
NETCONF                                                     A. Elhassany

Internet-Draft                                                  Swisscom

Intended status: Standards Track                            1 March 2024

Expires: 2 September 2024

               Validating anydata in YANG Library context

                 draft-aelhassany-anydata-validation-00

Abstract

   This document describes a method to use yang-library to validate YANG

   data nodes with type anydata.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents (https://trustee.ietf.org/

   license-info) in effect on the date of publication of this document.

   Please review these documents carefully, as they describe your rights

   and restrictions with respect to this document.  Code Components

   extracted from this document must include Revised BSD License text as

   described in Section 4.e of the Trust Legal Provisions and are

   provided without warranty as described in the Revised BSD License.

Elhassany               Expires 2 September 2024                [Page 1]



Internet-Draft             anydata validation                 March 2024

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2

     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3

   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3

   3.  Validating "anydata" Data Tree  . . . . . . . . . . . . . . .   3

   4.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   4

   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   4

   6.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   4

     6.1.  Normative References  . . . . . . . . . . . . . . . . . .   4

     6.2.  Informative References  . . . . . . . . . . . . . . . . .   4

   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .   5

   Author’s Address  . . . . . . . . . . . . . . . . . . . . . . . .   5

1.  Introduction

   YANG [RFC7950] defines the "anydata" statement to represent an

   unknown set of YANG nodes for which the data model is not known at

   module design time.  However, YANG [RFC7950] left the verification of

   the "anydata" tree open to be done using external means.  Several

   IETF models, e.g., [RFC7895], [RFC8526], [RFC9144], [RFC8639],

   [RFC8641], and [RFC8040], use "anydata" in their definitions.

   Current YANG implementations accept syntactically valid YANG data

   nodes as children of an "anydata" node but do not check the semantics

   of these data nodes against a YANG schema.  This creates a real

   problem for any consumer of these models when validating all leaves

   of the YANG data tree.

   YANG Schema Mount [RFC8528] allows mounting complete data models at

   implementation and run time.  While powerful, schema mount cannot

   address use cases where the user selects an arbitrary subset of an

   instantiated data tree, such as YANG PUSH [RFC8641].  A current

   proposed approach, YANG Full Include YANG Full Include

   [I-D.jouqui-netmod-yang-full-include], complements YANG Schema Mount

   and applies at design time, yet cannot address dynamic filtering of

   an instantiated YANG data tree.

   In this document we propese using YANG Library [RFC7895] to define

   the context in which anydata trees are validated.  This would require

   the YANG tooling to implement an optional flag that enables a a flag

   for validating "anydata" subtrees in the context of a YANG library.

Elhassany               Expires 2 September 2024                [Page 2]



Internet-Draft             anydata validation                 March 2024

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in BCP

   14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

2.  Terminology

   We use the terminology defined in YANG [RFC7950] for schema node and

   schema tree but refine data node and data tree to be more precise.

   *  data node: A node in the schema tree that can be instantiated in a

      data tree.  One of container, leaf, leaf-list, list, anydata, and

      anyxml.  We do not discuss anyxml in this document, and this

      document does not change how YANG handles anyxml data nodes.

   *  instantiated data node: an instantiated instance of a data node

      that contains before fully qualified name (module namespace +

      identifier) for the data node and the data modeled within YANG.

   *  instantiated data tree: is what YANG [RFC7950] defines as "data

      tree".  Adding the term "instantiated" precisely indicates that

      this tree is an instance of specific data modeled with YANG.

   *  data tree: a tree of data nodes (with no values).

3.  Validating "anydata" Data Tree

   The current YANG encodings, XML, JSON, and CBOR, encode instantiated

   data nodes with fully qualified name using the module’s namespace and

   a local name.  The module’s namespace can be either explicit or

   assumed from a default namespace defined in the top data tree.

   This document introduces a new YANG validation option: anydata-

   subtree-validation.  In this mode, a YANG data parser MUST accept a

   YANG library as input along the YANG data file.  When this option is

   enabled, any instantiated data node (NodeB) that is a child of

   anydata node (NodeA) is accepted to be valid only if (i) the

   qualified name of the node NodeB is found in one of the data trees

   defined by the YANG library AND (ii) the instantiated data tree

   rooted by NodeB is valid incomplete instantiated data tree according

   to the data node of NodeB.

   The first condition ensures the completeness of the YANG library, and

   no subtree can be included as a child of anydata node unless a schema

   is defined for all the children of anydata subtree and specified in

Elhassany               Expires 2 September 2024                [Page 3]



Internet-Draft             anydata validation                 March 2024

   the YANG library.  The second condition applies a regular YANG

   validation against the subtree of anydata, considering that the

   subtree of anydata could be generated using an XPath [RFC8641] or a

   subtree filter [RFC6241].  Thus, the validator MUST consider this

   subtree incomplete and ignore any missing leaves.

4.  IANA Considerations

   This memo includes no request to IANA.

5.  Security Considerations

   TBD

6.  References

6.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

              Requirement Levels", BCP 14, RFC 2119,

              DOI 10.17487/RFC2119, March 1997,

              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC7895]  Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module

              Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,

              <https://www.rfc-editor.org/info/rfc7895>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

              RFC 7950, DOI 10.17487/RFC7950, August 2016,

              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2.  Informative References

   [I-D.jouqui-netmod-yang-full-include]

              Joubert, T., Quilbeuf, J., and B. Claise, "YANG Full

              Include", Work in Progress, Internet-Draft, draft-jouqui-

              netmod-yang-full-include-00, 6 November 2023,

              <https://datatracker.ietf.org/doc/html/draft-jouqui-

              netmod-yang-full-include-00>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

              and A. Bierman, Ed., "Network Configuration Protocol

              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

              <https://www.rfc-editor.org/info/rfc6241>.

Elhassany               Expires 2 September 2024                [Page 4]



Internet-Draft             anydata validation                 March 2024

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8526]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

              and R. Wilton, "NETCONF Extensions to Support the Network

              Management Datastore Architecture", RFC 8526,

              DOI 10.17487/RFC8526, March 2019,

              <https://www.rfc-editor.org/info/rfc8526>.

   [RFC8528]  Bjorklund, M. and L. Lhotka, "YANG Schema Mount",

              RFC 8528, DOI 10.17487/RFC8528, March 2019,

              <https://www.rfc-editor.org/info/rfc8528>.

   [RFC8639]  Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,

              E., and A. Tripathy, "Subscription to YANG Notifications",

              RFC 8639, DOI 10.17487/RFC8639, September 2019,

              <https://www.rfc-editor.org/info/rfc8639>.

   [RFC8641]  Clemm, A. and E. Voit, "Subscription to YANG Notifications

              for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,

              September 2019, <https://www.rfc-editor.org/info/rfc8641>.

   [RFC9144]  Clemm, A., Qu, Y., Tantsura, J., and A. Bierman,

              "Comparison of Network Management Datastore Architecture

              (NMDA) Datastores", RFC 9144, DOI 10.17487/RFC9144,

              December 2021, <https://www.rfc-editor.org/info/rfc9144>.

Acknowledgements

   The authors would like to thank Jean Quilbeuf and Thomas Graf for

   their review and valuable comments.

Author’s Address

   Ahmed Elhassany

   Swisscom

   Binzring 17

   CH- Zuerich 8045

   Switzerland

   Email: ahmed.elhassany@swisscom.com

Elhassany               Expires 2 September 2024                [Page 5]



Delay-Tolerant Networking                                   E.J. Birrane
Internet-Draft                                               S.E. Heiner
Intended status: Informational                                  E. Annis
Expires: 31 August 2024         Johns Hopkins Applied Physics Laboratory
                                                        28 February 2024

                      DTN Management Architecture
                        draft-ietf-dtn-dtnma-12

Abstract

   The Delay-Tolerant Networking (DTN) architecture describes a type of
   challenged network in which communications may be significantly
   affected by long signal propagation delays, frequent link
   disruptions, or both.  The unique characteristics of this environment
   require a unique approach to network management that supports
   asynchronous transport, autonomous local control, and a small
   footprint (in both resources and dependencies) so as to deploy on
   constrained devices.

   This document describes a DTN management architecture (DTNMA)
   suitable for managing devices in any challenged environment but, in
   particular, those communicating using the DTN Bundle Protocol (BP).
   Operating over BP requires an architecture that neither presumes
   synchronized transport behavior nor relies on query-response
   mechanisms.  Implementations compliant with this DTNMA should expect
   to successfully operate in extremely challenging conditions, such as
   over uni-directional links and other places where BP is the preferred
   transport.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 31 August 2024.

Birrane, et al.          Expires 31 August 2024                 [Page 1]



Internet-Draft                    DTNMA                    February 2024

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Scope . . . . . . . . . . . . . . . . . . . . . . . . . .   5
     1.2.  Organization  . . . . . . . . . . . . . . . . . . . . . .   5
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   6
   3.  Challenged Network Overview . . . . . . . . . . . . . . . . .   8
     3.1.  Challenged Network Constraints  . . . . . . . . . . . . .   8
     3.2.  Topology and Service Implications . . . . . . . . . . . .   9
       3.2.1.  Management Implications . . . . . . . . . . . . . . .  10
     3.3.  Management Special Cases  . . . . . . . . . . . . . . . .  11
   4.  Desirable Design Properties . . . . . . . . . . . . . . . . .  11
     4.1.  Dynamic Architectures . . . . . . . . . . . . . . . . . .  12
     4.2.  Hierarchically Modeled Information  . . . . . . . . . . .  12
     4.3.  Adaptive Push of Information  . . . . . . . . . . . . . .  13
     4.4.  Efficient Data Encoding . . . . . . . . . . . . . . . . .  14
     4.5.  Universal, Unique Data Identification . . . . . . . . . .  15
     4.6.  Runtime Data Definitions  . . . . . . . . . . . . . . . .  16
     4.7.  Autonomous Operation  . . . . . . . . . . . . . . . . . .  16
   5.  Current Remote Management Approaches  . . . . . . . . . . . .  17
     5.1.  SNMP and SMI Models . . . . . . . . . . . . . . . . . . .  18
       5.1.1.  The SMI Modeling Language . . . . . . . . . . . . . .  19
       5.1.2.  SNMP Protocol and Transport . . . . . . . . . . . . .  19
     5.2.  XML-Infoset-Based Protocols and YANG Models . . . . . . .  19
       5.2.1.  The YANG Modeling Language  . . . . . . . . . . . . .  20
       5.2.2.  NETCONF Protocol and Transport  . . . . . . . . . . .  22
       5.2.3.  RESTCONF Protocol and Transport . . . . . . . . . . .  22
       5.2.4.  CORECONF Protocol and Transport . . . . . . . . . . .  23
     5.3.  gRPC Network Management Interface (gNMI)  . . . . . . . .  23
       5.3.1.  The Protobuf Modeling Language  . . . . . . . . . . .  23
       5.3.2.  gRPC Protocol and Transport . . . . . . . . . . . . .  24
     5.4.  Intelligent Platform Management Interface (IPMI)  . . . .  24
     5.5.  Autonomic Networking  . . . . . . . . . . . . . . . . . .  24
     5.6.  Deep Space Autonomy . . . . . . . . . . . . . . . . . . .  25

Birrane, et al.          Expires 31 August 2024                 [Page 2]



Internet-Draft                    DTNMA                    February 2024

   6.  Motivation for New Features . . . . . . . . . . . . . . . . .  25
   7.  Reference Model . . . . . . . . . . . . . . . . . . . . . . .  26
     7.1.  Important Concepts  . . . . . . . . . . . . . . . . . . .  26
     7.2.  Model Overview  . . . . . . . . . . . . . . . . . . . . .  27
     7.3.  Functional Elements . . . . . . . . . . . . . . . . . . .  28
       7.3.1.  Managed Applications and Services . . . . . . . . . .  28
       7.3.2.  DTNMA Agent (DA)  . . . . . . . . . . . . . . . . . .  29
       7.3.3.  Managing Applications and Services  . . . . . . . . .  31
       7.3.4.  DTNMA Manager (DM)  . . . . . . . . . . . . . . . . .  32
       7.3.5.  Pre-Shared Definitions  . . . . . . . . . . . . . . .  34
   8.  Desired Services  . . . . . . . . . . . . . . . . . . . . . .  34
     8.1.  Local Monitoring and Control  . . . . . . . . . . . . . .  35
     8.2.  Local Data Fusion . . . . . . . . . . . . . . . . . . . .  35
     8.3.  Remote Configuration  . . . . . . . . . . . . . . . . . .  36
     8.4.  Remote Reporting  . . . . . . . . . . . . . . . . . . . .  37
     8.5.  Authorization . . . . . . . . . . . . . . . . . . . . . .  37
   9.  Logical Autonomy Model  . . . . . . . . . . . . . . . . . . .  38
     9.1.  Overview  . . . . . . . . . . . . . . . . . . . . . . . .  38
     9.2.  Model Characteristics . . . . . . . . . . . . . . . . . .  40
     9.3.  Data Value Representation . . . . . . . . . . . . . . . .  42
     9.4.  Data Reporting  . . . . . . . . . . . . . . . . . . . . .  42
     9.5.  Command Execution . . . . . . . . . . . . . . . . . . . .  43
     9.6.  Predicate Autonomy Rules  . . . . . . . . . . . . . . . .  44
   10. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . .  45
     10.1.  Notation . . . . . . . . . . . . . . . . . . . . . . . .  45
     10.2.  Serialized Management  . . . . . . . . . . . . . . . . .  46
     10.3.  Intermittent Connectivity  . . . . . . . . . . . . . . .  47
     10.4.  Open-Loop Reporting  . . . . . . . . . . . . . . . . . .  48
     10.5.  Multiple Administrative Domains  . . . . . . . . . . . .  50
     10.6.  Cascading Management . . . . . . . . . . . . . . . . . .  52
   11. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  54
   12. Security Considerations . . . . . . . . . . . . . . . . . . .  54
   13. Informative References  . . . . . . . . . . . . . . . . . . .  54
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  60
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  60

1.  Introduction

   The Delay-Tolerant Networking (DTN) architecture, as described in
   [RFC4838], has been designed to cope with data exchange in challenged
   networks.  Just as the DTN architecture requires new capabilities for
   transport and transport security, special consideration is needed for
   the management of DTN devices.

Birrane, et al.          Expires 31 August 2024                 [Page 3]



Internet-Draft                    DTNMA                    February 2024

   This document describes a logical DTN Management Architecture (DTNMA)
   providing configuration, monitoring, and local control of both
   application and network services on a managed device.  The DTNMA is
   designed to provide for the management of devices operating either
   within or across a challenged network.

      |  NOTE: A logical architecture describes the concepts and
      |  principles that support the logical operation of a system.
      |  This includes identifying components of the system (such as in
      |  a reference model), the behaviors they enable, and use cases
      |  describing how those behaviors result in the desired operation
      |  of the system.  Logical architectures are not functional
      |  architectures.
      |
      |  As such, this document does not specify a particular functional
      |  design for achieving desired behaviors.  What is presented here
      |  is a set of architectural principles.  It is not implied to be
      |  complete or to define interfaces between components.

   Fundamental properties of a challenged network are outlined in
   Section 2.2.1 of [RFC7228].  These properties include lacking end-to-
   end IP connectivity, having "serious interruptions" to end-to-end
   connectivity, and exhibiting delays longer than can be tolerated by
   end-to-end synchronization mechanisms (such as TCP).  It is further
   noted that the DTN architecture was designed to cope with such
   networks.

      |  NOTE: These challenges may be caused by a variety of factors
      |  such as physical constraints (e.g., long signal propagation
      |  delays and frequent link disruptions), administrative policies
      |  (e.g., quality-of-service prioritization, service-level
      |  agreements, and traffic management and scheduling), and off-
      |  nominal behaviors (e.g., active attackers and
      |  misconfigurations).

   Device management in these environments occurs without human
   interactivity, without system-in-the-loop synchronous function, and
   without requiring a synchronous underlying transport layer.  This
   means that managed devices need to determine their own schedules for
   data reporting, their own operational configuration, and perform
   their own error discovery and mitigation.

   Certain outcomes of device self-management should be determinable by
   a privileged external observer (such as a managing device).  In a
   challenged network, these observers may need to communicate with a
   managed device after significant periods of disconnectedness.  Non-
   deterministic behavior of a managed device may make establishing
   communication difficult or impossible.

Birrane, et al.          Expires 31 August 2024                 [Page 4]



Internet-Draft                    DTNMA                    February 2024

   The desire to define asynchronous and autonomous device management is
   not new.  However, challenged networks (in general) and the DTN
   environment (in particular) represent unique deployment scenarios and
   impose unique design constraints.  To the extent that these
   environments differ from more traditional, enterprise networks, their
   management may also differ from the management of enterprise
   networks.  Therefore, existing techniques may need to be adapted to
   operate in the DTN environment or new techniques may need to be
   created.

      |  NOTE: The DTNMA is designed to leverage any transport, network,
      |  and security solutions designed for challenged networks.
      |  However, the DTNMA specifically needs to be able to operate in
      |  any environment in which the Bundle Protocol (BPv7) [RFC9171]
      |  is deployed.

1.1.  Scope

   This document describes the desirable properties of, and motivation
   for, a DTNMA.  This document also provides a reference model, service
   descriptions, autonomy model, and use cases to better reason about
   ways to standardize and implement this architecture.

   This document provides informative guidance to authors and users of
   such models, protocols, and implementations.

   The selection of any particular transport or network layer is outside
   of the scope of this document.  The DTNMA does not require the use of
   any specific protocol such as IP, BP, TCP, or UDP.  In particular,
   the DTNMA design does not assume the use of either IPv4 or IPv6.

      |  NOTE: The fact that the DTNMA can operate in any environment
      |  that deploys BP does not mean that the DTNMA requires the use
      |  of BP to operate.

   Network features such as naming, addressing, routing, and
   communications security are out of scope of the DTNMA.  It is
   presumed that any operational network communicating DTNMA messages
   would implement these services for any payloads carried by that
   network.

   The interactions between and amongst the DTNMA and other management
   approaches are outside of the scope of this document.

1.2.  Organization

   The remainder of this document is organized into the following nine
   sections, described as follows.

Birrane, et al.          Expires 31 August 2024                 [Page 5]



Internet-Draft                    DTNMA                    February 2024

   Terminology:  This section identifies terms fundamental to
      understanding DTNMA concepts.  Whenever possible, these terms
      align in both word selection and meaning with their use in other
      management protocols.

   Challenged Network Overview:  This section describes important
      aspects of challenged networks and necessary approaches for their
      management.

   Desirable Design Properties:  This section defines those properties
      of the DTNMA needed to operate within the constraints of a
      challenged network.  These properties are similar to the
      specification of system-level requirements of a DTN management
      solution.

   Current Remote Management Approaches:  This section provides a brief
      overview of existing remote management approaches.  Where
      possible, the DTNMA adopts concepts from these approaches.  The
      limitations of current approaches from the perspective of the
      DTNMA desirable properties are identified and discussed.

   Motivation for New Features:  This section provides an overall
      motivation for this work, to include explaining why a management
      architecture for challenged networks is useful and necessary.

   Reference Model:  This section defines a reference model that can be
      used to reason about the DTNMA independent of an implementation or
      implementation architecture.  This model identifies the logical
      components of the system and the high-level relationships and
      behaviors amongst those components.

   Desired Services:  This section identifies and defines the DTNMA
      services provided to network and mission operators.

   Logical Autonomy Model:  This section provides an exemplar data model
      that can be used to reason about DTNMA control and data flows.
      This model is based on the DTNMA reference model.

   Use Cases:  This section presents multiple use cases accommodated by
      the DTNMA architecture.  Each use case is presented as a set of
      control and data flows referencing the DTNMA reference model and
      logical autonomy model.

2.  Terminology

   This section defines terminology that either is unique to the DTNMA
   or is necessary for understanding the concepts defined in this
   specification.

Birrane, et al.          Expires 31 August 2024                 [Page 6]



Internet-Draft                    DTNMA                    February 2024

   Timely Data Exchange:  The ability to communicate information between
      two (or more) entities within a required period of time.  In some
      cases, a 1-second exchange may not be timely and in other cases
      1-hour exchange may be timely.

   DTN Management:  Management that does not depend on stateful
      connections, timely data exchange of management messages, or
      system-in-the-loop synchronous functions.

   DTNMA Agent (DA):  A role associated with a managed device,
      responsible for reporting performance data, accepting policy
      directives, performing autonomous local control, error-handling,
      and data validation.  DAs exchange information with DMs operating
      either on the same device and/or on remote devices in the network.

   DTNMA Manager (DM):  A role associated with a managing device
      responsible for configuring the behavior of, and eventually
      receiving information from, DAs.  DMs interact with one or more
      DAs located on the same device and/or on remote devices in the
      network.

