ctc:tracestate=
 "value-with-quotes="Quoted string",other-value=123">
 <get-config/>
 </rpc>

2.1. Error handling

 The NETCONF server SHOULD follow the "Processing Model for Working
 with Trace Context" as specified in [W3C-Trace-Context].

 If the server rejects the RPC because of the trace context extension
 value, the server MUST return an rpc-error with the following values:

 error-tag: operation-failed
 error-type: protocol
 error-severity: error

 Additionally, the error-info tag SHOULD contain a otlp-trace-context-
 error-info structure with relevant details about the error. This
 structure is defined in the module ietf-netconf-otlp-context.yang.
 Example of a badly formated trace context extension:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1"
 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"
 w3ctc:traceparent=
 "Bad Format"
 w3ctc:tracestate=
 "value-with-quotes="Quoted string",other-value=123">
 <get-config/>
 </rpc>

Gagliano, et al. Expires 14 July 2024 [Page 10]

Internet-Draft nc_trace January 2024

 This might give the following error response:

 <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:w3ctc="urn:ietf:params:xml:ns:netconf:w3ctc:1.0"
 xmlns:ietf-netconf-otlp-context=
 "urn:ietf:params:xml:ns:yang:otlp-context"
 message-id="1">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-message>
 OTLP traceparent attribute incorrectly formatted
 </error-message>
 <error-info>
 <ietf-netconf-otlp-context:meta-name>
 w3ctc:traceparent
 </ietf-netconf-otlp-context:meta-name>
 <ietf-netconf-otlp-context:meta-value>
 Bad Format
 </ietf-netconf-otlp-context:meta-value>
 <ietf-netconf-otlp-context:error-type>
 ietf-netconf-otlp-context:bad-format
 </ietf-netconf-otlp-context:error-type>
 </error-info>
 </rpc-error>
 </rpc-reply>

2.2. Trace Context extension versionning

 This extension refers to the [W3C-Trace-Context] trace context
 capability. The W3C traceparent and trace-state headers include the
 notion of versions. It would be desirable for a NETCONF client to be
 able to discover the one or multiple versions of these headers
 supported by a server. We would like to achieve this goal avoiding
 the deffinition of new NETCONF capabilities for each headers’
 version.

 We define a pair YANG modules (ietf-netconf-otlp-context-traceparent-
 version-1.0.yang and ietf-netconf-otlp-context-tracestate-version-
 1.0.yang) that SHOULD be included in the YANG library per [RFC8525]
 of the NETCONF server supporting the NETCONF Trace Context extension.
 These capabilities that will refer to the headers’ supported
 versions. Future updates of this document could include additional
 YANG modules for new headers’ versions.

3. YANG Modules

Gagliano, et al. Expires 14 July 2024 [Page 11]

Internet-Draft nc_trace January 2024

3.1. YANG module for otlp-trace-context-error-info structure

 <CODE BEGINS>
 module ietf-netconf-otlp-context {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:otlp-context";
 prefix ietf-netconf-otlp-context;

 import ietf-yang-structure-ext {
 prefix sx;
 reference "RFC8791: YANG Data Structure Extensions";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>";

 description
 "When propagating tracing information across applications,
 client and servers needs to share some specific contextual
 information. This NETCONF extensions aligns the NETCONF
 protocol to the W3C trace-context document:
 https://www.w3.org/TR/2021/REC-trace-context-1-20211123

 Copyright (c) <year> IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2023-07-01 {

Gagliano, et al. Expires 14 July 2024 [Page 12]

Internet-Draft nc_trace January 2024

 description
 "Initial revision";
 reference
 "RFC XXXX";
 }

 identity meta-error {
 description "Base identity for otlp attribute errors.";
 }

 identity missing {
 base meta-error;
 description "Indicates an attribute or header that is required
 (in the current situation) is missing.";
 }
 identity bad-format {
 base meta-error;
 description "Indicates an attribute or header value where the
 value is incorrectly formatted.";
 }
 identity processing-error {
 base meta-error;
 description "Indicates that the server encountered a processing
 error while processing the attribute or header value.";
 }

 typedef meta-error-type {
 type identityref {
 base meta-error;
 }
 description "Error type";
 }

 sx:structure otlp-trace-context-error-info {
 container otlp-trace-context-error-info {
 description
 "This error is returned by a NETCONF or RESTCONF server
 when a client sends a NETCONF RPC with additonal
 attributes or RESTCONF RPC with additional headers
 for trace context processing, and there is an error
 related to them. The server has aborted the RPC.";
 leaf meta-name {
 type string;
 description
 "The name of the problematic or missing meta information.
 In NETCONF, the qualified XML attribute name.
 In RESTCONF, the HTTP header name.
 If a client sent a NETCONF RPC with the attribute