   Controls:  Procedures run by a DA to change the behavior,
      configuration, or state of an application or protocol managed by
      that DA.  This includes procedures to manage the DA itself, such
      as to have the DA produce performance reports or to apply new
      management policies.

   Externally Defined Data (EDD):  Typed information made available to a
      DA by its hosting device, but not computed directly by the DA
      itself.

   Data Reports:  Typed, ordered collections of data values gathered by
      one or more DAs and provided to one or more DMs.  Reports comply
      to the format of a given Data Report Schema.

   Data Report Schemas:  Named, ordered collection of data elements that
      represent the schema of a Data Report.

   Rules:  Unit of autonomous specification that provides a stimulus-
      response relationship between time or state on a DA and the
      actions or operations to be run as a result of that time or state.

Birrane, et al.          Expires 31 August 2024                 [Page 7]



Internet-Draft                    DTNMA                    February 2024

3.  Challenged Network Overview

   The DTNMA provides network management services able to operate in a
   challenged network environment, such as envisioned by the DTN
   architecture.  This section describes what is meant by the term
   "challenged network", the important properties of such a network, and
   observations on impacts to conventional management approaches.

3.1.  Challenged Network Constraints

   Constrained networks are defined as networks where "some of the
   characteristics pretty much taken for granted with link layers in
   common use in the Internet at the time of writing are not
   attainable."  [RFC7228].  This broad definition captures a variety of
   potential issues relating to physical, technical, and regulatory
   constraints on message transmission.  Constrained networks typically
   include nodes that regularly reboot or are otherwise turned off for
   long periods of time, transmit at low or asynchronous bitrates, and/
   or have very limited computational resources.

   Separately, a challenged network is defined as one that "has serious
   trouble maintaining what an application would today expect of the
   end-to-end IP model" [RFC7228].  Links in such networks may be
   impacted by attenuation, propagation delays, mobility, occultation,
   and other limitations imposed by energy and mass considerations.
   Therefore, systems relying on such links cannot guarantee timely end-
   to-end data exchange.

      |  NOTE: Because challenged networks might not provide services
      |  expected of the end-to-end IP model, devices in such networks
      |  might not implement networking stacks associated with the end-
      |  to-end IP model.  This means that devices might not include
      |  support for certain transport protocols (TCP/UDP), web
      |  protocols (HTTP), or internetworking protocols (IPv4/IPv6).

   By these definitions, a "challenged" network is a special type of
   "constrained" network, where constraints prevent timely end-to-end
   data exchange.  As such, "all challenged networks are constrained
   networks ... but not all constrained networks are challenged networks
   ...  Delay-Tolerant Networking (DTN) has been designed to cope with
   challenged networks" [RFC7228].

   Solutions that work in constrained networks might not be solutions
   that work in challenged networks.  In particular, challenged networks
   exhibit the following properties that impact the way in which the
   function of network management is considered.

Birrane, et al.          Expires 31 August 2024                 [Page 8]



Internet-Draft                    DTNMA                    February 2024

   *  Timely end-to-end data exchange cannot be guaranteed to exist at
      any given time between any two nodes.

   *  Latencies on the order of seconds, hours, or days must be
      tolerated.

   *  Individual links may be uni-directional.

   *  Bi-directional links may have asymmetric data rates.

   *  The existence of external infrastructure, services, systems, or
      processes such as a Domain Name Service (DNS) or a Certificate
      Authority (CA) cannot be guaranteed.

3.2.  Topology and Service Implications

   The set of constraints that might be present in a challenged network
   impact both the topology of the network and the services active
   within that network.

   Operational networks handle cases where nodes join and leave the
   network over time.  These topology changes may or may not be planned,
   they may or may not represent errors, and they may or may not impact
   network services.  Challenged networks differ from other networks not
   in the present of topological change, but in the likelihood that
   impacts to topology result in impacts to network services.

   The difference between topology impacts and service impacts can be
   expressed in terms of connectivity.  Topological connectivity usually
   refers to the existence of a path between an application message
   source and destination.  Service connectivity, alternatively, refers
   to the existence of a path between a node and one or more services
   needed to process (often just-in-time) application messaging.
   Examples of service connectivity include access to infrastructure
   services such as a Domain Name System (DNS) or a Certificate
   Authority (CA).

   In networks that might be partitioned most of the time, it is less
   likely that a node would concurrently access both an application
   endpoint and one or more network service endpoints.  For this reason,
   network services in a challenged network should be designed to allow
   for asynchronous operation.  Accommodating this use case often
   involves the use of local caching, pre-placing information, and not
   hard-coding message information at a source that might change when a
   message reaches its destination.

Birrane, et al.          Expires 31 August 2024                 [Page 9]



Internet-Draft                    DTNMA                    February 2024

      |  NOTE: One example of rethinking services in a challenged
      |  network is the securing of BPv7 bundles.  The BPSec [RFC9172]
      |  security extensions to BPv7 do not encode security destinations
      |  when applying security.  Instead, BPSec requires nodes in a
      |  network to identify themselves as security verifiers or
      |  acceptors when receiving and processing secured messages.

3.2.1.  Management Implications

   Network management approaches need to adapt to the topology and
   service impacts encountered in challenged networks.  In particular,
   the ways in which "managers" and "agents" operate will need to adapt
   to changes in connectivity and service endpoints.

   When connectivity to a manager cannot be guaranteed, agents will need
   to rely on locally available information and use local autonomy to
   react to changes at the node.  Architectures that rely on external
   resources such as access to third-party oracles, operators-in-the-
   loop, or other service infrastructure may fail to operate in a
   challenged network.

   In addition to disconnectivity, topological change can alter the
   associations amongst managed and managing devices.  Different
   managing devices might be active in a network at different times or
   in different partitions.  Managed devices might communicate with
   some, all, or none of these managing devices as a function of their
   own local configuration and policy.

      |  NOTE: These concepts relate to practices in conventional
      |  networks.  For example, supporting multiple managing devices is
      |  similar to deploying multiple instances of a network service --
      |  such as a DNS server or CA node.  Selecting from a set of
      |  managing devices is similar to a sensor node practice of
      |  electing cluster heads to act as privileged nodes for data
      |  storage and exfiltration.

   Therefore, a network management architecture for challenged networks
   should:

   1.  Support a many-to-many association amongst managing and managed
       devices, and

   2.  Allow "control from" and "reporting to" managing devices to
       function independent of one another.

Birrane, et al.          Expires 31 August 2024                [Page 10]



Internet-Draft                    DTNMA                    February 2024

3.3.  Management Special Cases

   The following special cases illustrate some of the operational
   situations that can be encountered in the management of devices in a
   challenged network.

   One-Way Management:  A managed device can only be accessed via a uni-
      directional link, or a via a link whose duration is shorter than a
      single round-trip propagation time.

   Summary Data:  A managing device can only receive summary data of a
      managed device’s state because a link or path is constrained by
      capacity or reliability.

   Bulk Historical Reporting:  A managing device receives a large volume
      of historical report data for a managed device.  This can occur
      when a managed device rejoins a network or has access to a high
      capacity link (or path) to the managed device.

   Multiple Managers  A managed device tracks multiple managers in the
      network and communicates with them as a function of time, local
      state, or network topology.  This includes challenged networks
      that interconnect two or more unchallenged networks such that
      managed and managing devices exist in different networks.

   These special cases highlight the need for managed devices to operate
   without presupposing a dedicated connection to a single managing
   device.  To support this, managing devices deliver instruction sets
   that govern the local, autonomous behavior of managed devices.  These
   behaviors include (but are not limited to) collecting performance
   data, state, and error conditions, and applying pre-determined
   responses to pre-determined events.  Managing devices in a challenged
   network might never expect a reply to a command, and communications
   from managed devices may be delivered much later than the events
   being reported.

4.  Desirable Design Properties

   This section describes those design properties that are desirable
   when defining a management architecture operating across challenged
   links in a network.  These properties ensure that network management
   capabilities are retained even as delays and disruptions in the
   network scale.  Ultimately, these properties are the driving design
   principles for the DTNMA.

      |  NOTE: These properties may influence the design, construction,
      |  and adaptation of existing management tools for use in
      |  challenged networks.  For example, the properties the DTN

Birrane, et al.          Expires 31 August 2024                [Page 11]



Internet-Draft                    DTNMA                    February 2024

      |  architecture [RFC4838] resulted in the development of BPv7
      |  [RFC9171] and BPSec [RFC9172].  The DTNMA may result in the
      |  construction of new management data models, policy expressions,
      |  and/or protocols.

4.1.  Dynamic Architectures

   The DTNMA should be agnostic of the underlying physical topology,
   transport protocols, security solutions, and supporting
   infrastructure of a given network.  Due to the likelihood of
   operating in a frequently partitioned environment, the topology of a
   network may change over time.  Attempts to stabilize an architecture
   around individual nodes can result in a brittle management framework
   and the creation of congestion points during periods of connectivity.

   The DTNMA should not prescribe any association between a DM and a DA
   other than those defined in this document.  There should be no
   logical limitation to the number of DMs that can control a DA, the
   number of DMs that a DA should report to, or any requirement that a
   DM and DA relationship implies a pair.

      |  NOTE: Practical limitations on the relationships between and
      |  amongst DMs and DAs will exist as a function of the
      |  capabilities of networked devices.  These limitations derive
      |  from processing and storage constraints, performance
      |  requirements, and other engineering factors.  While this
      |  information is vital to the proper engineering of a managed and
      |  managing device, they are implementation considerations, and
      |  not otherwise design constraints on the DTNMA.

4.2.  Hierarchically Modeled Information

   The DTNMA should use data models to define the syntactic and semantic
   contracts for data exchange between a DA and a DM.  A given model
   should have the ability to "inherit" the contents of other models to
   form hierarchical data relationships.

      |  NOTE: The term data model in this context refers to a schema
      |  that defines a contract between a DA and a DM for how
      |  information is represented and validated.

   Many network management solutions use data models to specify the
   semantic and syntactic representation of data exchanged between
   managed and managing devices.  The DTNMA is not different in this
   regard - information exchanged between DAs and DMs should conform to
   one or more pre-defined, normative data models.

Birrane, et al.          Expires 31 August 2024                [Page 12]



Internet-Draft                    DTNMA                    February 2024

   A common best practice when defining a data model is to make it
   cohesive.  A cohesive model is one that includes information related
   to a single purpose such as managing a single application or
   protocol.  When applying this practice, it is not uncommon to develop
   a large number of small data models that, together, describe the
   information needed to manage a device.

   Another best practice for data model development is the use of
   inclusion mechanisms to allow one data model to include information
   from another data model.  This ability to include a data model avoids
   repeating information in different data models.  When one data model
   includes information from another data model, there is an implied
   model hierarchy.

   Data models in the DTNMA should allow for the construction of both
   cohesive models and hierarchically related models.  These data models
   should be used to define all sources of information that can be
   retrieved, configured, or executed in the DTNMA.  This includes
   supporting DA autonomy functions such as parameterization, filtering,
   and event driven behaviors.  These models will be used to both
   implement interoperable autonomy engines on DAs and define
   interoperable report parsing mechanisms on DMs.

      |  NOTE: While data model hierarchies can result in a more concise
      |  data model, arbitrarily complex nesting schemes can also result
      |  in very verbose encodings.  Where possible, data
      |  identifications schemes should be constructed that allow for
      |  both hierarchical data and highly compressible data
      |  identification.

4.3.  Adaptive Push of Information

   DAs in the DTNMA architecture should determine when to push
   information to DMs as a function of their local state.

   Pull management mechanisms require a managing device to send a query
   to a managed device and then wait for a response to that specific
   query.  This practice implies some serialization mechanism (such as a
   control session) between entities.  However, challenged networks
   cannot guarantee timely round-trip data exchange.  For this reason,
   pull mechanisms should be avoided in the DTNMA.

   Push mechanisms, in this context, refer to the ability of DAs to
   leverage local autonomy to determine when and what information should
   be sent to which DMs.  The push is considered adaptive because a DA
   determines what information to push (and when) as an adaptation to
   changes to the DA’s internal state.  Once pushed, information might
   still be queued pending connectivity of the DA to the network.

Birrane, et al.          Expires 31 August 2024                [Page 13]



Internet-Draft                    DTNMA                    February 2024

      |  NOTE: Even in cases where a round-trip exchange can occur, pull
      |  mechanisms increase the overall amount of traffic in the
      |  network and preclude the use of autonomy at managed devices.
      |  So even when pull mechanisms are feasible they should not be
      |  considered a pragmatic alternative to push mechanisms.

4.4.  Efficient Data Encoding

   Messages exchanged between a DA and a DM in the DTNMA should be
   defined in a way that allows for efficient on-the-wire encoding.
   DTNMA design decisions that result in smaller message sizes should be
   preferred over those that result in larger message sizes.

   There is a relationship between message encoding and message
   processing time at a node.  Messages with little or no encodings may
   simplify node processing whereas more compact encodings may require
   additional activities to generate/parse encoded messages.  Generally,
   compressing a message takes processing time at the sender and
   decompressing a message takes processing time at a receiver.
   Therefore, there is a design tradeoff between minimizing message
   sizes and minimizing node processing.

      |  NOTE: There are many ways in which message size, number of
      |  messages, and node behaviors can impact processing performance.
      |  Because the DTNMA does not presuppose any underlying protocol
      |  or implementation, this section is focused solely on the
      |  compactness of an individual message and the processing for
      |  encoding and decoding that individual message.

   However, there is a significant advantage to smaller message sizes in
   a challenged network.  Smaller messages require smaller periods of
   viable transmission for communication, they incur less re-
   transmission cost, and they consume less resources when persistently
   stored en-route in the network.

      |  NOTE: Naive approaches to minimizing message size through
      |  general purpose compression algorithms do not produce minimal
      |  encodings.  Data models can, and should, be designed for
      |  compact encoding from the beginning.  Design strategies for
      |  compact encodings involve using structured data, hierarchical
      |  data models, and common structures in data models.  These
      |  strategies allow for compressibility beyond what would
      |  otherwise be achieved by computing large hash values over
      |  generalized data structures.

Birrane, et al.          Expires 31 August 2024                [Page 14]



Internet-Draft                    DTNMA                    February 2024

4.5.  Universal, Unique Data Identification

   Data elements within the DTNMA should be uniquely identifiable so
   that they can be individually manipulated.  Further, these
   identifiers should be universal - the identifier for a data element
   should be the same regardless of role, implementation, or network
   instance.

   Identification schemes that are relative to a specific DA or specific
   system configuration might change over time.  In particular, nodes in
   a challenged network may change their status or configuration during
   periods of partition from other parts of the network.
   Resynchronizing relative state or configuration should be avoided
   whenever possible.

      |  NOTE: Consider the common technique for approximating an
      |  associative array lookup.  For example, if a managed device
      |  tracks the number of bytes passed by multiple named interfaces,
      |  then the number of bytes through a specific named interface
      |  (say, "int_foo"), would be retrieved in the following way:
      |
      |     1.  Query a list of ordered interface names from an agent.
      |
      |     2.  Find the name that matches "int_foo" and infer the
      |         agent’s index of "int_foo" from the ordered interface
      |         list.  In this instance, say "int_foo" is the 4th
      |         interface in the list.
      |
      |     3.  Query the agent to return the number of bytes passed
      |         through the 4th interface.
      |
      |  Ignoring the inefficiency of two round-trip exchanges, this
      |  mechanism will fail if the agent changes its index mapping
      |  between the first and second query.  For example, were
      |  "int_foo" to be restarted and slotted in a different index
      |  position.  While this is unlikely to occur in a low-latency
      |  network, it is more likely to occur in a challenged network.
      |
      |  The desired data being queried, "number of bytes through
      |  int_foo" should be uniquely and universally identifiable and
      |  independent of how that data exists in an agent’s custom
      |  implementation.

Birrane, et al.          Expires 31 August 2024                [Page 15]



Internet-Draft                    DTNMA                    February 2024

4.6.  Runtime Data Definitions

   The DTNMA allows for the addition of new data elements to a data
   model as part of the runtime operation of the management system.
   These definitions may represent custom data definitions that are
   applicable only for a particular device or network.  Custom
   definitions should also be able to be removed from the system during
   runtime.

   The goal of this approach is to dynamically add or remove data
   elements to the local runtime schemas as needed - such as the
   definition of new counters, new reports, or new rules.

   The custom definition of new data from existing data (such as through
   data fusion, averaging, sampling, or other mechanisms) provides the
   ability to communicate desired information in as compact a form as
   possible.

      |  NOTE: A DM could, for example, define a custom data report that
      |  includes only summary information around a specific operational
      |  event or as part of specific debugging.  DAs could then produce
      |  this smaller report until it is no longer necessary, at which
      |  point the custom report could be removed from the management
      |  system.

   Custom data elements should be calculated and used both as parameters
   for DA autonomy and for more efficient reporting to DMs.  Defining
   new data elements allows for DAs to perform local data fusion and
   defining new reporting templates allows for DMs to specify desired
   formats and generally save on link capacity, storage, and processing
   time.

4.7.  Autonomous Operation

   The management of applications by a DA should be achievable using
   only knowledge local to the DA because DAs might need to operate
   during times when they are disconnected from a DM.

   DA autonomy may be used for simple automation of predefined tasks or
   to support semi-autonomous behavior in determining when to run tasks
   and how to configure or parameterize tasks when they are run.

   Important features provided by the DA are listed below.  These
   features work together to accomplish tasks.  As such, there is
   commonality amongst their definitions and nature of their benefits.

   Stand-alone Operation:  Pre-configuration allows DAs to operate

Birrane, et al.          Expires 31 August 2024                [Page 16]



Internet-Draft                    DTNMA                    February 2024

      without regular contact with other nodes in the network.  Updates
      for configurations remain difficult in a challenged network, but
      this approach removes the requirement that a DM be in-the-loop
      during regular operations.  Sending stimuli-and-responses to a DA
      during periods of connectivity allows DAs to self-manage during
      periods of disconnectivity.

   Deterministic Behavior:  Operational systems might need to act in a
      deterministic way even in the absence of an operator in-the-loop.
      Deterministic behavior allows an out-of-contact DM to predict the
      state of a DA and to determine how a DA got into a particular
      state.

   Engine-Based Behavior:  Operational systems might not be able to
      deploy "mobile code" [RFC4949] solutions due to network bandwidth,
      memory or processor loading, or security concerns.  Engine-based
      approaches provide configurable behavior without incurring these
      concerns.

   Authorization, and Accounting:  The DTNMA does not require a specific
      underlying transport protocol, network infrastructure, or network
      services.  Therefore, mechanisms for authorization and accounting
      need to be present in a standard way at DAs and DMs to provide
      these functions if the underlying network does not.  This is
      particularly true in cases where multiple DMs may be active
      concurrently in the network.

   To understand the contributions of these features to a common
   behavior, consider the example of a managed device coming online with
   a set of pre-installed configuration.  In this case, the device’s
   stand-alone operation comes from the pre-configuration of its local
   autonomy engine.  This engine-based behavior allows the system to
   behave in a deterministic way and any new configurations will need to
   be authorized before being adopted.

   Features such as deterministic processing and engine-based behavior
   do not preclude the use of other Artificial Intelligence (AI) and
   Machine Learning (ML) approaches on a managed device.

5.  Current Remote Management Approaches

   Several remote management solutions have been developed for both
   local-area and wide-area networks.  Their capabilities range from
   simple configuration and report generation to complex modeling of
   device settings, state, and behavior.  Each of these approaches are
   successful in the domains for which they have been built, but are not
   all equally functional when deployed in a challenged network.

Birrane, et al.          Expires 31 August 2024                [Page 17]



Internet-Draft                    DTNMA                    February 2024

   Remote management tools designed for unchallenged networks provide
   synchronous mechanisms for communicating locally-collected data from
   devices to operators.  Applications are typically managed using a
   "pull" mechanism, requiring a managing device to explicitly request
   the data to be produced and transmitted by a managed device.

      |  NOTE: Network management solutions that pull large sets of data
      |  might not operate in a challenged environment that cannot
      |  support timely round-trip exchange of large data volumes.

   More recent network management tools focus on message-based
   management, reduced state keeping by managed and managing devices,
   and increased levels of system autonomy.

   This section describes some of the well-known protocols for remote
   management and contrasts their purposes with the desirable properties
   of the DTNMA.  The purpose of this comparison is to identify parts of
   existing approaches that can be adopted or adapted for use in
   challenged networks and where new capabilities should be created
   specifically for this environment.

5.1.  SNMP and SMI Models

   An early and widely used example of a remote management protocol is
   the Simple Network Management Protocol (SNMP) currently at Version 3
   [RFC3410].  The SNMP utilizes a request/response model to get and set
   data values within an arbitrarily deep object hierarchy.  Objects are
   used to identify data such as host identifiers, link utilization
   metrics, error rates, and counters between application software on
   managing and managed devices [RFC3411].  Additionally, SNMP supports
   a model for unidirectional push messages, called event notifications,
   based on agent-defined triggering events.

   SNMP relies on logical sessions with predictable round-trip latency
   to support its "pull" mechanism but a single activity is likely to
   require many round-trip exchanges.  Complex management can be
   achieved, but only through careful orchestration of real-time, end-
   to-end, managing-device-generated query-and-response logic.

   There is existing work that uses the SNMP data model to support some
   low-fidelity Agent-side processing, to include the Distributed
   Management Expression MIB [RFC2982] and Definitions of Managed
   Objects for the Delegation of Management Scripts [RFC3165].  However,
   Agent autonomy is not an SNMP mechanism, so support for a local agent
   response to an initiating event is limited.  In a challenged network
   where the delay between a managing device receiving an alert and
   sending a response can be significant, SNMP is insufficient for
   autonomous event handling.

Birrane, et al.          Expires 31 August 2024                [Page 18]



Internet-Draft                    DTNMA                    February 2024

5.1.1.  The SMI Modeling Language

   SNMP separates the representations for managed data models from
   Manager--Agent messaging, sequencing and encoding.  Each data model
   is termed a Management Information Base (MIB) [RFC3418] and uses the
   Structure of Management Information (SMI) modeling language
   [RFC2578].  Additionally, the SMI itself is based on the ASN.1 Syntax
   [ASN.1] which is used not just for SMI but for other, unrelated data
   structure specification such as the Cryptographic Message Syntax
   (CMS) [RFC5652].  Separating data models from messaging and encoding
   is a best practice in remote management protocols and is also
   necessary for the DTNMA.

   Each SNMP MIB is composed of managed object definitions each of which
   is associated with a hierarchical Object Identifier (OID).  Because
   of the arbitrarily deep nature of MIB object trees, the size of OIDs
   is not strictly bounded by the protocol (though may be bounded by
   implementations).

5.1.2.  SNMP Protocol and Transport

   The SNMP protocol itself, which is at version 2 [RFC3416], can
   operate over a variety of transports, including plaintext UDP/IP
   [RFC3417], SSH/TCP/IP [RFC5592], and DTLS/UDP/IP or TLS/TCP/IP
   [RFC5953].

   SNMP uses an abstracted security model to provide authentication,
   integrity, and confidentiality.  There are options for user-based
   security model (USM) of [RFC3414], which uses in-message security,
   and transport security model (TSM) [RFC5591], which relies on the
   transport to provide security functions and interfaces.

5.2.  XML-Infoset-Based Protocols and YANG Models

   Several network management protocols, including NETCONF [RFC6241],
   RESTCONF [RFC8040], and CORECONF [I-D.ietf-core-comi], share the same
   XML information set [xml-infoset] for its hierarchical managed
   information and [XPath] expressions to identify nodes of that
   information model.  Since they share the same information model and
   the same data manipulation operations, together they will be referred
   to as "*CONF" protocols.  Each protocol, however, provides a
   different encoding of that information set and its related operation-
   specific data.

   The YANG modeling language of [RFC7950] is used to define the data
   model for these management protocols.  Currently, YANG represents the
   IETF standard for defining managed information models.

Birrane, et al.          Expires 31 August 2024                [Page 19]



Internet-Draft                    DTNMA                    February 2024

5.2.1.  The YANG Modeling Language

   The YANG modeling language defines a syntax and modular semantics for
   organizing and accessing a device’s configuration or operational
   information.  YANG allows subdividing a full managed configuration
   into separate namespaces defined by separate YANG modules.  Once a
   module is developed, it is used (directly or indirectly) on both the
   client and server to serve as a contract between the two.  A YANG
   module can be complex, describing a deeply nested and inter-related
   set of data nodes, actions, and notifications.

   Unlike the separation in Section 5.1.1 between ASN.1 syntax and
   module semantics from higher-level SMI data model semantics, YANG
   defines both a text syntax and module semantics together with data
   model semantics.

   The YANG language provides flexibility in the organization of model
   objects to the model developer.  The YANG supports a broad range of
   data types noted in [RFC6991].  YANG supports the definition of
   parameterized Remote Procedure Calls (RPCs) and actions to be
   executed on managed devices as well as the definition of event
   notifications within the model.

      |  Current *CONF notification logic allows a client to subscribe
      |  to the delivery of specific containers or data nodes defined in
      |  the model, either on a periodic or "on change" basis [RFC8641].
      |  These notification events can be filtered according to XPath
      |  [XPath] or subtree [RFC6241] filtering as described in
      |  Section 2.2 of [RFC8639].

   The use of YANG for data modeling necessarily comes with some side-
   effects, some of which are described here.

   Text Naming:  Data nodes, RPCs, and notifications within a YANG model
      are named by a namespace-qualified, text-based path of the module,
      sub-module, container, and any data nodes such as lists, leaf-
      lists, or leaves, without any explicit hierarchical organization
      based on data or object type.

Birrane, et al.          Expires 31 August 2024                [Page 20]



Internet-Draft                    DTNMA                    February 2024

      Existing efforts to make compressed names for YANG objects, such
      as the YANG Schema Item iDentifiers (SID) from Section 3.2 of
      [RFC9254], allow a node to be named by an globally unique integer
      value but are still relatively verbose (up to 8 bytes per item)
      and still must be translated into text form for things like
      instance identification (see below).  Additionally, when
      representing a tree of named instances the child elements can use
      differential encoding of SID integer values as "delta" integers.
      The mechanisms for assigning SIDs and the lifecycle of those SIDs
      are still in development [I-D.ietf-core-sid].

   Text Values and Built-In Types:  Because the original use of YANG
      with NETCONF was to model XML information sets, the values and
      built-in types are necessarily text based.  The JSON encoding of
      YANG data [RFC7951] allows for optimized representations of many
      built-in types, and similarly the CBOR encoding [RFC9254] allows
      for different optimized representations.

      In particular, the YANG built-in types natively support a fixed
      range of decimal fractions (Section 9.3 of [RFC7950]) but
      purposefully do not support floating point numbers.  There are
      alternatives, such as the type bandwidth-ieee-float32 from
      [RFC8294] or using the "binary" type with one of the IEEE-754
      encodings.

   Deep Hierarchy:  YANG allows for, and current YANG modules take
      advantage of, the ability to deeply nest a model hierarchy to
      represent complex combinations and compositions of data nodes.
      When a model uses a deep hierarchy of nodes this necessarily means
      that the qualified paths to name those nodes and instances is
      longer than a flat hierarchy would be.

   Instance Identification:  The node instances in a YANG module
      necessarily use XPath expressions for identification.  Some
      identification is constrained to be strictly within the YANG
      domain, such as "must" "when", "augment", or "deviation"
      statements.  Other identification needs to be processed by a
      managed device, such as in "instance-identifier" built-in type.
      This means any implementation of a managed device must include
      XPath processing and related information model handling of
      Section 6.4 of [RFC7950] and its referenced documents.

   Protocol Coupling:  A significant amount of existing YANG tooling or
      modeling presumes the use of YANG data within a management
      protocol with specific operations available.  For exmaple, the
      access control model of [RFC8341] relies on those operations
      specific to the *CONF protocols for proper behavior.

Birrane, et al.          Expires 31 August 2024                [Page 21]



Internet-Draft                    DTNMA                    February 2024

      The emergence of multiple NETCONF-derived protocols may make these
      presumptions less problematic in the future.  Work to more
      consistently identify different types of YANG modules and their
      use has been undertaken to disambiguate how YANG modules should be
      treated [RFC8199].

   Manager-Side Control:  YANG RPCs and actions execute on a managed
      device and generate an expected, structured response.  RPC
      execution is strictly limited to those issued by the manager.
      Commands are executed immediately and sequentially as they are
      received by the managed device, and there is no method to
      autonomously execute RPCs triggered by specific events or
      conditions.

   The YANG modeling language continues to evolve as new features are
   needed by adopting management protocols.

5.2.2.  NETCONF Protocol and Transport

   NETCONF is a stateful, XML-encoding-based protocol that provides a
   syntax to retrieve, edit, copy, or delete any data nodes or exposed
   functionality on a server.  It requires that underlying transport
   protocols support long-lived, reliable, low-latency, sequenced data
   delivery sessions.  A bi-directional NETCONF session needs to be
   established before any data transfer (or notification) can occur.

   The XML exchanged within NETCONF messages is structured according to
   YANG modules supported by the NETCONF agent, and the data nodes
   reside within one of possibly many datastores in accordance with the
   Network Management Datastore Architecture (NMDA) of [RFC8342].

   NETCONF transports are required to provide authentication, data
   integrity, confidentiality, and replay protection.  Currently,
   NETCONF can operate over SSH/TCP/IP [RFC6242] or TLS/TCP/IP
   [RFC7589].

5.2.3.  RESTCONF Protocol and Transport

   RESTCONF is a stateless, JSON-encoding-based protocol that provides
   the same operations as NETCONF, using the same YANG modules for
   structure and same NMDA datastores, but using RESTful exchanges over
   HTTP.  It uses HTTP-native methods to express its allowed operations:
   GET, POST, PUT, PATCH, or DELETE data nodes within a datastore.

Birrane, et al.          Expires 31 August 2024                [Page 22]



Internet-Draft                    DTNMA                    February 2024

   Although RESTCONF is a logically stateless protocol, it does rely on
   state within its transport protocol to achieve behaviors such as
   authentication and security sessions.  Because RESTCONF uses the same
   data node semantics of NETCONF, a typical activity can involve the
   use of several sequential round-trips of exchanges to first discover
   managed device state and then act upon it.

5.2.4.  CORECONF Protocol and Transport

   CORECONF is an emerging stateless protocol built atop the Constrained
   Application Protocol (CoAP) [RFC7252] that defines a messaging
   construct developed to operate specifically on constrained devices
   and networks by limiting message size and fragmentation.  CoAP also
   implements a request/response system and methods for GET, POST, PUT,
   and DELETE.

5.3.  gRPC Network Management Interface (gNMI)

   Another emerging but not-IETF-affiliated management protocol is the
   gRPC Network Management Interface (gNMI) [gNMI] which is based on
   gRPC messaging and uses Protobuf data modeling.

   The same limitations of RESTCONF listed above apply to gNMI because
   of its reliance on synchronous HTTP exchanges and TLS security for
   normal operations, as well as the likely deep nesting of data
   schemas.  There is a capability for gNMI to transport JSON-encoded
   YANG-modeled data, but this composing is not fully standardized and
   relies on specific tool integrations to operate.

5.3.1.  The Protobuf Modeling Language

   The data managed and exchanged via gNMI is encoded and modeled using
   Google Protobuf, an encoding and modeling syntax not affiliated with
   the IETF (although an attempt has been made and abandoned
   [I-D.rfernando-protocol-buffers]).

   Because the Protobuf modeling syntax is relatively low-level (around
   the same as ASN.1 or CBOR), there are some efforts as part of the
   OpenConfig work [gNMI] to translate YANG modules into Protobuf
   schemas (similar to translation to XML or JSON schemas for NETCONF
   and RESTCONF respectively) but there is no required interoperabilty
   between management via gRPC or any of the *CONF protocols.

Birrane, et al.          Expires 31 August 2024                [Page 23]



Internet-Draft                    DTNMA                    February 2024

5.3.2.  gRPC Protocol and Transport

   The message encoding and exchange for gNMI, as the name implies, is
   gRPC protocol [gRPC]. gRPC exclusively uses HTTP/2 [RFC7540] for
   transport and relies on some aspects specific to HTTP/2 for its
   operations (such as HTTP trailer fields).  While not mandated by
   gRPC, when used to transport gNMI data TLS is required for transport
   security.

5.4.  Intelligent Platform Management Interface (IPMI)

   A lower-level remote management protocol, intended to be used to
   manage hardware devices and network appliances below the operating
   system (OS), is the Intelligent Platform Management Interface (IPMI)
   standardized in [IPMI].  The IPMI is focused on health monitoring,
   event logging, firmware management, and serial-over-LAN (SOL) remote
   console access in a "pre-OS or OS-absent" host environment.  The IPMI
   operates over a companion Remote Management Control Protocol (RMCP)
   for messaging, which itself can use UDP for transport.

   Because the IPMI and RCMP are tailored to low-level and well-
   connected devices within a datacenter, with typical workflows
   requiring many messaging round trips or low-latency interactive
   sessions, they are not suitable for operation over a challenged
   network.

5.5.  Autonomic Networking

   The future of network operations requires more autonomous behavior
   including self-configuration, self-management, self-healing, and
   self-optimization.  One approach to support this is termed Autonomic
   Networking [RFC7575].

   There is a large and growing set of work within the IETF focused on
   developing an Autonomic Networking Integrated Model and Approach
   (ANIMA).  The ANIMA work has developed a comprehensive reference
   model for distributing autonomic functions across multiple nodes in
   an autonomic networking infrastructure [RFC8993].

   This work, focused on learning the behavior of distributed systems to
   predict future events, is an emerging network management capability.
   This includes the development of signalling protocols such as GRASP
   [RFC8990] and the autonomic control plane (ACP) [RFC8368].

Birrane, et al.          Expires 31 August 2024                [Page 24]



Internet-Draft                    DTNMA                    February 2024

   Both autonomic and challenged networks require similar degrees of
   autonomy.  However, challenged networks cannot provide the complex
   coordination between nodes and distributed supporting infrastructure
   necessary for the frequent data exchanges for negotiation, learning,
   and bootstrapping associated with the above capabilities.

   There is some emerging work in ANIMA as to how disconnected devices
   might join and leave the autonomic control plane over time.  However,
   this work is solving an important, but different, problem than that
   encountered by challenged networks.

5.6.  Deep Space Autonomy

   Outside of the terrestrial networking community, there are existing
   and established remote management systems used for deep space mission
   operations.  Examples of two of these are for the New Horizons
   mission to Pluto [NEW-HORIZONS] and the DART mission to the asteroid
   Dimorphos [DART].

   The DTNMA has some heritage in the concepts of deep space autonomy,
   but each of those mission instantiations use mission-specific data
   encoding, messaging, and transport as well as mission-specific (or
   heavily mission-tailored) modeling concepts and languages.  Part of
   the goal of the DTNMA is to take the proven concepts from these
   missions and standardize the messaging syntax as well as a modular
   data modeling method.

6.  Motivation for New Features

   The future of network management will involve autonomous and
   autonomic functions operating on both managed and managing devices.
   However, the development of distributed autonomy for coordinated
   learning and event reaction is different from a managed device
   operating without connectivity to a managing node.

   Management mechanisms that provide DTNMA desirable properties do not
   currently exist.  This is not surprising since autonomous management
   in the context of a challenged networking environment is an emerging
   use case.

   In particular, a management architecture is needed that provides the
   following new features.

   Open Loop Control:  Freedom from a request-response architecture,
      API, or other presumption of timely round-trip communications.
      This is particularly important when managing networks that are not
      built over an HTTP or TCP/TLS infrastructure.

Birrane, et al.          Expires 31 August 2024                [Page 25]



Internet-Draft                    DTNMA                    February 2024

   Standard Autonomy Model:  An autonomy model that allows for standard
      expressions of policy to guarantee deterministic behavior across
      devices and vendor implementations.

   Compressible Model Structure:  A data model that allows for very
      compact encodings by defining and exploiting common structures for
      data schemas.

   Combining these new features with existing mechanisms for message
   data exchange (such as BP), data representations (such as CBOR) and
   data modeling languages (such as YANG) will form a pragmatic approach
   to defining challenged network management.

7.  Reference Model

   There are a multitude of ways in which both existing and emerging
   network management protocols, APIs, and applications can be
   integrated for use in challenged environments.  However, expressing
   the needed behaviors of the DTNMA in the context of any of these pre-
   existing components risks conflating systems requirements,
   operational assumptions, and implementation design constraints.

7.1.  Important Concepts

   This section describes a network management concept for challenged
   networks (generally) and those conforming to the DTN architecture (in
   particular).  The goal of this section is to describe how DTNMA
   services provide DTNMA desirable properties.

      |  NOTE: This section assumes a BPv7 underlying network transport.
      |  Bundles are the baseline transport protocol data units of the
      |  DTN architecture.  Additionally, they may be used in a variety
      |  of network architectures beyond the DTN architecture.
      |  Therefore, assuming bundles is a convenient way of scoping
      |  DTNMA to any network or network architecture that relies on
      |  BPv7 features.

   Similar to other network management architectures, the DTNMA draws a
   logical distinction between a managed device and a managing device.
   Managed devices use a DA to manage resident applications.  Managing
   devices use a DM to both monitor and control DAs.

      |  NOTE: The terms "managing" and "managed" represent logical
      |  characteristics of a device and are not, themselves, mutually
      |  exclusive.  For example, a managed device might, itself, also
      |  manage some other device in the network.  Therefore, a device
      |  may support either or both of these characteristics.

Birrane, et al.          Expires 31 August 2024                [Page 26]



Internet-Draft                    DTNMA                    February 2024

   The DTNMA differs from some other management architectures in three
   significant ways, all related to the need for a device to self-manage
   when disconnected from a managing device.

   Pre-shared Definitions:  Managing and managed devices should operate
      using pre-shared data definitions and models.  This implies that
      static definitions should be standardized whenever possible and
      that managing and managed devices may need to negotiate
      definitions during periods of connectivity.

   Agent Self-Management:  A managed device may find itself disconnected
      from its managing device.  In many challenged networking
      scenarios, a managed device may spend the majority of its time
      without a regular connection to a managing device.  In these
      cases, DAs manage themselves by applying pre-shared policies
      received from managing devices.

   Command-Based Interface:  Managing devices communicate with managed
      devices through a command-based interface.  Instead of exchanging
      variables, objects, or documents, a managing device issues
      commands to be run by a managed device.  These commands may create
      or update variables, change data stores, or impact the managed
      device in ways similar to other network management approaches.
      The use of commands is, in part, driven by the need for DAs to
      receive updates from both remote management devices and local
      autonomy.  The use of controls for the implementation of commands
      is discussed in more detail in Section 9.5.

7.2.  Model Overview

   A DTNMA reference model is provided in Figure 1 below.  In this
   reference model, applications and services on a managing device
   communicate with a DM which uses pre-shared definitions to create a
   set of policy directives that can be sent to a managed device’s DA
   via a command-based interface.  The DA provides local monitoring and
   control (commanding) of the applications and services resident on the
   managed device.  The DA also performs local data fusion as necessary
   to synthesize data products (such as reports) that can be sent back
   to the DM when appropriate.

   DTNMA Reference Model

Birrane, et al.          Expires 31 August 2024                [Page 27]



Internet-Draft                    DTNMA                    February 2024

       Managed Device                            Managing Device
+----------------------------+           +-----------------------------+
| +------------------------+ |           | +-------------------------+ |
| |Applications & Services | |           | | Applications & Services | |
| +----------^-------------+ |           | +-----------^-------------+ |
|            |               |           |             |               |
| +----------v-------------+ |           | +-----------v-------------+ |
| | DTNMA  +-------------+ | |           | | +-----------+   DTNMA   | |
| | AGENT  | Monitor and | | |Commanding | | |  Policy   |  MANAGER  | |
| |        |   Control   | | |<==========| | | Encoding  |           | |
| | +------+-------------+ | |           | | +-----------+-------+   | |
| | |Admin | Data Fusion | | |==========>| | | Reporting | Admin |   | |
| | +------+-------------+ | | Reporting | | +-----------+-------+   | |
| +------------------------+ |           | +-------------------------+ |
+----------------------------+           +-----------------------------+
           ^                                             ^
           |            Pre-Shared Definitions           |
           |        +---------------------------+        |
           +--------| - Autonomy Model          |--------+
                    | - Application Data Models |
                    | - Runtime Data Stores     |
                    +---------------------------+

                               Figure 1

   This model preserves the familiar concept of "managers" resident on
   managing devices and "agents" resident on managed devices.  However,
   the DTNMA model is unique in how the DM and DA operate.  The DM is
   used to pre-configure DAs in the network with management policies.
   it is expected that the DAs, themselves, perform monitoring and
   control functions on their own.  In this way, a properly configured
   DA may operate without a reliable connection back to a DM.

7.3.  Functional Elements

   The reference model illustrated in Figure 1 implies the existence of
   certain logical components whose roles and responsibilities are
   discussed in this section.