Gagliano, et al. Expires 14 July 2024 [Page 13]

Internet-Draft nc_trace January 2024

 w3ctc:traceparent=’incorrect-format’
 this leaf would have the value ’w3ctc:traceparent’";
 }
 leaf meta-value {
 type string;
 description
 "The value of the problematic meta information received
 by the server.
 If a client sent a NETCONF RPC with the attribute
 w3ctc:traceparent=’incorrect-format’
 this leaf would have the value ’incorrect-format’.";
 }
 leaf error-type {
 type meta-error-type;
 description
 "Indicates the type of OTLP meta information problem
 detected by the server.
 If a client sent an RPC annotated with the attribute
 w3ctc:traceparent=’incorrect-format’
 this leaf might have the value
 ’ietf-netconf-otlp-context:bad-format’.";
 }
 }
 }
 }
 <CODE ENDS>

3.2. YANG module for traceparent header version 1.0

 <CODE BEGINS>
 module ietf-netconf-otlp-context-traceparent-version-1.0 {
 namespace "urn:ietf:params:xml:ns:yang:traceparent:1.0";
 prefix ietf-netconf-otlpparent-1.0;
 }
 <CODE ENDS>

3.3. YANG module for tracestate header version 1.0

 <CODE BEGINS>
 module ietf-netconf-otlp-context-tracestate-version-1.0 {
 namespace "urn:ietf:params:xml:ns:yang:tracestate:1.0";
 prefix ietf-netconf-otlpstate-1.0;
 }
 <CODE ENDS>

Gagliano, et al. Expires 14 July 2024 [Page 14]

Internet-Draft nc_trace January 2024

4. Security Considerations

 TODO Security

5. IANA Considerations

 This document registers the following capability identifier URN in
 the ’Network Configuration Protocol (NETCONF) Capability URNs’
 registry:

 urn:ietf:params:netconf:capability:w3ctc:1.0

 This document registers one XML namespace URN in the ’IETF XML
 registry’, following the format defined in [RFC3688]
 (https://tools.ietf.org/html/rfc3688).

 URI: urn:ietf:params:xml:ns:netconf:w3ctc:1.0

 Registrant Contact: The IETF IESG.

 XML: N/A, the requested URI is an XML namespace.

 This document registers three module names in the ’YANG Module Names’
 registry, defined in RFC 6020:

 name: ietf-netconf-otlp-context-traceparent-version-1.0

 prefix: ietf-netconf-otlpparent-1.0

 namespace: urn:ietf:params:xml:ns:yang:traceparent:1.0

 RFC: XXXX

 and

 name: ietf-netconf-otlp-context-tracestate-version-1.0

 prefix: ietf-netconf-otlpstate-1.0

 namespace: urn:ietf:params:xml:ns:yang:tracestate:1.0

 RFC: XXXX

 and

Gagliano, et al. Expires 14 July 2024 [Page 15]

Internet-Draft nc_trace January 2024

 name: ietf-netconf-otlp-context

 prefix: ietf-netconf-otlp-context

 namespace: urn:ietf:params:xml:ns:yang:otlp-context

 RFC: XXXX

6. Acknowledgments

 TBD

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/rfc/rfc8525>.

 [W3C-Trace-Context]
 "W3C Recommendation on Trace Context", 23 November 2021,
 <https://www.w3.org/TR/2021/REC-trace-context-
 1-20211123/>.

7.2. Informative References

 [I-D.ietf-netconf-transaction-id]
 Lindblad, J., "Transaction ID Mechanism for NETCONF", Work
 in Progress, Internet-Draft, draft-ietf-netconf-
 transaction-id-02, 10 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 transaction-id-02>.

Gagliano, et al. Expires 14 July 2024 [Page 16]

Internet-Draft nc_trace January 2024

 [OpenTelemetry]
 "OpenTelemetry Cloud Native Computing Foundation project",
 29 August 2022, <https://opentelemetry.io>.