7.3.1.  Managed Applications and Services

   By definition, managed applications and services reside on a managed
   device.  These software entities can be controlled through some
   interface by the DA and their state can be sampled as part of
   periodic monitoring.  It is presumed that the DA on the managed
   device has the proper data model, control interface, and permissions
   to alter the configuration and behavior of these software
   applications.

Birrane, et al.          Expires 31 August 2024                [Page 28]



Internet-Draft                    DTNMA                    February 2024

7.3.2.  DTNMA Agent (DA)

   A DA resides on a managed device.  As is the case with other network
   management approaches, this agent is responsible for the monitoring
   and control of the applications local to that device.  Unlike other
   network management approaches, the agent accomplishes this task
   without a regular connection to a DTNMA Manager.

   The DA performs three major functions on a managed device: the
   monitoring and control of local applications, production of data
   analytics, and the administrative control of the agent itself.

7.3.2.1.  Monitoring and Control

   DAs monitor the status of applications running on their managed
   device and selectively control those applications as a function of
   that monitoring.  The following components are used to perform
   monitoring and control on an agent.

   Rules Database:
           Each DA maintains a database of policy expressions that form
           rules of behavior of the managed device.  Within this
           database, each rule of behavior is a tuple of a stimulus and
           a response.  Within the DTNMA, these rules are the embodiment
           of policy expressions received from DMs and evaluated at
           regular intervals by the autonomy engine.  The rules database
           is the collection of active rules known to the DA.

   Autonomy Engine:
           The DA autonomy engine monitors the state of the managed
           device looking for pre-defined stimuli and, when encountered,
           issuing a pre-defined response.  To the extent that this
           function is driven by the rules database, this engine acts as
           a policy execution engine.  This engine may also be directly
           configured by managers during periods of connectivity for
           actions separate from those in the rules database (such as
           enabling or disabling sets of rules).  Once configured, the
           engine may function without other access to any managing
           device.  This engine may also reconfigure itself as a
           function of policy.

   Application Control Interfaces:
           DAs support control interfaces for all managed applications.
           Control interfaces are used to alter the configuration and
           behavior of an application.  These interfaces may be custom
           for each application, or as provided through a common
           framework such as provided by an operating system.

Birrane, et al.          Expires 31 August 2024                [Page 29]



Internet-Draft                    DTNMA                    February 2024

7.3.2.2.  Data Fusion

   DAs generate new data elements as a function of the current state of
   the managed device and its applications.  These new data products may
   take the form of individual data values, or new collections of data
   used for reporting.  The logical components responsible for these
   behaviors are as follows.

   Application Data Interfaces:
           DAs support mechanisms by which important state is retrieved
           from various applications resident on the managed device.
           These data interfaces may be custom for each application, or
           as provided through a common framework such as provided by an
           operating system.

   Data Value Generators:
           DAs may support the generation of new data values as a
           function of other values collected from the managed device.
           These data generators may be configured with descriptions of
           data values and the data values they generate may be included
           in the overall monitoring and reporting associated with the
           managed device.

   Report Generators:
           DAs may, as appropriate, generate collections of data values
           and provide them to whatever local mechanism takes
           responsibility for their eventual transmission (or expiration
           and removal).  Reports can be generated as a matter of policy
           or in response to the handling of critical events (such as
           errors), or other logging needs.  The generation of a report
           is independent of whether there exists any connectivity
           between a DA and a DM.

7.3.2.3.  Administration

   DAs perform a variety of administrative services in support of their
   configuration.  The significant such administrative services are as
   follows.

   Manager Mapping:
           The DTNMA allows for a many-to-many relationship amongst
           DTNMA Agents and Managers.  A single DM may configure
           multiple DAs, and a single DA may be configured by multiple
           DMs.  Multiple managers may exist in a network for at least
           two reasons.  First, different managers may exist to control
           different applications on a device.  Second, multiple
           managers increase the likelihood of an agent encountering a
           manager when operating in a sparse or challenged environment.

Birrane, et al.          Expires 31 August 2024                [Page 30]



Internet-Draft                    DTNMA                    February 2024

           While the need for multiple managers is required for
           operating in a dynamically partitioned network, this
           situation allows for the possibility of conflicting
           information from different managers.  Implementations of the
           DTNMA should consider conflict resolution mechanisms.  Such
           mechanisms might include analyzing managed content, time,
           agent location, or other relevant information to select one
           manager input over other manager inputs.

   Data Verifiers:
           DAs might handle large amounts of data produced by various
           sources, to include data from local managed applications,
           remote managers, and self-calculated values.  DAs should
           ensure, when possible, that externally generated data values
           have the proper syntax and semantic constraints (e.g., data
           type and ranges) and any required authorization.

   Access Controllers:
           DAs support authorized access to the management of individual
           applications, to include the administrative management of the
           agent itself.  This means that a manager may only set policy
           on the agent pursuant to verifying that the manager is
           authorized to do so.

7.3.3.  Managing Applications and Services

   Managing applications and services reside on a managing device and
   serve as the both the source of DA policy statements and the target
   of DA reporting.  They may operate with or without an operator in the
   loop.

   Unlike management applications in unchallenged networks, these
   applications cannot exert closed-loop control over any managed device
   application.  Instead, they exercise open-loop control by producing
   policies that can be configured and enforced on managed devices by
   DAs.

      |  NOTE: Closed-loop control in this context refers to the
      |  practice of waiting for a response from a managed device prior
      |  to issuing new commands to that device.  These "loops" may be
      |  closed quickly (in milliseconds) or over much longer periods (
      |  hours, days, years).  The alternative to closed-loop control is
      |  open-loop control, where the issuance of new commands is not
      |  dependent on receiving responses to previous commands.
      |  Additionally, there might not be a 1-1 mapping between commands
      |  and responses.  A DA may, for example, produce a single
      |  response that captures the end state from applying multiple
      |  commands.

Birrane, et al.          Expires 31 August 2024                [Page 31]



Internet-Draft                    DTNMA                    February 2024

7.3.4.  DTNMA Manager (DM)

   A DM resides on a managing device.  This manager provides an
   interface between various managing applications and services and the
   DAs that enforce their policies.  In providing this interface, DMs
   translate between whatever native interface exists to various
   managing applications and the autonomy models used to encode
   management policy.

   The DM performs three major functions on a managing device: policy
   encoding, reporting, and administration.

7.3.4.1.  Policy Encoding

   DMs translate policy directives from managing applications and
   services into standardized policy expressions that can be recognized
   by DAs.  The following logical components are used to perform this
   policy encoding.

   Application Control Interfaces:
           DMs support control interfaces for managing applications.
           These control interfaces are used to receive desired policy
           statements from applications.  These interfaces may be custom
           for each application, or provided through a common framework,
           protocol, or operating system.

   Policy Encoders:
           DAs implement a standardized autonomy model comprising
           standardized data elements.  This allows the open-loop
           control structures provided by managing applications to be
           represented in a common language.  Policy encoders perform
           this encoding function.

   Policy Aggregators:
           DMs collect multiple encoded policies into messages that can
           be sent to DAs over the network.  This implies the proper
           addressing of agents and the creation of messages that
           support store-and-forward operations.  It is recommended that
           control messages be packaged using BP bundles when there may
           be intermittent connectivity between DMs and DAs.

7.3.4.2.  Reporting

   DMs receive reports on the status of managed devices during periods
   of connectivity with the DAs on those devices.  The following logical
   components are needed to implement reporting capabilities on a DM.

Birrane, et al.          Expires 31 August 2024                [Page 32]



Internet-Draft                    DTNMA                    February 2024

   Report Collectors:
           DMs receive reports from DAs in an asynchronous manner.  This
           means that reports may be received out of chronological order
           and in ways that are difficult or impossible to associate
           with a specific policy from a managing application.  DMs
           collect these reports and extract their data in support of
           subsequent data analytics.

   Data Analyzers:
           DMs review sets of data reports from DAs with the purpose of
           extracting relevant data to communicate with managing
           applications.  This may include simple data extraction or may
           include more complex processing such as data conversion, data
           fusion, and appropriate data analytics.

   Application Data Interfaces:
           DMs support mechanisms by which data retrieved from agent may
           be provided back to managing devices.  These interfaces may
           be custom for each application, or as provided through a
           common framework, protocol, or operating system.

7.3.4.3.  Administration

   Managers in the DTNMA perform a variety of administrative services in
   support of their proper configuration and operation.  This includes
   the following logical components.

   Agent Mappings:
           The DTNMA allows DMs to communicate with multiple DAs.
           However, not every agent in a network is expected to support
           the same set of Application Data Models or otherwise have the
           same set of managed applications running.  For this reason,
           DMs determine individual DA capabilities to ensure that only
           appropriate Controls are sent to a DA.

   Data Verifiers:
           DMs handle large amounts of data produced by various sources,
           to include data from managing applications and DAs.  DMs
           should ensure, when possible, that data values received from
           DAs over a network have the proper syntax and semantic
           constraints (e.g., data type and ranges) and any required
           authorization.

   Access Controllers:
           DMs should only send Controls to agents when the manager is
           configured with appropriate access to both the agent and the
           applications being managed.

Birrane, et al.          Expires 31 August 2024                [Page 33]



Internet-Draft                    DTNMA                    February 2024

7.3.5.  Pre-Shared Definitions

   A consequence of operating in a challenged environment is the
   potential inability to negotiate information in real-time.  For this
   reason, the DTNMA requires that managed and managing devices operate
   using pre-shared definitions rather than relying on data definition
   negotiation.

   The three types of pre-shared definitions in the DTNMA are the DA
   autonomy model, managed application data models, and any runtime data
   shared by managers and agents.

   Autonomy Model:
           A DTNMA autonomy model represents the data elements and
           associated autonomy structures that define the behavior of
           the agent autonomy engine.  A standardized autonomy model
           allows for individual implementations of DAs, and DMs to
           interoperate.  A standardized model also provides guidance to
           the design and implementation of both managed and managing
           applications.

   Application Data Models:
           As with other network management architectures, the DTNMA
           pre-supposes that managed applications (and services) define
           their own data models.  These data models include the data
           produced by, and Controls implemented by, the application.
           These models are expected to be static for individual
           applications and standardized for applications implementing
           standard protocols.

   Runtime Data Stores:
           Runtime data stores, by definition, include data that is
           defined at runtime.  As such, the data is not pre-shared
           prior to the deployment of DMs and DAs.  Pre-sharing in this
           context means that DMs and DAs are able to define and
           synchronize data elements prior to their operational use in
           the system.  This synchronization happens during periods of
           connectivity between DMs and DAs.

8.  Desired Services

   This section provides a description of the services provided by DTNMA
   components on both managing and managed devices.  These service
   descriptions differ from other management descriptions because of the
   unique characteristics of the DTNMA operating environment.

Birrane, et al.          Expires 31 August 2024                [Page 34]



Internet-Draft                    DTNMA                    February 2024

      |  Predicate autonomy, asynchronous data transport, and
      |  intermittent connectivity require new techniques for device
      |  management.  Many of the services discussed in this section
      |  attempt to provide continuous operation of a managed device
      |  through periods of no connectivity.

8.1.  Local Monitoring and Control

   DTNMA monitoring is associated with the agent autonomy engine.  The
   term monitoring implies regular access to information such that state
   changes may be acted upon within some response time period.  Within
   the DTNMA, connections between a managed and managing device are
   unable to provide such a connection and, thus, monitoring functions
   are performed on the managed device.

   Predicate autonomy on a managed device should collect state
   associated with the device at regular intervals and evaluate that
   collected state for any changes that require a preventative or
   corrective action.  Similarly, this monitoring may cause the device
   to generate one or more reports destined to the managing device.

   Similar to monitoring, DTNMA control results in actions by the agent
   to change the state or behavior of the managed device.  All control
   in the DTNMA is local control.  In cases where there exists a timely
   connection to a manager, received Controls are still run through the
   autonomy engine.  In this case, the stimulus is the direct receipt of
   the Control and the response is to immediately run the Control.  In
   this way, there is never a dependency on a session or other stateful
   exchange with any remote entity.

8.2.  Local Data Fusion

   DTNMA Fusion services produce new data products from existing state
   on the managed device.  These fusion products can be anything from
   simple summations of sampled counters to complex calculations of
   behavior over time.

   Fusion is an important service in the DTNMA because fusion products
   are part of the overall state of a managed device.  Complete
   knowledge of this overall state is important for the management of
   the device, particularly in a stimulus-response system whose stimuli
   are evaluated against this state.  In particular, the predicates of
   rules on a DA may refer to fused data.

Birrane, et al.          Expires 31 August 2024                [Page 35]



Internet-Draft                    DTNMA                    February 2024

   In-situ data fusion is an important function as it allows for the
   construction of intermediate summary data, the reduction of stored
   and transmitted raw data, possibly fewer predicates in rule
   definitions, and otherwise insulates the data source from conclusions
   drawn from that data.

   While some fusion is performed in any management system, the DTNMA
   requires fusion to occur on the managed device itself.  If the
   network is partitioned such that no connection to a managing device
   is available, fusion happens locally.  Similarly, connections to a
   managing device might not remain active long enough for round-trip
   data exchange or may not have the bandwidth to send all sampled data.

      |  NOTE: While data fusion is an important function within the
      |  DTNMA, it is expected that the storage and transmission of raw
      |  (or pre-fused) data remains a capability of the system.  In
      |  particular, raw data can be useful for debugging managed
      |  devices, understanding complex interactions and underlying
      |  conditions, and tuning for better performance and/or better
      |  outcomes.

8.3.  Remote Configuration

   DTNMA configuration services update the local configuration of a
   managed device with the intent to impact the behavior and
   capabilities of that device.  The change of device configurations is
   a common service provided by many network management systems.  The
   DTNMA has a unique approach to configuration for the following
   reasons.

   The DTNMA configuration service is unique in that the selection of
   managed device configurations occurs, itself, as a function of the
   state of the device.  This implies that management proxies on the
   device store multiple configuration functions that can be applied as
   needed without consultation from a managing device.

      |  This approach differs from the management concept of selecting
      |  from multiple datastores in that DTNMA configuration functions
      |  can target individual data elements and can calculate new
      |  values from local device state.

   When detecting stimuli, the agent autonomy engine supports a
   mechanism for evaluating whether application monitoring data or
   runtime data values are recent enough to indicate a change of state.
   In cases where data has not been updated recently, it may be
   considered stale and not used to reliably indicate that some stimulus
   has occurred.

Birrane, et al.          Expires 31 August 2024                [Page 36]



Internet-Draft                    DTNMA                    February 2024

8.4.  Remote Reporting

   DTNMA reporting services collect information known to the managed
   device and prepare it for eventual transmission to one or more
   managing devices.  The contents of these reports, and the frequency
   at which they are generated, occurs as a function of the state of the
   managed device, independent of the managing device.

   Once generated, it is expected that reports might be queued pending a
   connection back to a managing device.  Therefore, reports need to be
   differentiable as a function of the time they were generated.

      |  NOTE: When reports are queued pending transmission, the overall
      |  storage capacity at the queuing device needs to be considered.
      |  There may be cases where queued reports can be considered
      |  expired either because they have been queued for too long, or
      |  because they have been replaced by a newer report.  When a
      |  report is considered expired, it may be considered for removal
      |  and, thus, never transmitted.  This consideration is expected
      |  to be part of the implementation of the queuing device and not
      |  the responsibility of the reporting function within the DTNMA.

   When reports are sent to a managing device over a challenged network,
   they may arrive out of order due to taking different paths through
   the network or being delayed due to retransmissions.  A managing
   device should not infer meaning from the order in which reports are
   received.

   Reports may or may not be associated with a specific Control.  Some
   reports may be annotated with the Control that caused the report to
   be generated.  Sometimes, a single report will represent the end
   state of applying multiple Controls.

8.5.  Authorization

   Both local and remote services provided by the DTNMA affect the
   behavior of multiple applications on a managed device and may
   interface with multiple managing devices.

   Authorization services enforce the potentially complex mapping of
   other DTNMA services amongst managed and managing devices in the
   network.  For example, fine-grained access control can determine
   which managing devices receive which reports, and what Controls can
   be used to alter which managed applications.

Birrane, et al.          Expires 31 August 2024                [Page 37]



Internet-Draft                    DTNMA                    February 2024

   This is particularly beneficial in networks that either deal with
   multiple administrative entities or overlay networks that cross
   administrative boundaries.  Allowlists, blocklists, key-based
   infrastructures, or other schemes may be used for this purpose.

9.  Logical Autonomy Model

   An important characteristic of the DTNMA is the shift in the role of
   a managing device.  In the DTNMA, managers configure the autonomy
   engines on agents, and it is the agents that provide local device
   management.  One way to describe the behavior of the agent autonomy
   engine is to describe the characteristics of the autonomy model it
   implements.

   This section describes a logical autonomy model in terms of the
   abstract data elements that would comprise the model.  Defining
   abstract data elements allows for an unambiguous discussion of the
   behavior of an autonomy model without mandating a particular design,
   encoding, or transport associated with that model.

9.1.  Overview

   A managing autonomy capability on a potentially disconnected device
   needs to behave in both an expressive and deterministic way.
   Expressivity allows for the model to be configured for a wide range
   of future situations.  Determinism allows for the forensic
   reconstruction of device behavior as part of debugging or recovery
   efforts.  It also is necessary to ensure predictable behavior.

      |  NOTE: The use of predicate logic and a stimulus-response system
      |  does not conflict with the use of higher-level autonomous
      |  function or the incorporation of machine learning.
      |  Specifically, the DTNMA deterministic autonomy model can
      |  coexist with other autonomous functions managing applications
      |  and network services.
      |
      |  An example of such co-existence is the use of the DTNMA model
      |  to ensure a device stays within safe operating parameters while
      |  a less deterministic machine learning model directs smaller
      |  behaviors for the device.

   The DTNMA autonomy model is a rule-based model in which individual
   rules associate a pre-identified stimulus with a pre-configured
   response to that stimulus.

Birrane, et al.          Expires 31 August 2024                [Page 38]



Internet-Draft                    DTNMA                    February 2024

   Stimuli are identified using one or more predicate logic expressions
   that examine aspects of the state of the managed device.  Responses
   are implemented by running one or more procedures on the managed
   device.

   In its simplest form, a stimulus is a single predicate expression of
   a condition that examines some aspect of the state of the managed
   device.  When the condition is met, a predetermined response is
   applied.  This behavior can be captured using the construct:

               IF <condition 1> THEN <response 1>;

   In more complex forms, a stimulus may include both a common condition
   shared by multiple rules and a specific condition for each individual
   rule.  If the common condition is not met, the evaluation of the
   specific condition of each rule sharing the common condition can be
   skipped.  In this way, the total number of predicate evaluations can
   be reduced.  This behavior can be captured using the construct:

               IF <common condition> THEN
                 IF <specific condition 1> THEN <response 1>
                 IF <specific condition 2> THEN <response 2>
                 IF <specific condition 3> THEN <response 3>

      |  NOTE: The DTNMA model remains a stimulus-response system,
      |  regardless of whether a common condition is part of the
      |  stimulus.  However, it is recommended that implementations
      |  incorporate a common condition because of the efficiency
      |  provided by such a bulk evaluation.
      |
      |  NOTE: One use of a stimulus "common condition" is to associated
      |  the condition with an on-board event such as the expiring of a
      |  timer or the changing of a monitored value.
      |
      |  NOTE: The DTNMA does not prescribe when to evaluate rule
      |  stimuli.  Implementations may choose to evaluate rule stimuli
      |  at periodic intervals (such as 1Hz or 100Hz).  When stimuli
      |  include on-board events, implementations may choose to perform
      |  an immediate evaluation at the time of the event rather than
      |  waiting for a periodic evaluation.

   DTNMA Autonomy Model

Birrane, et al.          Expires 31 August 2024                [Page 39]



Internet-Draft                    DTNMA                    February 2024

  Managed Applications |           DTNMA Agent          | DTNMA Manager
 +---------------------+--------------------------------+--------------+
                       |   +---------+                  |
                       |   |  Local  |                  |   Encoded
                       |   | Rule DB |<-------------------- Policy
                       |   +---------+                  |   Expressions
                       |        ^                       |
                       |        |                       |
                       |        v                       |
                       |   +----------+    +---------+  |
     Monitoring Data------>|   Agent  |    | Runtime |  |
                       |   | Autonomy |<-->|  Data   |<---- Definitions
 Application Control<------|  Engine  |    |  Store  |  |
                       |   +----------+    +---------+  |
                       |         |                      |
                       |         +-------------------------> Reports
                       |                                |

                                Figure 2

   The flow of data into and out of the agent autonomy engine is
   illustrated in Figure 2.  In this model, the autonomy engine stores
   the combination of stimulus conditions and associated responses as a
   set of "rules" in a rules database.  This database is updated through
   the execution of the autonomy engine and as configured from policy
   statements received by managers.

   Stimuli are detected by examining the state of applications as
   reported through application monitoring interfaces and through any
   locally-derived data.  Local data is calculated in accordance with
   definitions also provided by managers as part of the runtime data
   store.

   Responses to stimuli are run as updated to the rules database,
   updated to the runtime data store, Controls sent to applications, and
   the generation of reports.

9.2.  Model Characteristics

   There are several practical challenges to the implementation of a
   distributed rule-based system.  Large numbers of rules may be
   difficult to understand, deconflict, and debug.  Rules whose
   conditions are given by fused or other dynamic data may require data
   logging and reporting for deterministic offline analysis.  Rule
   differences across managed devices may lead to oscillating effects.
   This section identifies those characteristics of an autonomy model
   that might help implementations mitigate some of these challenges.

Birrane, et al.          Expires 31 August 2024                [Page 40]



Internet-Draft                    DTNMA                    February 2024

   There are a number of ways to represent data values, and many data
   modeling languages exist for this purpose.  When considering how to
   model data in the context of the DTNMA autonomy model there are some
   modeling features that should be present to enable functionality.
   There are also some modeling features that should be prevented to
   avoid ambiguity.

   Traditional network management approaches favor flexibility in their
   data models.  The DTNMA stresses deterministic behavior that supports
   forensic analysis of agent activities "after the fact".  As such, the
   following statements should be true of all data representations
   relating to DTNMA autonomy.

   Strong Typing:  The predicates and expressions that comprise the
      autonomy services in the DTNMA should require strict data typing.
      This avoids errors associated with implicit data conversions and
      helps detect misconfiguration.

   Acyclic Dependency:  Many dependencies exist in an autonomy model,
      particularly when combining individual expressions or results to
      create complex behaviors.  Implementations that conform to the
      DTNMA need to prevent circular dependencies.

   Fresh Data:  Autonomy models operating on data values presume that
      their data inputs represent the actionable state of the managed
      device.  If a data value has failed to be refreshed within a time
      period, autonomy might incorrectly infer an operational state.
      Regardless of whether a data value has changed, DTNMA
      implementations should provide some indicator of whether the data
      value is "fresh" meaning that it still represents the current
      state of the device.

   Pervasive Parameterization:  Where possible, autonomy model objects
      should support parameterization to allow for flexibility in the
      specification.  Parameterization allows for the definition of
      fewer unique model objects and also can support the substitution
      of local device state when exercising device control or data
      reporting.

   Configurable Cardinality:  The number of data values that can be
      supported in a given implementation is finite.  For devices
      operating in challenged environments, the number of supported
      objects may be far fewer than that which can be supported by
      devices in well-resourced environments.  DTNMA implementations
      should define limits to the number of supported objects that can
      be active in a system at one time, as a function of the resources
      available to the implementation.

Birrane, et al.          Expires 31 August 2024                [Page 41]



Internet-Draft                    DTNMA                    February 2024

   Control-Based Updates:  The agent autonomy engine changes the state
      of the managed device by running Controls on the device.  This is
      different from other approaches where the behavior of a managed
      device is updated only by updated configuration values, such as in
      a table or datastore.  Altering behavior via one or more Controls
      allows checking all pre-conditions before making changes as well
      as providing more granularity in the way in which the device is
      updated.  Where necessary, Controls can be defined to perform bulk
      updates of configuration data so as not to lose that update
      modality.  One important update pre-condition is that the system
      is not performing an action that would prevent the update (such as
      currently applying a competing update).

9.3.  Data Value Representation

   The expressive representation of simple data values is fundamental to
   the successful construction and evaluation of predicates in the DTNMA
   autonomy model.  When defining such values, there are useful
   distinctions regarding how values are identified and whether values
   are generated internal or external to the autonomy model.

   A DTNMA data value should combine a base type (e.g., integer, real,
   string) representation with relevant semantic information.  Base
   types are used for proper storage and encoding.  Semantic information
   allows for additional typing, constraint definitions, and mnemonic
   naming.  This expanded definition of data value allows for better
   predicate construction and evaluation, early type checking, and other
   uses.

   Data values may further be annotated based on whether their value is
   the result of a DA calculation or the result of some external process
   on the managed device.  For example, operators may with to know which
   values can be updated by actions on the DA versus which values (such
   as sensor readings) cannot be reliably changed because they are
   calculated external to the DA.

9.4.  Data Reporting

   The DTNMA autonomy model should, as required, report on the state of
   its managed device (to include the state of the model itself).  This
   reporting should be done as a function of the changing state of the
   managed device, independent of the connection to any managing device.
   Queuing reports allows for later forensic analysis of device
   behavior, which is a desirable property of DTNMA management.

Birrane, et al.          Expires 31 August 2024                [Page 42]



Internet-Draft                    DTNMA                    February 2024

   DTNMA data reporting consists of the production of some data report
   instance conforming to a data report schema.  The use of schemas
   allows a report instance to identify the schema to which it conforms
   in lieu of carry that structure in the instance itself.  This
   approach can significantly reduce the size of generated reports.

      |  NOTE: The DTNMA data reporting concept is intentionally
      |  distinct from the concept of exchanging data stores across a
      |  network.  It is envisioned that a DA might generate a data
      |  report instance of a data report schema at regular intervals or
      |  in response to local events.  In this model, many report
      |  schemas may be defined to capture unique, relevant combinations
      |  of known data values rather than sending bulk data stores off-
      |  platform for analysis.
      |
      |  NOTE: It is not required that data report schemas be tabular in
      |  nature.  Individual implementations might define tabular
      |  schemas for table-like data and other report schemas for more
      |  heterogeneous reporting.

9.5.  Command Execution

   The agent autonomy engine requires that managed devices issue
   commands on themselves as if they were otherwise being controlled by
   a managing device.  The DTNMA implements commanding through the use
   of Controls and macros.

   Controls represent parameterized, predefined procedures run by the DA
   either as directed by the DM or as part of a rule response from the
   DA autonomy engine.  Macros represent ordered sequences of Controls.

   Controls are conceptually similar to RPCs in that they represent
   parameterized functions run on the managed device.  However, they are
   conceptually dissimilar from RPCs in that they do not have a concept
   of a return code because they operate over an asynchronous transport.
   The concept of return code in an RPC implies a synchronous
   relationship between the caller of the procedure and the procedure
   being called, which might not be possible within the DTNMA.

   The success or failure of a Control may be handled locally by the
   agent autonomy engine.  Local error handling is particularly
   important in this architecture given the potential for long periods
   of disconnectivity between a DA and a DM.  The failure of one or more
   Controls on a DA represent part of the state of the DA and,
   therefore, able to trigger rules as part of the Agent autonomy
   engine.

Birrane, et al.          Expires 31 August 2024                [Page 43]



Internet-Draft                    DTNMA                    February 2024

   The impact of a Control is externally observable via the generation
   and eventual examination of data reports produced by the managed
   device.

   The failure of certain Controls might leave a managed device in an
   undesired state.  Therefore, it is important that there be
   consideration for Control-specific recovery mechanisms (such as a
   rollback or safing mechanism).  When a Control that is part of a
   macro (such as in an autonomy response) fails, there may be a need to
   implement a safe state for the managed device based on the nature of
   the failure.

      |  NOTE: The use of the term Control in the DTNMA is derived in
      |  part from the concept of Command and Control (C2) where control
      |  implies the operational instructions undertaken to implement
      |  (or maintain) a commanded objective.  The DA autonomy engine
      |  controls a managed device to allow it to fulfill some purpose
      |  as commanded by a (possibly disconnected) managing device.
      |
      |  For example, attempting to maintain a safe internal thermal
      |  environment for a spacecraft is considered "thermal control"
      |  (not "thermal commanding") even though thermal control involves
      |  sending commands to heaters, louvers, radiators, and other
      |  temperature-affecting components.
      |
      |  Even when Controls are received from a managing device with the
      |  intent to be run immediately, the control-vs-command
      |  distinction still applies.  The Control being run on the
      |  managed device is in service of the command received from the
      |  managing device to immediately change the local state of the
      |  device.

9.6.  Predicate Autonomy Rules

   As discussed in Section 9.1, the DTNMA rule-based stimulus-response
   system associates stimulus detection with a predetermined response.
   Rules may be categorized based on whether their stimuli include
   generic statements of managed device state or whether they are
   optimized to only consider the passage of time on the device.

   State-based rules are those whose stimulus is based on the evaluated
   state of the managed device.  Time-based rules are a unique subset of
   state-based rules whose stimulus is given only by a time-based event.
   Implementations might create different structures and evaluation
   mechanisms for these two different types of rules to achieve more
   efficient processing on a platform.

Birrane, et al.          Expires 31 August 2024                [Page 44]



Internet-Draft                    DTNMA                    February 2024

10.  Use Cases

   Using the autonomy model defined in Section 9, this section describes
   flows through sample configurations conforming to the DTNMA.  These
   use cases illustrate remote configuration, local monitoring and
   control, multiple manager support, and data fusion.

10.1.  Notation

   The use cases presented in this section are documented with a
   shorthand notation to describe the types of data sent between
   managers and agents.  This notation, outlined in Table 1, leverages
   the definitions of autonomy model components defined in Section 9.

   +==================+===================================+===========+
   |       Term       |             Definition            |  Example  |
   +==================+===================================+===========+
   |       EDD#       |  Externally Defined Data - a data |   EDD1,   |
   |                  | value defined external to the DA. |    EDD2   |
   +------------------+-----------------------------------+-----------+
   |        V#        |  Variable - a data value defined  | V1 = EDD1 |
   |                  |        internal to the DA.        |    + 7    |
   +------------------+-----------------------------------+-----------+
   |       EXPR       |   Predicate expression - used to  |   V1 > 5  |
   |                  |      define a rule stimulus.      |           |
   +------------------+-----------------------------------+-----------+
   |        ID        |      DTNMA Object Identifier.     |  V1, EDD2 |
   +------------------+-----------------------------------+-----------+
   |       ACL#       |  Enumerated Access Control List.  |    ACL1   |
   +------------------+-----------------------------------+-----------+
   | DEF(ACL,ID,EXPR) | Define ID from expression.  Allow | DEF(ACL1, |
   |                  |  managers in ACL to see this ID.  |  V1, EDD1 |
   |                  |                                   |  + EDD2)  |
   +------------------+-----------------------------------+-----------+
   |    PROD(P,ID)    | Produce ID according to predicate |  PROD(1s, |
   |                  |  P.  P may be a time period (1s)  |   EDD1)   |
   |                  |   or an expression (EDD1 > 10).   |           |
   +------------------+-----------------------------------+-----------+
   |     RPT(ID)      | A report instance containing data | RPT(EDD1) |
   |                  |             named ID.             |           |
   +------------------+-----------------------------------+-----------+

                           Table 1: Terminology

   These notations do not imply any implementation approach.  They only
   provide a succinct syntax for expressing the data flows in the use
   case diagrams in the remainder of this section.

Birrane, et al.          Expires 31 August 2024                [Page 45]



Internet-Draft                    DTNMA                    February 2024

10.2.  Serialized Management

   This nominal configuration shows a single DM interacting with
   multiple DAs.  The control flows for this scenario are outlined in
   Figure 3.

   Serialized Management Control Flow

         +-----------+           +---------+           +---------+
         |   DTNMA   |           |  DTNMA  |           |  DTNMA  |
         | Manager A |           | Agent A |           | Agent B |
         +----+------+           +----+----+           +----+----+
             |                       |                     |
             |-----PROD(1s, EDD1)--->|                     | (1)
             |----------------------------PROD(1s, EDD1)-->|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     | (2)
             |<----------------------------RPT(EDD1)-------|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |<----------------------------RPT(EDD1)-------|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |<----------------------------RPT(EDD1)-------|
             |                       |                     |

                                  Figure 3

   In a serialized management scenario, a single DM interacts with
   multiple DAs.

   In this figure, the DTNMA Manager A sends a policy to DTNMA Agents A
   and B to report the value of an EDD (EDD1) every second in (step 1).
   Each DA receives this policy and configures their respective autonomy
   engines for this production.  Thereafter, (step 2) each DA produces a
   report containing data element EDD1 and sends those reports back to
   the DM.

   This behavior continues without any additional communications from
   the DM and without requiring a connection between the DA and DM.

Birrane, et al.          Expires 31 August 2024                [Page 46]



Internet-Draft                    DTNMA                    February 2024

10.3.  Intermittent Connectivity

   Building from the nominal configuration in Section 10.2, this
   scenario shows a challenged network in which connectivity between
   DTNMA Agent B and the DM is temporarily lost.  Control flows for this
   case are outlined in Figure 4.

   Challenged Management Control Flow

         +-----------+           +---------+           +---------+
         |   DTNMA   |           |  DTNMA  |           |  DTNMA  |
         | Manager A |           | Agent A |           | Agent B |
         +----+------+           +----+----+           +----+----+
             |                       |                     |
             |-----PROD(1s, EDD1)--->|                     | (1)
             |----------------------------PROD(1s, EDD1)-->|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     | (2)
             |<----------------------------RPT(EDD1)-------|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |<----------------------------RPT(EDD1)-------|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |                       |            RPT(EDD1)| (3)
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |                       |            RPT(EDD1)| (4)
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |<----------------RPT(EDD1), RPT(EDD1)--------| (5)
             |                       |                     |

                                  Figure 4

   In a challenged network, DAs store reports pending a transmit
   opportunity.

Birrane, et al.          Expires 31 August 2024                [Page 47]



Internet-Draft                    DTNMA                    February 2024

   In this figure, DTNMA Manager A sends a policy to DTNMA Agents A and
   B to produce an EDD (EDD1) every second in (step 1).  Each DA
   receives this policy and configures their respective autonomy engines
   for this production.  Produced reports are transmitted when there is
   connectivity between the DA and DM (step 2).

   At some point, DTNMA Agent B loses the ability to transmit in the
   network (steps 3 and 4).  During this time period, DA B continues to
   produce reports, but they are queued for transmission.  This queuing
   might be done by the DA itself or by a supporting transport such as
   BP.  Eventually (and before the next scheduled production of EDD1),
   DTNMA Agent B is able to transmit in the network again (step 5) and
   all queued reports are sent at that time.  DTNMA Agent A maintains
   connectivity with the DM during steps 3-5, and continues to send
   reports as they are generated.

10.4.  Open-Loop Reporting

   This scenario illustrates the DTNMA open-loop control paradigm, where
   DAs manage themselves in accordance with policies provided by DMs,
   and provide reports to DMs based on these policies.

   The control flow shown in Figure 5, includes an example of data
   fusion, where multiple policies configured by a DM result in a single
   report from a DA.

   Consolidated Management Control Flow

Birrane, et al.          Expires 31 August 2024                [Page 48]



Internet-Draft                    DTNMA                    February 2024

         +-----------+           +---------+           +---------+
         |   DTNMA   |           |  DTNMA  |           |  DTNMA  |
         | Manager A |           | Agent A |           | Agent B |
         +----+------+           +----+----+           +----+----+
             |                       |                     |
             |-----PROD(1s, EDD1)--->|                     | (1)
             |----------------------------PROD(1s, EDD1)-->|
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     | (2)
             |<----------------------------RPT(EDD1)-------|
             |                       |                     |
             |                       |                     |
             |----------------------------PROD(1s, EDD2)-->| (3)
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |<--------------------------RPT(EDD1,EDD2)----| (4)
             |                       |                     |
             |                       |                     |
             |<-------RPT(EDD1)------|                     |
             |<--------------------------RPT(EDD1,EDD2)----|
             |                       |                     |

                                  Figure 5

   A many-to-one mapping between management policy and device state
   reporting is supported by the DTNMA.

   In this figure, DTNMA Manager A sends a policy statement in the form
   of a rule to DTNMA Agents A and B, which instructs the DAs to produce
   a report with EDD1 every second (step 1).  Each DA receives this
   policy, which is stored in its respective Rule Database, and
   configures its Autonomy Engine.  Reports are transmitted by each DA
   when produced (step 2).

   At a later time, DTNMA Manager A sends an additional policy to DTNMA
   Agent B, requesting the production of a report for EDD2 every second
   (step 3).  This policy is added to DTNMA Agent B’s Rule Database.

   Following this policy update, DTNMA Agent A will continue to produce
   EDD1 and DTNMA Agent B will produce both EDD1 and EDD2 (step 4).
   However, DTNMA Agent B may provide these values to the DM in a single
   report rather than as 2 independent reports.  In this way, there is
   no direct mapping between the single consolidated report sent by
   DTNMA Agent B (step 4) and the two different policies sent to DTNMA
   Agent B that caused that report to be generated (steps 1 and 3).

Birrane, et al.          Expires 31 August 2024                [Page 49]



Internet-Draft                    DTNMA                    February 2024

10.5.  Multiple Administrative Domains

   The managed applications on a DA may be controlled by different
   administrative entities in a network.  The DTNMA allows DAs to
   communicate with multiple DMs in the network, such as in cases where
   there is one DM per administrative domain.

   Whenever a DM sends a policy expression to a DA, that policy
   expression may be associated with authorization information.  One
   method of representing this is an ACL.

      |  The use of an ACL in this use case does not imply the DTNMA
      |  requires ACLs to annotate policy expressions.  Further, the
      |  inclusion of ACLs in the policy expressions themselves is for
      |  representation purposes only, as ACLs are internal to DAs and
      |  not supplied explicitly in messaging.  ACLs and their
      |  representation in this context are for example purposes only.

   The ability of one DM to access the results of policy expressions
   configured by some other DM will be limited to the authorization
   annotations of those policy expressions.

   An example of multi-manager authorization is illustrated in Figure 6.

   Multiplexed Management Control Flow

Birrane, et al.          Expires 31 August 2024                [Page 50]



Internet-Draft                    DTNMA                    February 2024

   +-----------+               +---------+                 +-----------+
   |   DTNMA   |               |  DTNMA  |                 |   DTNMA   |
   | Manager A |               | Agent A |                 | Manager B |
   +-----+-----+               +----+----+                 +-----+-----+
        |                          |                            |
        |---DEF(ACL1,V1,EDD1*2)--->|<---DEF(ACL2, V2, EDD2*2)---| (1)
        |                          |                            |
        |---PROD(1s, V1)---------->|<---PROD(1s, V2)------------| (2)
        |                          |                            |
        |<--------RPT(V1)----------|                            | (3)
        |                          |--------RPT(V2)------------>|
        |<--------RPT(V1)----------|                            |
        |                          |--------RPT(V2)------------>|
        |                          |                            |
        |                          |<---PROD(1s, V1)------------| (4)
        |                          |                            |
        |                          |----ERR(V1 no perm.)------->|
        |                          |                            |
        |--DEF(NULL,V3,EDD3*3)---->|                            | (5)
        |                          |                            |
        |---PROD(1s, V3)---------->|                            | (6)
        |                          |                            |
        |                          |<----PROD(1s, V3)-----------|
        |                          |                            |
        |<--------RPT(V3)----------|--------RPT(V3)------------>| (7)
        |<--------RPT(V1)----------|                            |
        |                          |--------RPT(V2)------------>|
        |<-------RPT(V3)-----------|--------RPT(V3)------------>|
        |<-------RPT(V1)-----------|                            |
        |                          |--------RPT(V2)------------>|

                                  Figure 6

   Multiple DMs may interface with a single DA, particularly in complex
   networks.

   In this figure, both DTNMA Managers A and B send policies to DTNMA
   Agent A (step 1).  DM A defines a variable (V1) whose value is given
   by the mathematical expression (EDD1 * 2) and is associated with an
   ACL (ACL1) that restricts access to V1 to DM A only.  Similarly, DM B
   defines a variable (V2) whose value is given by the mathematical
   expression (EDD2 * 2) and associated with an ACL (ACL2) that
   restricts access to V2 to DM B only.

Birrane, et al.          Expires 31 August 2024                [Page 51]



Internet-Draft                    DTNMA                    February 2024

   Both DTNMA Managers A and B also send policies to DTNMA Agent A to
   report on the values of their variables at 1 second intervals (step
   2).  Since DM A can access V1 and DM B can access V2, there is no
   authorization issue with these policies and they are both accepted by
   the autonomy engine on Agent A.  Agent A produces reports as
   expected, sending them to their respective managers (step 3).

   Later (step 4) DM B attempts to configure DA A to also report to it
   the value of V1.  Since DM B does not have authorization to view this
   variable, DA A does not include this in the configuration of its
   autonomy engine and, instead, some indication of permission error is
   included in any regular reporting back to DM B.