 [RFC8309] Wu, Q., Liu, W., and A. Farrel, "Service Models
 Explained", RFC 8309, DOI 10.17487/RFC8309, January 2018,
 <https://www.rfc-editor.org/rfc/rfc8309>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/rfc/rfc8641>.

 [W3C-Baggage]
 "W3C Propagation format for distributed context Baggage",
 23 November 2021,
 <https://www.w3.org/TR/baggage/#examples-of-http-headers>.

Appendix A. Changes (to be deleted by RFC Editor)

A.1. From version 03 to draft-netconf-trace-ctx-extension-00-00

 * Adopted by NETCONF WG

 * Moved repository to NETCONF WG

 * Changed build system to use martinthomson’s excellent framework

 * Ran make fix-lint to remove white space at EOL etc.

 * Added this change note. No other content changes.

A.2. From version 02 to 03

 * Changed IANA section to IESG per IANA email

 * Created sx:structure and improved error example

 * Added ietf-netconf-otlp-context.yang for the sx:structure

 * Created a dedicated section for the YANG modules

A.3. From version 01 to 02

 * Added Error Handling intial section

 * Added how to manage versioning by defining YANG modules for each
 traceparent and trastate versions as defined by W3C.

Gagliano, et al. Expires 14 July 2024 [Page 17]

Internet-Draft nc_trace January 2024

 * Added ’YANG Module Names’ to IANA Considerations

A.4. From version 00 to 01

 * Added new section: Implementation example 2: YANG DataStore

 * Added new use case: Billing and auditing

 * Added in introduction and in "Provisioning root cause analysis"
 the idea that the different transaction-ids defined in
 [I-D.ietf-netconf-transaction-id] could be added as part of the
 tracing information to be exported to the collectors, showing how
 the two documents are complementary.

Appendix B. TO DO List (to be deleted by RFC Editor)

 * Security Considerations

 * The W3C is working on a draft document to introduce the concept of
 "baggage" [W3C-Baggage] that we expect part of a future draft for
 NETCONF and RESTCONF

Appendix C. XML Attributes vs RPCs input augmentations discussion (to
 be deleted by RFC Editor)

 There are arguments that can be raised regarding using XML Attribute
 or to augment NETCONF RPCs.

 We studied Pros/Cons of each option and decided to propose XML
 attributes:

 XML Attributes Pro:

 * Literal alignment with W3C specification

 * Same encoding for RESTCONF and NETCONF enabling code reuse

 * One specification for all current and future rpcs

 XML Attributes Cons:

 * No YANG modeling, multiple values represented as a single string

 * Dependency on W3C for any extension or changes in the future as
 encoding will be dictated by string encoding

 RPCs Input Augmentations Pro:

Gagliano, et al. Expires 14 July 2024 [Page 18]

Internet-Draft nc_trace January 2024

 * YANG model of every leaf

 * Re-use of YANG toolkits

 * Simple updates by augmentations on existing YANG module

 * Possibility to express deviations in case of partial support

 RPCs Input Augmentations Cons:

 * Need to augment every rpc, including future rpcs would need to
 consider these augmentations, which is harder to maintain

 * There is no literal alignment with W3C standard. However, as
 mentioned before most of the time there will be modifications to
 the content

 * Would need updated RFP for each change at W3C, which will make
 adoption of new features slower

Authors’ Addresses

 Roque Gagliano
 Cisco Systems
 Avenue des Uttins 5
 CH-1180 Rolle
 Switzerland
 Email: rogaglia@cisco.com

 Kristian Larsson
 Deutsche Telekom AG
 Email: kll@dev.terastrm.net

 Jan Lindblad
 Cisco Systems
 Email: jlindbla@cisco.com

Gagliano, et al. Expires 14 July 2024 [Page 19]

	draft-ahuang-netconf-notif-yang-04
	draft-awwhl-netconf-list-pagination-snapshot-00
	draft-ietf-netconf-configuration-tracing-00
	draft-ietf-netconf-list-pagination-03
	draft-ietf-netconf-list-pagination-nc-03
	draft-ietf-netconf-list-pagination-rc-03
	draft-ietf-netconf-privcand-02
	draft-ietf-netconf-transaction-id-03
	draft-ietf-netconf-udp-client-server-01
	draft-ietf-netconf-udp-notif-12
	draft-lincla-netconf-yang-library-augmentation-01
	draft-netconf-restconf-trace-ctx-headers-00
	draft-netconf-trace-ctx-extension-00