   DM A also sends a policy to Agent A (step 5) that defines a variable
   (V3) whose value is given by the mathematical expression (EDD3 * 3)
   and is not associated with an ACL, indicating that any DM can access
   V3.  In this instance, both DM A and DM B can then send policies to
   DA A to report the value of V3 (step 6).  Since there is no
   authorization restriction on V3, these policies are accepted by the
   autonomy engine on Agent A and reports are sent to both DM A and B
   over time (step 7).

10.6.  Cascading Management

   There are times where a single network device may serve as both a DM
   for other DAs in the network and, itself, as a device managed by
   someone else.  This may be the case on nodes serving as gateways or
   proxies.  The DTNMA accommodates this case by allowing a single
   device to run both a DA and DM.

   An example of this configuration is illustrated in Figure 7.

   Data Fusion Control Flow

Birrane, et al.          Expires 31 August 2024                [Page 52]



Internet-Draft                    DTNMA                    February 2024

                  ---------------------------------------
                  |                Node B               |
                  |                                     |
   +-----------+  |   +-----------+       +---------+   |    +---------+
   |   DTNMA   |  |   |   DTNMA   |       |  DTNMA  |   |    |  DTNMA  |
   | Manager A |  |   | Manager B |       | Agent B |   |    | Agent C |
   +---+-------+  |   +-----+-----+       +----+----+   |    +----+----+
       |          |         |                  |        |         |
       |--------------DEF(NULL,V0,EDD1+EDD2)-->|        |         | (1)
       |--------------PROD(1s,V0)------------->|        |         |
       |          |         |                  |        |         |
       |          |         |--PROD(1s,EDD1)-->|        |         | (2)
       |          |         |---------------------PROD(1s,EDD2)-->| (2)
       |          |         |                  |        |         |
       |          |         |                  |        |         |
       |          |         |<----RPT(EDD1)----|        |         | (3)
       |          |         |<--------------------RPT(EDD2)-------| (3)
       |          |         |                  |        |         |
       |<-------------RPT(V0)------------------|        |         | (4)
       |          |         |                  |        |         |
       |          |         |                  |        |         |
                  |                                     |
                  |                                     |
                  ---------------------------------------

                                  Figure 7

   A device can operate as both a DTNMA Manager and an Agent.

   In this example, we presume that DA B is able to sample a given EDD
   (EDD1) and that DA C is able to sample a different EDD (EDD2).  Node
   B houses DM B (which controls DA C) and DA B (which is controlled by
   DM A).  DM A must periodically receive some new value that is
   calculated as a function of both EDD1 and EDD2.

   First, DM A sends a policy to DA B to define a variable (V0) whose
   value is given by the mathematical expression (EDD1 + EDD2) without a
   restricting ACL.  Further, DM A sends a policy to DA B to report on
   the value of V0 every second (step 1).

   DA B can require the ability to monitor both EDD1 and EDD2.  However,
   the only way to receive EDD2 values is to have them reported back to
   Node B by DA C and included in the Node B runtime data stores.
   Therefore, DM B sends a policy to DA C to report on the value of EDD2
   (step 2).

   DA C receives the policy in its autonomy engine and produces reports
   on the value of EDD2 every second (step 3).

Birrane, et al.          Expires 31 August 2024                [Page 53]



Internet-Draft                    DTNMA                    February 2024

   DA B may locally sample EDD1 and EDD2 and uses that to compute values
   of V0 and report on those values at regular intervals to DM A (step
   4).

   While a trivial example, the mechanism of associating fusion with the
   Agent function rather than the Manager function scales with fusion
   complexity.  Within the DTNMA, DAs and DMs are not required to be
   separate software implementations.  There may be a single software
   application running on Node B implementing both DM B and DA B roles.

11.  IANA Considerations

   This document requires no IANA actions.

12.  Security Considerations

   Security within a DTNMA exists in at least two layers: security in
   the data model and security in the messaging and encoding of the data
   model.

   Data model security refers to the validity and accessibility of data
   elements.  For example, a data element might be available to certain
   DAs or DMs in a system, whereas the same data element may be hidden
   from other DAs or DMs.  Both verification and authorization
   mechanisms at DAs and DMs are important to achieve this type of
   security.

      |  NOTE: One way to provide finer-grained application security is
      |  through the use of Access Control Lists (ACLs) that would be
      |  defined as part of the configuration of DAs and DMs.  It is
      |  expected that many common data model tools provide mechanisms
      |  for the definition of ACLs and best practices for their
      |  operational use.

   The exchange of information between and amongst DAs and DMs in the
   DTNMA is expected to be accomplished through some secured messaging
   transport.

13.  Informative References

   [ASN.1]    International Organization for Standardization,
              "Information processing systems - Open Systems
              Interconnection - Specification of Abstract Syntax
              Notation One (ASN.1)", International Standard 8824,
              December 1987.

Birrane, et al.          Expires 31 August 2024                [Page 54]



Internet-Draft                    DTNMA                    February 2024

   [DART]     Tropf, B. T., Haque, M., Behrooz, N., and C. Krupiarz,
              "The DART Autonomy System", 2023,
              <https://ieeexplore.ieee.org/abstract/document/10207457>.

   [gNMI]     OpenConfig, "gRPC Network Management Interface (gNMI)",
              May 2023, <https://www.openconfig.net/docs/gnmi/gnmi-
              specification/>.

   [gRPC]     gRPC Authors, "gRPC Documentation", 2024,
              <https://grpc.io/docs/>.

   [I-D.ietf-core-comi]
              Veillette, M., Van der Stok, P., Pelov, A., Bierman, A.,
              and C. Bormann, "CoAP Management Interface (CORECONF)",
              Work in Progress, Internet-Draft, draft-ietf-core-comi-16,
              4 September 2023, <https://datatracker.ietf.org/doc/html/
              draft-ietf-core-comi-16>.

   [I-D.ietf-core-sid]
              Veillette, M., Pelov, A., Petrov, I., Bormann, C., and M.
              Richardson, "YANG Schema Item iDentifier (YANG SID)", Work
              in Progress, Internet-Draft, draft-ietf-core-sid-24, 22
              December 2023, <https://datatracker.ietf.org/doc/html/
              draft-ietf-core-sid-24>.

   [I-D.rfernando-protocol-buffers]
              Stuart, S. and R. Fernando, "Encoding rules and MIME type
              for Protocol Buffers", Work in Progress, Internet-Draft,
              draft-rfernando-protocol-buffers-00, 11 October 2012,
              <https://datatracker.ietf.org/doc/html/draft-rfernando-
              protocol-buffers-00>.

   [IPMI]     Intel, Hewlett-Packard, NEC, and Dell, "Intelligent
              Platform Management Interface Specification, Second
              Generation", October 2013,
              <https://www.intel.la/content/dam/www/public/us/en/
              documents/specification-updates/ipmi-intelligent-platform-
              mgt-interface-spec-2nd-gen-v2-0-spec-update.pdf>.

   [NEW-HORIZONS]
              Moore, R. C., "Autonomous safeing and fault protection for
              the New Horizons mission to Pluto", March 2007,
              <https://www.sciencedirect.com/science/article/pii/
              S0094576507000604>.

Birrane, et al.          Expires 31 August 2024                [Page 55]



Internet-Draft                    DTNMA                    February 2024

   [RFC2578]  McCloghrie, K., Ed., Perkins, D., Ed., and J.
              Schoenwaelder, Ed., "Structure of Management Information
              Version 2 (SMIv2)", STD 58, RFC 2578,
              DOI 10.17487/RFC2578, April 1999,
              <https://www.rfc-editor.org/info/rfc2578>.

   [RFC2982]  Kavasseri, R., Ed., "Distributed Management Expression
              MIB", RFC 2982, DOI 10.17487/RFC2982, October 2000,
              <https://www.rfc-editor.org/info/rfc2982>.

   [RFC3165]  Levi, D. and J. Schoenwaelder, "Definitions of Managed
              Objects for the Delegation of Management Scripts",
              RFC 3165, DOI 10.17487/RFC3165, August 2001,
              <https://www.rfc-editor.org/info/rfc3165>.

   [RFC3410]  Case, J., Mundy, R., Partain, D., and B. Stewart,
              "Introduction and Applicability Statements for Internet-
              Standard Management Framework", RFC 3410,
              DOI 10.17487/RFC3410, December 2002,
              <https://www.rfc-editor.org/info/rfc3410>.

   [RFC3411]  Harrington, D., Presuhn, R., and B. Wijnen, "An
              Architecture for Describing Simple Network Management
              Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
              DOI 10.17487/RFC3411, December 2002,
              <https://www.rfc-editor.org/info/rfc3411>.

   [RFC3414]  Blumenthal, U. and B. Wijnen, "User-based Security Model
              (USM) for version 3 of the Simple Network Management
              Protocol (SNMPv3)", STD 62, RFC 3414,
              DOI 10.17487/RFC3414, December 2002,
              <https://www.rfc-editor.org/info/rfc3414>.

   [RFC3416]  Presuhn, R., Ed., "Version 2 of the Protocol Operations
              for the Simple Network Management Protocol (SNMP)",
              STD 62, RFC 3416, DOI 10.17487/RFC3416, December 2002,
              <https://www.rfc-editor.org/info/rfc3416>.

   [RFC3417]  Presuhn, R., Ed., "Transport Mappings for the Simple
              Network Management Protocol (SNMP)", STD 62, RFC 3417,
              DOI 10.17487/RFC3417, December 2002,
              <https://www.rfc-editor.org/info/rfc3417>.

   [RFC3418]  Presuhn, R., Ed., "Management Information Base (MIB) for
              the Simple Network Management Protocol (SNMP)", STD 62,
              RFC 3418, DOI 10.17487/RFC3418, December 2002,
              <https://www.rfc-editor.org/info/rfc3418>.

Birrane, et al.          Expires 31 August 2024                [Page 56]



Internet-Draft                    DTNMA                    February 2024

   [RFC4838]  Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst,
              R., Scott, K., Fall, K., and H. Weiss, "Delay-Tolerant
              Networking Architecture", RFC 4838, DOI 10.17487/RFC4838,
              April 2007, <https://www.rfc-editor.org/info/rfc4838>.

   [RFC4949]  Shirey, R., "Internet Security Glossary, Version 2",
              FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
              <https://www.rfc-editor.org/info/rfc4949>.

   [RFC5591]  Harrington, D. and W. Hardaker, "Transport Security Model
              for the Simple Network Management Protocol (SNMP)",
              STD 78, RFC 5591, DOI 10.17487/RFC5591, June 2009,
              <https://www.rfc-editor.org/info/rfc5591>.

   [RFC5592]  Harrington, D., Salowey, J., and W. Hardaker, "Secure
              Shell Transport Model for the Simple Network Management
              Protocol (SNMP)", RFC 5592, DOI 10.17487/RFC5592, June
              2009, <https://www.rfc-editor.org/info/rfc5592>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/info/rfc5652>.

   [RFC5953]  Hardaker, W., "Transport Layer Security (TLS) Transport
              Model for the Simple Network Management Protocol (SNMP)",
              RFC 5953, DOI 10.17487/RFC5953, August 2010,
              <https://www.rfc-editor.org/info/rfc5953>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7228]  Bormann, C., Ersue, M., and A. Keranen, "Terminology for
              Constrained-Node Networks", RFC 7228,
              DOI 10.17487/RFC7228, May 2014,
              <https://www.rfc-editor.org/info/rfc7228>.

Birrane, et al.          Expires 31 August 2024                [Page 57]



Internet-Draft                    DTNMA                    February 2024

   [RFC7252]  Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
              Application Protocol (CoAP)", RFC 7252,
              DOI 10.17487/RFC7252, June 2014,
              <https://www.rfc-editor.org/info/rfc7252>.

   [RFC7540]  Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
              Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
              DOI 10.17487/RFC7540, May 2015,
              <https://www.rfc-editor.org/info/rfc7540>.

   [RFC7575]  Behringer, M., Pritikin, M., Bjarnason, S., Clemm, A.,
              Carpenter, B., Jiang, S., and L. Ciavaglia, "Autonomic
              Networking: Definitions and Design Goals", RFC 7575,
              DOI 10.17487/RFC7575, June 2015,
              <https://www.rfc-editor.org/info/rfc7575>.

   [RFC7589]  Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
              NETCONF Protocol over Transport Layer Security (TLS) with
              Mutual X.509 Authentication", RFC 7589,
              DOI 10.17487/RFC7589, June 2015,
              <https://www.rfc-editor.org/info/rfc7589>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/info/rfc7951>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8199]  Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
              Classification", RFC 8199, DOI 10.17487/RFC8199, July
              2017, <https://www.rfc-editor.org/info/rfc8199>.

   [RFC8294]  Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger,
              "Common YANG Data Types for the Routing Area", RFC 8294,
              DOI 10.17487/RFC8294, December 2017,
              <https://www.rfc-editor.org/info/rfc8294>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

Birrane, et al.          Expires 31 August 2024                [Page 58]



Internet-Draft                    DTNMA                    February 2024

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8368]  Eckert, T., Ed. and M. Behringer, "Using an Autonomic
              Control Plane for Stable Connectivity of Network
              Operations, Administration, and Maintenance (OAM)",
              RFC 8368, DOI 10.17487/RFC8368, May 2018,
              <https://www.rfc-editor.org/info/rfc8368>.

   [RFC8639]  Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
              E., and A. Tripathy, "Subscription to YANG Notifications",
              RFC 8639, DOI 10.17487/RFC8639, September 2019,
              <https://www.rfc-editor.org/info/rfc8639>.

   [RFC8641]  Clemm, A. and E. Voit, "Subscription to YANG Notifications
              for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
              September 2019, <https://www.rfc-editor.org/info/rfc8641>.

   [RFC8990]  Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic
              Autonomic Signaling Protocol (GRASP)", RFC 8990,
              DOI 10.17487/RFC8990, May 2021,
              <https://www.rfc-editor.org/info/rfc8990>.

   [RFC8993]  Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia,
              L., and J. Nobre, "A Reference Model for Autonomic
              Networking", RFC 8993, DOI 10.17487/RFC8993, May 2021,
              <https://www.rfc-editor.org/info/rfc8993>.

   [RFC9171]  Burleigh, S., Fall, K., and E. Birrane, III, "Bundle
              Protocol Version 7", RFC 9171, DOI 10.17487/RFC9171,
              January 2022, <https://www.rfc-editor.org/info/rfc9171>.

   [RFC9172]  Birrane, III, E. and K. McKeever, "Bundle Protocol
              Security (BPSec)", RFC 9172, DOI 10.17487/RFC9172, January
              2022, <https://www.rfc-editor.org/info/rfc9172>.

   [RFC9254]  Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
              C., and M. Richardson, "Encoding of Data Modeled with YANG
              in the Concise Binary Object Representation (CBOR)",
              RFC 9254, DOI 10.17487/RFC9254, July 2022,
              <https://www.rfc-editor.org/info/rfc9254>.

   [xml-infoset]
              World Wide Web Consortium, "XML Information Set (Second
              Edition)", February 2004,
              <https://www.w3.org/TR/2004/REC-xml-infoset-20040204/>.

Birrane, et al.          Expires 31 August 2024                [Page 59]



Internet-Draft                    DTNMA                    February 2024

   [XPath]    World Wide Web Consortium, "XML Path Language (XPath)
              Version 1.0", November 1999,
              <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Acknowledgements

   Brian Sipos of the Johns Hopkins University Applied Physics
   Laboratory (JHU/APL) provided excellent technical review of the DTNMA
   concepts presented in this document and additional information
   related to existing network management techniques.

Authors’ Addresses

   Edward J. Birrane
   Johns Hopkins Applied Physics Laboratory
   Email: Edward.Birrane@jhuapl.edu

   Sarah E. Heiner
   Johns Hopkins Applied Physics Laboratory
   Email: Sarah.Heiner@jhuapl.edu

   Emery Annis
   Johns Hopkins Applied Physics Laboratory
   Email: Emery.Annis@jhuapl.edu

Birrane, et al.          Expires 31 August 2024                [Page 60]



Internet Engineering Task Force                              R.G. Wilton
Internet-Draft                                             Cisco Systems
Intended status: Standards Track                            S. Mansfield
Expires: 2 August 2024                                          Ericsson
                                                         30 January 2024

              Common Interface Extension YANG Data Models
                   draft-ietf-netmod-intf-ext-yang-13

Abstract

   This document defines two YANG modules that augment the Interfaces
   data model defined in the "YANG Data Model for Interface Management"
   with additional configuration and operational data nodes to support
   common lower layer interface properties, such as interface MTU.

   The YANG modules in this document conform to the Network Management
   Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 August 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Wilton & Mansfield        Expires 2 August 2024                 [Page 1]



Internet-Draft          Interface Extensions YANG           January 2024

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4
     1.2.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   4
     1.3.  Prefixes in Data Node Names . . . . . . . . . . . . . . .   4
   2.  Interface Extensions Module . . . . . . . . . . . . . . . . .   4
     2.1.  Link Flap Suppression . . . . . . . . . . . . . . . . . .   6
     2.2.  Dampening . . . . . . . . . . . . . . . . . . . . . . . .   7
       2.2.1.  Suppress Threshold  . . . . . . . . . . . . . . . . .   7
       2.2.2.  Half-Life Period  . . . . . . . . . . . . . . . . . .   7
       2.2.3.  Reuse Threshold . . . . . . . . . . . . . . . . . . .   7
       2.2.4.  Maximum Suppress Time . . . . . . . . . . . . . . . .   8
     2.3.  Encapsulation . . . . . . . . . . . . . . . . . . . . . .   8
     2.4.  Loopback  . . . . . . . . . . . . . . . . . . . . . . . .   8
     2.5.  Maximum frame size  . . . . . . . . . . . . . . . . . . .   9
     2.6.  Sub-interface . . . . . . . . . . . . . . . . . . . . . .   9
     2.7.  Forwarding Mode . . . . . . . . . . . . . . . . . . . . .   9
   3.  Interfaces Ethernet-Like Module . . . . . . . . . . . . . . .  10
   4.  Interface Extensions YANG Module  . . . . . . . . . . . . . .  10
   5.  Interfaces Ethernet-Like YANG Module  . . . . . . . . . . . .  22
   6.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  25
     6.1.  Carrier delay configuration . . . . . . . . . . . . . . .  25
     6.2.  Dampening configuration . . . . . . . . . . . . . . . . .  27
     6.3.  MAC address configuration . . . . . . . . . . . . . . . .  27
   7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  29
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  29
     8.1.  YANG Module Registrations . . . . . . . . . . . . . . . .  29
   9.  Security Considerations . . . . . . . . . . . . . . . . . . .  30
     9.1.  ietf-if-extensions.yang . . . . . . . . . . . . . . . . .  30
     9.2.  ietf-if-ethernet-like.yang  . . . . . . . . . . . . . . .  31
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  32
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  32
     10.2.  Informative References . . . . . . . . . . . . . . . . .  32
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  33

Wilton & Mansfield        Expires 2 August 2024                 [Page 2]



Internet-Draft          Interface Extensions YANG           January 2024

1.  Introduction

   This document defines two NMDA compatible [RFC8342] YANG 1.1
   [RFC7950] modules for the management of network interfaces.  It
   defines various augmentations to the generic interfaces data model
   [RFC8343] to support configuration of lower layer interface
   properties that are common across many types of network interface.

   One of the aims of this document is to provide a standard definition
   for these configuration items regardless of the underlying interface
   type.  For example, a definition for configuring or reading the MAC
   address associated with an interface is provided that can be used for
   any interface type that uses Ethernet framing.

   Several of the augmentations defined here are not backed by any
   formal standard specification.  Instead, they are for features that
   are commonly implemented in equivalent ways by multiple independent
   network equipment vendors.  The aim of this document is to define
   common paths and leaves for the configuration of these equivalent
   features in a uniform way, making it easier for users of the YANG
   model to access these features in a vendor independent way.  Where
   necessary, a description of the expected behavior is also provided
   with the aim of ensuring vendors implementations are consistent with
   the specified behavior.

   Given that the modules contain a collection of discrete features with
   the common theme that they generically apply to interfaces, it is
   plausible that not all implementers of the YANG module will decide to
   support all features.  Hence, separate feature keywords are defined
   for each logically discrete feature to allow implementers the
   flexibility to choose which specific parts of the model they support.

   The augmentations are split into two separate YANG modules that each
   focus on a particular area of functionality.  The two YANG modules
   defined in this document are:

      ietf-if-extensions.yang - Defines extensions to the IETF interface
      data model to support common configuration data nodes.

      ietf-if-ethernet-like.yang - Defines a module for any
      configuration and operational data nodes that are common across
      interfaces that use Ethernet framing.

Wilton & Mansfield        Expires 2 August 2024                 [Page 3]



Internet-Draft          Interface Extensions YANG           January 2024

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

1.2.  Tree Diagrams

   Tree diagrams used in this document follow the notation defined in
   [RFC8340].

1.3.  Prefixes in Data Node Names

   In this document, names of data nodes and other data model objects
   are prefixed using the standard prefix associated with the
   corresponding YANG imported modules, as shown in Table 1.

            +=========+=======================+===============+
            | Prefix  | YANG Module           | Reference     |
            +=========+=======================+===============+
            | if-ext  | ietf-if-extensions    | This document |
            +---------+-----------------------+---------------+
            | ethlike | ietf-if-ethernet-like | This document |
            +---------+-----------------------+---------------+
            | yang    | ietf-yang-types       | [RFC6991]     |
            +---------+-----------------------+---------------+
            | if      | ietf-interfaces       | [RFC8343]     |
            +---------+-----------------------+---------------+
            | ianaift | iana-if-type          | [RFC7224]     |
            +---------+-----------------------+---------------+

                Table 1: Prefixes for imported YANG modules

2.  Interface Extensions Module

   The Interfaces Extensions YANG module provides some basic extensions
   to the IETF interfaces YANG module.

   The module provides:

   *  A link flap suppression feature used to provide control over
      short-lived link state flaps.

   *  An interface link state dampening feature that is used to provide
      control over longer lived link state flaps.

Wilton & Mansfield        Expires 2 August 2024                 [Page 4]



Internet-Draft          Interface Extensions YANG           January 2024

   *  An encapsulation container and extensible choice statement for use
      by any interface types that allow for configurable L2
      encapsulations.

   *  A loopback configuration leaf that is primarily aimed at loopback
      at the physical layer.

   *  MTU configuration leaves applicable to all packet/frame based
      interfaces.

   *  A forwarding mode leaf to indicate the OSI layer at which the
      interface handles traffic.

   *  A generic "sub-interface" identity that an interface identity
      definition can derive from if it defines a sub-interface.

   *  A parent interface leaf useable for all types of sub-interface
      that are children of parent interfaces.

   The "ietf-if-extensions" YANG module has the following structure:

   module: ietf-if-extensions
     augment /if:interfaces/if:interface:
       +--rw link-flap-suppression {link-flap-suppression}?
       |  +--rw down?                  uint32
       |  +--rw up?                    uint32
       |  +--ro carrier-transitions?   yang:counter64
       |  +--ro timer-running?         enumeration
       +--rw dampening! {dampening}?
       |  +--rw half-life?           uint32
       |  +--rw reuse?               uint32
       |  +--rw suppress?            uint32
       |  +--rw max-suppress-time?   uint32
       |  +--ro penalty?             uint32
       |  +--ro suppressed?          boolean
       |  +--ro time-remaining?      uint32
       +--rw encapsulation
       |  +--rw (encaps-type)?
       +--rw loopback?          identityref {loopback}?
       +--rw max-frame-size?    uint32 {max-frame-size}?
       +--ro forwarding-mode?   identityref
     augment /if:interfaces/if:interface:
       +--rw parent-interface if:interface-ref {sub-interfaces}?
     augment /if:interfaces/if:interface/if:statistics:
       +--ro in-discard-unknown-encaps?   yang:counter64
               {sub-interfaces}?

Wilton & Mansfield        Expires 2 August 2024                 [Page 5]



Internet-Draft          Interface Extensions YANG           January 2024

2.1.  Link Flap Suppression

   The link flap suppression feature augments the IETF interfaces data
   model with configuration for a simple algorithm that is used,
   generally on physical interfaces, to suppress short transient changes
   in the interface link state.  It can be used in conjunction with the
   dampening feature described in Section 2.2 to provide effective
   control of unstable links and unwanted state transitions.

   The principle of the link flap suppression feature is to use a short
   per interface timer to ensure that any interface link state
   transition that occurs and reverts back within the specified time
   interval is entirely suppressed without providing any signalling to
   any upper layer protocols that the state transition has occurred.
   E.g. in the case that the link state transition is suppressed then
   there is no change of the /if:interfaces/if:interface/oper-status or
   /if:interfaces/if:interfaces/last-change leaves for the interface
   that the feature is operating on.  One obvious side effect of using
   this feature that is that any state transition will always be delayed
   by the specified time interval.

   The configuration allows for separate timer values to be used in the
   suppression of down->up->down link transitions vs up->down->up link
   transitions.

   The link flap suppression down timer leaf specifies the amount of
   time that an interface that is currently in link up state must be
   continuously down before the down state change is reported to higher
   level protocols.  Use of this timer can cause traffic to be black
   holed for the configured value and delay reconvergence after link
   failures, therefore its use is normally restricted to cases where it
   is necessary to allow enough time for another protection mechanism
   (such as an optical layer automatic protection system) to take
   effect.

   The link flap suppression up timer leaf specifies the amount of time
   that an interface that is currently in link down state must be
   continuously up before the down->up link state transition is reported
   to higher level protocols.  This timer is generally useful as a
   debounce mechanism to ensure that a link is relatively stable before
   being brought into service.  It can also be used effectively to limit
   the frequency at which link state transition events may occur.  The
   default value for this leaf is determined by the underlying network
   device.

Wilton & Mansfield        Expires 2 August 2024                 [Page 6]



Internet-Draft          Interface Extensions YANG           January 2024

2.2.  Dampening

   The dampening feature introduces a configurable exponential decay
   mechanism to suppress the effects of excessive interface link state
   flapping.  This feature allows the network operator to configure a
   device to automatically identify and selectively dampen a local
   interface which is flapping.  Dampening an interface keeps the
   interface operationally down until the interface stops flapping and
   becomes stable.  Configuring the dampening feature can improve
   convergence times and stability throughout the network by isolating
   failures so that disturbances are not propagated, which reduces the
   utilization of system processing resources by other devices in the
   network and improves overall network stability.

   The basic algorithm uses a counter that is increased by 1000 units
   every time the underlying interface link state changes from up to
   down.  If the counter increases above the suppress threshold then the
   interface is kept down (and out of service) until either the maximum
   suppression time is reached, or the counter has reduced below the
   reuse threshold.  The half-life period determines that rate at which
   the counter is periodically reduced by half.

2.2.1.  Suppress Threshold

   The suppress threshold is the value of the accumulated penalty that
   triggers the device to dampen a flapping interface.  The flapping
   interface is identified by the device and assigned a penalty for each
   up to down link state change, but the interface is not automatically
   dampened.  The device tracks the penalties that a flapping interface
   accumulates.  When the accumulated penalty reaches or exceeds the
   suppress threshold, the interface is placed in a suppressed state.

2.2.2.  Half-Life Period

   The half-life period determines how fast the accumulated penalties
   can decay exponentially.  The accumulated penalty decays at a rate
   that causes its value to be reduced by half after each half-life
   period.

2.2.3.  Reuse Threshold

   If, after one or more half-life periods, the accumulated penalty
   decreases below the reuse threshold and the underlying interface link
   state is up then the interface is taken out of suppressed state and
   is allowed to go up.

Wilton & Mansfield        Expires 2 August 2024                 [Page 7]



Internet-Draft          Interface Extensions YANG           January 2024

2.2.4.  Maximum Suppress Time

   The maximum suppress time represents the maximum amount of time an
   interface can remain dampened when a new penalty is assigned to an
   interface.  The default of the maximum suppress timer is four times
   the half-life period.  The maximum value of the accumulated penalty
   is calculated using the maximum suppress time, reuse threshold and
   half-life period.

2.3.  Encapsulation

   The encapsulation container holds a choice node that is to be
   augmented with datalink layer specific encapsulations, such as HDLC,
   PPP, or sub-interface 802.1Q tag match encapsulations.  The use of a
   choice statement ensures that an interface can only have a single
   datalink layer protocol configured.

   The different encapsulations themselves are defined in separate YANG
   modules defined in other documents that augment the encapsulation
   choice statement.  For example the Ethernet specific basic ’dot1q-
   vlan’ encapsulation is defined in ietf-if-l3-vlan.yang and the
   ’flexible’ encapsulation is defined in ietf-flexible-
   encapsulation.yang, both modules from
   [I-D.ietf-netmod-sub-intf-vlan-model].

2.4.  Loopback

   The loopback configuration leaf allows any physical interface to be
   configured to be in one of the possible following physical loopback
   modes, i.e. internal loopback, line loopback, or use of an external
   loopback connector.  The use of YANG identities allows for the model
   to be extended with other modes of loopback if required.

   The following loopback modes are defined:

   *  Internal loopback - All egress traffic on the interface is
      internally looped back within the interface to be received on the
      ingress path.

   *  Line loopback - All ingress traffic received on the interface is
      internally looped back within the interface to the egress path.

   *  Loopback Connector - The interface has a physical loopback
      connector attached that loops all egress traffic back into the
      interface’s ingress path, with equivalent semantics to internal
      loopback.

Wilton & Mansfield        Expires 2 August 2024                 [Page 8]



Internet-Draft          Interface Extensions YANG           January 2024

2.5.  Maximum frame size

   A maximum frame size configuration leaf (max-frame-size) is provided
   to specify the maximum size of a layer 2 frame that may be
   transmitted or received on an interface.  The value includes the
   overhead of any layer 2 header, the maximum length of the payload,
   and any frame check sequence (FCS) bytes.  If configured, the max-
   frame-size leaf on an interface also restricts the max-frame-size of
   any child sub-interfaces, and the available MTU for protocols.

2.6.  Sub-interface

   The sub-interface feature specifies the minimal leaves required to
   define a child interface that is parented to another interface.

   A sub-interface is a logical interface that handles a subset of the
   traffic on the parent interface.  Separate configuration leaves are
   used to classify the subset of ingress traffic received on the parent
   interface to be processed in the context of a given sub-interface.
   All egress traffic processed on a sub-interface is given to the
   parent interface for transmission.  Otherwise, a sub-interface is
   like any other interface in /if:interfaces and supports the standard
   interface features and configuration.

   For some vendor specific interface naming conventions the name of the
   child interface is sufficient to determine the parent interface,
   which implies that the child interface can never be reparented to a
   different parent interface after it has been created without deleting
   the existing sub-interface and recreating a new sub-interface.  Even
   in this case it is useful to have a well-defined leaf to cleanly
   identify the parent interface.

   The model also allows for arbitrarily named sub-interfaces by having
   an explicit parent-interface leaf define the child -> parent
   relationship.  In this naming scenario it is also possible for
   implementations to allow for logical interfaces to be reparented to
   new parent interfaces without needing the sub-interface to be
   destroyed and recreated.

2.7.  Forwarding Mode

   The forwarding mode leaf provides additional information as to what
   mode or layer an interface is logically operating and forwarding
   traffic at.  The implication of this leaf is that for traffic
   forwarded at a given layer that any headers for lower layers are
   stripped off before the packet is forwarded at the given layer.
   Conversely, on egress any lower layer headers must be added to the
   packet before it is transmitted out of the interface.

Wilton & Mansfield        Expires 2 August 2024                 [Page 9]



Internet-Draft          Interface Extensions YANG           January 2024

   The following forwarding modes are defined:

   *  Physical - Traffic is being forwarded at the physical layer.  This
      includes DWDM or OTN based switching.

   *  Data-link - Layer 2 based forwarding, such as Ethernet/VLAN based
      switching, or L2VPN services.

   *  Network - Network layer based forwarding, such as IP, MPLS, or
      L3VPNs.

3.  Interfaces Ethernet-Like Module

   The Interfaces Ethernet-Like Module is a small module that contains
   all configuration and operational data that is common across
   interface types that use Ethernet framing as their datalink layer
   encapsulation.

   This module currently contains leaves for the configuration and
   reporting of the operational MAC address and the burnt-in MAC address
   (BIA) associated with any interface using Ethernet framing.

   The "ietf-if-ethernet-like" YANG module has the following structure:

   module: ietf-if-ethernet-like
     augment /if:interfaces/if:interface:
       +--rw ethernet-like
          +--rw mac-address?       yang:mac-address
          |       {configurable-mac-address}?
          +--ro bia-mac-address?   yang:mac-address
     augment /if:interfaces/if:interface/if:statistics:
       +--ro in-drop-unknown-dest-mac-pkts?   yang:counter64
       +--ro in-discard-overflows?            yang:counter64

4.  Interface Extensions YANG Module

   This YANG module augments the interface container defined in
   [RFC8343].  It also contains references to [RFC6991] and [RFC7224].

   <CODE BEGINS> file "ietf-if-extensions@2023-01-26.yang"
   module ietf-if-extensions {
     yang-version 1.1;

     namespace "urn:ietf:params:xml:ns:yang:ietf-if-extensions";

     prefix if-ext;

Wilton & Mansfield        Expires 2 August 2024                [Page 10]



Internet-Draft          Interface Extensions YANG           January 2024

     import ietf-yang-types {
       prefix yang;
       reference "RFC 6991: Common YANG Data Types";
     }

     import ietf-interfaces {
       prefix if;
       reference
         "RFC 8343: A YANG Data Model For Interface Management";
     }

     import iana-if-type {
       prefix ianaift;
       reference "RFC 7224: IANA Interface Type YANG Module";
     }

     organization
       "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

     contact
       "WG Web:   <http://tools.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Editor:   Robert Wilton
                  <mailto:rwilton@cisco.com>";

     description
       "This module contains common definitions for extending the IETF
        interface YANG model (RFC 8343) with common configurable layer 2
        properties.

        Copyright (c) 2023 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as

Wilton & Mansfield        Expires 2 August 2024                [Page 11]



Internet-Draft          Interface Extensions YANG           January 2024

        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

     revision 2023-01-26 {
       description
         "Initial revision.";

       reference
         "RFC XXXX, Common Interface Extension YANG Data Models";
     }

     feature link-flap-suppression {
       description
         "This feature indicates that configurable interface link
          delay is supported, which is a feature is used to limit the
          propagation of very short interface link state flaps.";
       reference "RFC XXXX, Section 2.1 Link Flap Suppression";
     }

     feature dampening {
       description
         "This feature indicates that the device supports interface
          dampening, which is a feature that is used to limit the
          propagation of interface link state flaps over longer
          periods.";
       reference "RFC XXXX, Section 2.2 Dampening";
     }

     feature loopback {
       description
         "This feature indicates that configurable interface loopback is
          supported.";
       reference "RFC XXXX, Section 2.4 Loopback";
     }

     feature max-frame-size {
       description
         "This feature indicates that the device supports configuring or
          reporting the maximum frame size on interfaces.";
       reference "RFC XXXX, Section 2.5 Maximum Frame Size";
     }

     feature sub-interfaces {
       description
         "This feature indicates that the device supports the
          instantiation of sub-interfaces.  Sub-interfaces are defined
          as logical child interfaces that allow features and forwarding
          decisions to be applied to a subset of the traffic processed

Wilton & Mansfield        Expires 2 August 2024                [Page 12]



Internet-Draft          Interface Extensions YANG           January 2024

          on the specified parent interface.";
       reference "RFC XXXX, Section 2.6 Sub-interface";
     }

     /*
      * Define common identities to help allow interface types to be
      * assigned properties.
      */
     identity sub-interface {
       description
         "Base type for generic sub-interfaces.

          New or custom interface types can derive from this type to
          inherit generic sub-interface configuration.";
       reference "RFC XXXX, Section 2.6 Sub-interface";
     }

     identity ethSubInterface{
       base ianaift:l2vlan;
       base sub-interface;

       description
         "This identity represents the child sub-interface of any
          interface types that uses Ethernet framing (with or without
          802.1Q tagging).";
     }

     identity loopback {
       description "Base identity for interface loopback options";
       reference "RFC XXXX, Section 2.4";
     }
     identity internal {
       base loopback;
       description
         "All egress traffic on the interface is internally looped back
          within the interface to be received on the ingress path.";
       reference "RFC XXXX, Section 2.4";
     }
     identity line {
       base loopback;
       description
         "All ingress traffic received on the interface is internally
          looped back within the interface to the egress path.";
       reference "RFC XXXX, Section 2.4";
     }
     identity connector {
       base loopback;
       description

Wilton & Mansfield        Expires 2 August 2024                [Page 13]



Internet-Draft          Interface Extensions YANG           January 2024

         "The interface has a physical loopback connector attached that
          loops all egress traffic back into the interface’s ingress
          path, with equivalent semantics to loopback internal.";
       reference "RFC XXXX, Section 2.4";
     }

     identity forwarding-mode {
       description "Base identity for forwarding-mode options.";
       reference "RFC XXXX, Section 2.7";
     }
     identity physical {
       base forwarding-mode;
       description
         "Physical layer forwarding.  This includes DWDM or OTN based
          optical switching.";
       reference "RFC XXXX, Section 2.7";
     }
     identity data-link {
       base forwarding-mode;
       description
         "Layer 2 based forwarding, such as Ethernet/VLAN based
          switching, or L2VPN services.";
       reference "RFC XXXX, Section 2.7";
     }
     identity network {
       base forwarding-mode;
       description
         "Network layer based forwarding, such as IP, MPLS, or L3VPNs.";
       reference "RFC XXXX, Section 2.7";
     }

     /*
      * Augments the IETF interfaces model with leaves to configure
      * and monitor link-flap-suppression on an interface.
      */
     augment "/if:interfaces/if:interface" {
       description
         "Augments the IETF interface model with optional common
          interface level commands that are not formally covered by any
          specific standard.";

       /*
        * Defines standard YANG for the Link Flap Suppression feature.
        */
       container link-flap-suppression {
         if-feature "link-flap-suppression";

Wilton & Mansfield        Expires 2 August 2024                [Page 14]



Internet-Draft          Interface Extensions YANG           January 2024

         description
           "Holds link flap related feature configuration.";
         leaf down {
           type uint32;
           units milliseconds;
           description
             "Delays the propagation of a ’loss of carrier signal’ event
              that would cause the interface state to go down, i.e. the
              command allows short link flaps to be suppressed. The
              configured value indicates the minimum time interval (in
              milliseconds) that the link signal must be continuously
              down before the interface state is brought down. If not
              configured, the behavior on loss of link signal is
              vendor/interface specific, but with the general
              expectation that there should be little or no delay.";
         }
         leaf up {
           type uint32;
           units milliseconds;
           description
             "Defines the minimum time interval (in milliseconds) that
              the link signal must be continuously present and error
              free before the interface state is allowed to transition
              from down to up.  If not configured, the behavior is
              vendor/interface specific, but with the general
              expectation that sufficient default delay should be used
              to ensure that the interface is stable when enabled before
              being reported as being up.  Configured values that are
              too low for the hardware capabilties may be rejected.";
         }
         leaf carrier-transitions {
           type yang:counter64;
           units transitions;
           config false;
           description
             "Defines the number of times the underlying link state
              has changed to, or from, state up.  This counter should be
              incremented even if the high layer interface state changes
              are being suppressed by a running link flap suppression
              timer.";
         }
         leaf timer-running {
           type enumeration {
             enum none {
               description
                 "No link flap suppression timer is running.";
             }
             enum up {

Wilton & Mansfield        Expires 2 August 2024                [Page 15]



Internet-Draft          Interface Extensions YANG           January 2024

               description
                 "link-flap-suppression up timer is running.  The
                  underlying link state is up, but interface state is
                  not reported as up.";
             }
             enum down {
               description
                 "link-flap-suppression down timer is running.
                  Interface state is reported as up, but the underlying
                  link state is actually down.";
             }
           }
           config false;
           description
             "Reports whether a link flap suppression timer is actively
              running, in which case the interface state does not match
              the underlying link state.";
         }

         reference "RFC XXXX, Section 2.1 Link Flap Suppression";
       }

       /*
        * Augments the IETF interfaces model with a container to hold
        * generic interface dampening
        */
       container dampening {
         if-feature "dampening";
         presence
           "Enable interface link flap dampening with default settings
            (that are vendor/device specific).";
         description
           "Interface dampening limits the propagation of interface link
            state flaps over longer periods.";
         reference "RFC XXXX, Section 2.2 Dampening";

         leaf half-life {
           type uint32;
           units seconds;
           description
             "The time (in seconds) after which a penalty would be half
              its original value.  Once the interface has been assigned
              a penalty, the penalty is decreased at a decay rate
              equivalent to the half-life.  For some devices, the
              allowed values may be restricted to particular multiples
              of seconds.  The default value is vendor/device
              specific.";
           reference "RFC XXXX, Section 2.3.2 Half-Life Period";

Wilton & Mansfield        Expires 2 August 2024                [Page 16]



Internet-Draft          Interface Extensions YANG           January 2024

         }

         leaf reuse {
           type uint32;
           description
             "Penalty value below which a stable interface is
              unsuppressed (i.e. brought up) (no units).  The default
              value is vendor/device specific.  The penalty value for a
              link up->down state change is 1000 units.";
           reference "RFC XXXX, Section 2.2.3 Reuse Threshold";
         }

         leaf suppress {
           type uint32;
           description
             "Limit at which an interface is suppressed (i.e. held down)
              when its penalty exceeds that limit (no units).  The value
              must be greater than the reuse threshold.  The default
              value is vendor/device specific.  The penalty value for a
              link up->down state change is 1000 units.";
           reference "RFC XXXX, Section 2.2.1 Suppress Threshold";
         }

         leaf max-suppress-time {
           type uint32;
           units seconds;
           description
             "Maximum time (in seconds) that an interface can be
              suppressed before being unsuppressed if no further link
              up->down state change penalties have been applied.  This
              value effectively acts as a ceiling that the penalty value
              cannot exceed.  The default value is vendor/device
              specific.";
           reference "RFC XXXX, Section 2.2.4 Maximum Suppress Time";
         }

         leaf penalty {
           type uint32;
           config false;
           description
             "The current penalty value for this interface.  When the
              penalty value exceeds the ’suppress’ leaf then the
              interface is suppressed (i.e. held down).";
           reference "RFC XXXX, Section 2.2 Dampening";
         }

         leaf suppressed {
           type boolean;

Wilton & Mansfield        Expires 2 August 2024                [Page 17]



Internet-Draft          Interface Extensions YANG           January 2024

           config false;
           description
             "Represents whether the interface is suppressed (i.e. held
              down) because the ’penalty’ leaf value exceeds the
              ’suppress’ leaf.";
           reference "RFC XXXX, Section 2.2 Dampening";
         }

         leaf time-remaining {
           when ’../suppressed = "true"’ {
             description
               "Only suppressed interfaces have a time remaining.";
           }
           type uint32;
           units seconds;
           config false;
           description
             "For a suppressed interface, this leaf represents how long
              (in seconds) that the interface will remain suppressed
              before it is allowed to go back up again.";
           reference "RFC XXXX, Section 2.2 Dampening";
         }
       }

       /*
        * Various types of interfaces support a configurable layer 2
        * encapsulation, any that are supported by YANG should be
        * listed here.
        *
        * Different encapsulations can hook into the common encaps-type
        * choice statement.
        */
       container encapsulation {
         when
           "derived-from-or-self(../if:type,
                                 ’ianaift:ethernetCsmacd’) or
            derived-from-or-self(../if:type,
                                 ’ianaift:ieee8023adLag’) or
            derived-from-or-self(../if:type, ’ianaift:pos’) or
            derived-from-or-self(../if:type,
                                 ’ianaift:atmSubInterface’) or
            derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
            derived-from-or-self(../if:type, ’ethSubInterface’)" {

           description
             "All interface types that can have a configurable L2
              encapsulation.";
         }

Wilton & Mansfield        Expires 2 August 2024                [Page 18]



Internet-Draft          Interface Extensions YANG           January 2024

         description
           "Holds the OSI layer 2 encapsulation associated with an
            interface.";
         choice encaps-type {
           description
             "Extensible choice of layer 2 encapsulations";
           reference "RFC XXXX, Section 2.3 Encapsulation";
         }
       }

        /*
         * Various types of interfaces support loopback configuration,
         * any that are supported by YANG should be listed here.
         */
       leaf loopback {
         when "derived-from-or-self(../if:type,
                                    ’ianaift:ethernetCsmacd’) or
               derived-from-or-self(../if:type, ’ianaift:sonet’) or
               derived-from-or-self(../if:type, ’ianaift:atm’) or
               derived-from-or-self(../if:type, ’ianaift:otnOtu’)" {
           description
             "All interface types that support loopback configuration.";
         }
         if-feature "loopback";
         type identityref {
           base loopback;
         }
         description "Enables traffic loopback.";
         reference "RFC XXXX, Section 2.4 Loopback";
       }

       /*
        * Allows the maximum frame size to be configured or reported.
        */
       leaf max-frame-size {
         if-feature "max-frame-size";
         type uint32 {
           range "64 .. max";
         }
         description
           "The maximum size of layer 2 frames that may be transmitted
            or received on the interface (including any frame header,
            maximum frame payload size, and frame checksum sequence).

            If configured, the max-frame-size also limits the maximum
            frame size of any child sub-interfaces.  The MTU available
            to higher layer protocols is restricted to the maximum frame
            payload size, and MAY be further restricted by explicit

Wilton & Mansfield        Expires 2 August 2024                [Page 19]



Internet-Draft          Interface Extensions YANG           January 2024

            layer 3 or protocol specific MTU configuration.";

         reference "RFC XXXX, Section 2.5 Maximum Frame Size";
       }

       /*
        * Augments the IETF interfaces model with a leaf that indicates
        * which mode, or layer, is being used to forward the traffic.
        */
       leaf forwarding-mode {
         type identityref {
           base forwarding-mode;
         }
         config false;

         description
           "The forwarding mode that the interface is operating in.";
         reference "RFC XXXX, Section 2.7 Forwarding Mode";
       }
     }

     /*
      * Add generic support for sub-interfaces.
      *
      * This should be extended to cover all interface types that are
      * child interfaces of other interfaces.
      */
     augment "/if:interfaces/if:interface" {
       when "derived-from(if:type, ’sub-interface’) or
             derived-from-or-self(if:type, ’ianaift:l2vlan’) or
             derived-from-or-self(if:type, ’ianaift:atmSubInterface’) or
             derived-from-or-self(if:type, ’ianaift:frameRelay’)"  {
         description
           "Any ianaift:types that explicitly represent sub-interfaces
            or any types that derive from the sub-interface identity.";
       }
       if-feature "sub-interfaces";

       description
         "Adds a parent interface field to interfaces that model
          sub-interfaces.";
       leaf parent-interface {

         type if:interface-ref;

         mandatory true;
         description
           "This is the reference to the parent interface of this

Wilton & Mansfield        Expires 2 August 2024                [Page 20]



Internet-Draft          Interface Extensions YANG           January 2024

            sub-interface.";
         reference "RFC XXXX, Section 2.6 Sub-interface";
       }
     }

     /*
      * Add discard counter for unknown sub-interface encapsulation
      */
     augment "/if:interfaces/if:interface/if:statistics" {
       when "derived-from-or-self(../if:type,
                                  ’ianaift:ethernetCsmacd’) or
             derived-from-or-self(../if:type,
                                  ’ianaift:ieee8023adLag’) or
             derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
         description
           "Applies to interfaces that can demultiplex ingress frames to
            sub-interfaces.";
       }
       if-feature "sub-interfaces";

       description
         "Augment the interface model statistics with a sub-interface
          demux discard counter.";

       leaf in-discard-unknown-encaps {
         type yang:counter64;
         units frames;
         description
           "A count of the number of frames that were well formed, but
            otherwise discarded because their encapsulation does not
            classify the frame to the interface or any child
            sub-interface.  E.g., a frame might be discarded because the
            it has an unknown VLAN Id, or does not have a VLAN Id when
            one is expected.

            For consistency, frames counted against this counter are
            also counted against the IETF interfaces statistics.  In
            particular, they are included in in-octets and in-discards,
            but are not included in in-unicast-pkts, in-multicast-pkts
            or in-broadcast-pkts, because they are not delivered to a
            higher layer.

            Discontinuities in the values of this counter can occur at
            re-initialization of the management system, and at other
            times as indicated by the value of the ’discontinuity-time’
            leaf defined in the ietf-interfaces YANG module
            (RFC 8343).";
       }

Wilton & Mansfield        Expires 2 August 2024                [Page 21]



Internet-Draft          Interface Extensions YANG           January 2024

     }
   }
   <CODE ENDS>

5.  Interfaces Ethernet-Like YANG Module

   This YANG module augments the interface container defined in RFC 8343
   [RFC8343] for Ethernet-like interfaces.  This includes Ethernet
   interfaces, 802.3 LAG (802.1AX) interfaces, Switch Virtual
   interfaces, and Pseudo-Wire Head-End interfaces.  It also contains
   references to [RFC6991], [RFC7224], and [IEEE_802.3.2_2019].

   <CODE BEGINS> file "ietf-if-ethernet-like@2023-01-26.yang"
   module ietf-if-ethernet-like {
     yang-version 1.1;

     namespace
       "urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like";

     prefix ethlike;

     import ietf-interfaces {
       prefix if;
       reference
         "RFC 8343: A YANG Data Model For Interface Management";
     }

     import ietf-yang-types {
       prefix yang;
       reference "RFC 6991: Common YANG Data Types";
     }

     import iana-if-type {
       prefix ianaift;
       reference "RFC 7224: IANA Interface Type YANG Module";
     }

     organization
       "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

     contact
       "WG Web:   <http://tools.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Editor:   Robert Wilton
                  <mailto:rwilton@cisco.com>";

     description

Wilton & Mansfield        Expires 2 August 2024                [Page 22]



Internet-Draft          Interface Extensions YANG           January 2024

       "This module contains YANG definitions for configuration for
        ’Ethernet-like’ interfaces.  It is applicable to all interface
        types that use Ethernet framing and expose an Ethernet MAC
        layer, and includes such interfaces as physical Ethernet
        interfaces, Ethernet LAG interfaces and VLAN sub-interfaces.

        Additional interface configuration and counters for physical
        Ethernet interfaces are defined in
        ieee802-ethernet-interface.yang, as part of IEEE Std
        802.3.2-2019.

        Copyright (c) 2022 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2023-01-26 {
       description "Initial revision.";

       reference
         "RFC XXXX, Common Interface Extension YANG Data Models";
     }

     feature configurable-mac-address {
       description
         "This feature indicates that MAC addresses on Ethernet-like
          interfaces can be configured.";
       reference
         "RFC XXXX, Section 3, Interfaces Ethernet-Like Module";
     }

     /*
      * Configuration parameters for Ethernet-like interfaces.
      */
     augment "/if:interfaces/if:interface" {
       when "derived-from-or-self(if:type, ’ianaift:ethernetCsmacd’) or
             derived-from-or-self(if:type, ’ianaift:ieee8023adLag’) or
             derived-from-or-self(if:type, ’ianaift:ifPwType’)" {

Wilton & Mansfield        Expires 2 August 2024                [Page 23]



Internet-Draft          Interface Extensions YANG           January 2024

         description "Applies to all Ethernet-like interfaces";
       }
       description
         "Augment the interface model with parameters for all
          Ethernet-like interfaces.";

       container ethernet-like {
         description
           "Contains parameters for interfaces that use Ethernet framing
            and expose an Ethernet MAC layer.";

         leaf mac-address {
           if-feature "configurable-mac-address";
           type yang:mac-address;
           description
             "The MAC address of the interface.  The operational value
              matches the /if:interfaces/if:interface/if:phys-address
              leaf defined in ietf-interface.yang.";
         }

         leaf bia-mac-address {
           type yang:mac-address;
           config false;
           description
             "The ’burnt-in’ MAC address.  I.e the default MAC address
              assigned to the interface if no MAC address has been
              explicitly configured on it.";
         }
       }
     }

     /*
      * Configuration parameters for Ethernet-like interfaces.
      */
     augment "/if:interfaces/if:interface/if:statistics" {
       when "derived-from-or-self(../if:type,
                                  ’ianaift:ethernetCsmacd’) or
             derived-from-or-self(../if:type,
                                  ’ianaift:ieee8023adLag’) or
             derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
         description "Applies to all Ethernet-like interfaces";
       }
       description
         "Augment the interface model statistics with additional
          counters related to Ethernet-like interfaces.";

       leaf in-discard-unknown-dest-mac-pkts {

Wilton & Mansfield        Expires 2 August 2024                [Page 24]



Internet-Draft          Interface Extensions YANG           January 2024

         type yang:counter64;
         units frames;
         description
           "A count of the number of frames that were well formed, but
            otherwise discarded because the destination MAC address did
            not pass any ingress destination MAC address filter.

            For consistency, frames counted against this counter are
            also counted against the IETF interfaces statistics.  In
            particular, they are included in in-octets and in-discards,
            but are not included in in-unicast-pkts, in-multicast-pkts
            or in-broadcast-pkts, because they are not delivered to a
            higher layer.

            Discontinuities in the values of this counter can occur at
            re-initialization of the management system, and at other
            times as indicated by the value of the ’discontinuity-time’
            leaf defined in the ietf-interfaces YANG module
            (RFC 8343).";
       }

       leaf in-discard-overflows {
         type yang:counter64;
         units frames;
         description
            "A count of the number of frames discarded because of
             overflows.";
       }
     }
   }
   <CODE ENDS>

6.  Examples

   The following sections give some examples of how different parts of
   the YANG modules could be used.  Examples are not given for the more
   trivial configuration, or for sub-interfaces, for which examples are
   contained in [I-D.ietf-netmod-sub-intf-vlan-model].

6.1.  Carrier delay configuration

   The following example shows how the operational state datastore could
   look like for an Ethernet interface without any link flap suppression
   configuration.  The down leaf value of 0 indicates that link down
   events as always propagated to high layers immediately, but an up
   leaf value of 50 indicates that the interface must be up and stable
   for at least 50 msecs before the interface is reported as being up to
   the high layers.

Wilton & Mansfield        Expires 2 August 2024                [Page 25]



Internet-Draft          Interface Extensions YANG           January 2024

   <?xml version="1.0" encoding="utf-8"?>
   <interfaces
    xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
    xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
   xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
     <interface>
       <name>eth0</name>
       <type>ianaift:ethernetCsmacd</type>
       <if-ext:link-flap-suppression>
         <if-ext:down>0</if-ext:down>
         <if-ext:up>50</if-ext:up>
       </if-ext:link-flap-suppression>
     </interface>
   </interfaces>

   The following example shows explicit link flap suppression delay up
   and down values have been configured.  A 50 msec down leaf value has
   been used to potentially allow optical protection to recover the link
   before the higher layer protocol state is flapped.  A 1 second (1000
   milliseconds) up leaf value has been used to ensure that the link is
   always reasonably stable before allowing traffic to be carried over
   it.  This also has the benefit of greatly reducing the rate at which
   higher layer protocol state flaps could occur.

   <?xml version="1.0" encoding="utf-8"?>
   <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
     <interfaces
       xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
       xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
       xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
       <interface>
         <name>eth0</name>
         <type>ianaift:ethernetCsmacd</type>
         <if-ext:link-flap-suppression>
           <if-ext:down>50</if-ext:down>
           <if-ext:up>1000</if-ext:up>
         </if-ext:link-flap-suppression>
       </interface>
     </interfaces>
   </config>

Wilton & Mansfield        Expires 2 August 2024                [Page 26]



Internet-Draft          Interface Extensions YANG           January 2024

6.2.  Dampening configuration

   The following example shows what the operational state datastore may
   look like for an interface configured with interface dampening.  The
   ’suppressed’ leaf indicates that the interface is currently
   suppressed (i.e. down) because the ’penalty’ is greater than the
   ’suppress’ leaf threshold.  The ’time-remaining’ leaf indicates that
   the interface will remain suppressed for another 103 seconds before
   the ’penalty’ is below the ’reuse’ leaf value and the interface is
   allowed to go back up again.

   <?xml version="1.0" encoding="utf-8"?>
   <interfaces
    xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
    xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
     <interface>
       <name>eth0</name>
       <type>ianaift:ethernetCsmacd</type>
       <oper-status>down</oper-status>
       <dampening
        xmlns="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
         <half-life>60</half-life>
         <reuse>750</reuse>
         <suppress>2000</suppress>
         <max-suppress-time>240</max-suppress-time>
         <penalty>2480</penalty>
         <suppressed>true</suppressed>
         <time-remaining>103</time-remaining>
       </dampening>
     </interface>
   </interfaces>

6.3.  MAC address configuration

   The following example shows how the operational state datastore could
   look like for an Ethernet interface without an explicit MAC address
   configured.  The mac-address leaf always reports the actual
   operational MAC address that is in use.  The bia-mac-address leaf
   always reports the default MAC address assigned to the hardware.

Wilton & Mansfield        Expires 2 August 2024                [Page 27]



Internet-Draft          Interface Extensions YANG           January 2024

   <?xml version="1.0" encoding="utf-8"?>
     <interfaces
       xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
       xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
       <interface>
         <name>eth0</name>
         <type>ianaift:ethernetCsmacd</type>
         <phys-address>00:00:5E:00:53:30</phys-address>
         <ethernet-like
           xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
           <mac-address>00:00:5E:00:53:30</mac-address>
           <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
         </ethernet-like>
       </interface>
     </interfaces>

   The following example shows the intended configuration for interface
   eth0 with an explicit MAC address configured.

   <?xml version="1.0" encoding="utf-8"?>
   <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
     <interfaces
       xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
       xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
       <interface>
         <name>eth0</name>
         <type>ianaift:ethernetCsmacd</type>
         <ethernet-like
           xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
           <mac-address>00:00:5E:00:53:35</mac-address>
         </ethernet-like>
       </interface>
     </interfaces>
   </config>

   After the MAC address configuration has been successfully applied,
   the operational state datastore reporting the interface MAC address
   properties would contain the following, with the mac-address leaf
   updated to match the configured value, but the bia-mac-address leaf
   retaining the same value - which should never change.

Wilton & Mansfield        Expires 2 August 2024                [Page 28]



Internet-Draft          Interface Extensions YANG           January 2024

   <?xml version="1.0" encoding="utf-8"?>
   <interfaces
    xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
    xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
     <interface>
       <name>eth0</name>
       <type>ianaift:ethernetCsmacd</type>
         <phys-address>00:00:5E:00:53:35</phys-address>
       <ethernet-like
         xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
         <mac-address>00:00:5E:00:53:35</mac-address>
         <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
       </ethernet-like>
     </interface>
   </interfaces>

7.  Acknowledgements

   The authors wish to thank Eric Gray, Ing-Wher Chen, Jon Culver,
   Juergen Schoenwaelder, Ladislav Lhotka, Lou Berger, Mahesh
   Jethanandani, Martin Bjorklund, Michael Zitao, Neil Ketley, Qin Wu,
   William Lupton, Xufeng Liu, Andy Bierman, and Vladimir Vassilev for
   their helpful comments contributing to this document.

8.  IANA Considerations

8.1.  YANG Module Registrations

   The following YANG modules are requested to be registered in the IANA
   "YANG Module Names" [RFC6020] registry:

   The ietf-if-extensions module:

      Name: ietf-if-extensions

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-extensions

      Prefix: if-ext

      Reference: RFCXXXX

   The ietf-if-ethernet-like module:

      Name: ietf-if-ethernet-like

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like

Wilton & Mansfield        Expires 2 August 2024                [Page 29]



Internet-Draft          Interface Extensions YANG           January 2024

      Prefix: ethlike

      Reference: RFCXXXX

   This document registers two URIs in the "IETF XML Registry"
   [RFC3688].  Following the format in RFC 3688, the following
   registrations have been made.

      URI: urn:ietf:params:xml:ns:yang:ietf-if-extensions

      Registrant Contact: The IESG.

      XML: N/A, the requested URI is an XML namespace.

      URI: urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like

      Registrant Contact: The IESG.

      XML: N/A, the requested URI is an XML namespace.

9.  Security Considerations

   The YANG module defined in this memo is designed to be accessed via
   the NETCONF protocol RFC 6241 [RFC6241].  The lowest NETCONF layer is
   the secure transport layer and the mandatory to implement secure
   transport is SSH RFC 6242 [RFC6242].  The NETCONF access control
   model RFC 8341 [RFC8341] provides the means to restrict access for
   particular NETCONF users to a pre-configured subset of all available
   NETCONF protocol operations and content.

   There are a number of data nodes defined in this YANG module which
   are writable/creatable/deletable (i.e. config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g. edit-config) to
   these data nodes without proper protection can have a negative effect
   on network operations.  These are the subtrees and data nodes and
   their sensitivity/vulnerability:

9.1.  ietf-if-extensions.yang

   The ietf-if-extensions YANG module contains various configuration
   leaves that affect the behavior of interfaces.  Modifying these
   leaves can cause an interface to go down, or become unreliable, or to
   drop traffic forwarded over it.  More specific details of the
   possible failure modes are given below.

Wilton & Mansfield        Expires 2 August 2024                [Page 30]



Internet-Draft          Interface Extensions YANG           January 2024

   The following leaf could cause the interface to go down and stop
   processing any ingress or egress traffic on the interface.  It could
   also cause broadcast traffic storms.

   *  /if:interfaces/if:interface/loopback

   The following leaves could cause instabilities at the interface link
   layer, and cause unwanted higher layer routing path changes if the
   leaves are modified, although they would generally only affect a
   device that had some underlying link stability issues:

   *  /if:interfaces/if:interface/link-flap-suppression/down

   *  /if:interfaces/if:interface/link-flap-suppression/up

   *  /if:interfaces/if:interface/dampening/half-life

   *  /if:interfaces/if:interface/dampening/reuse

   *  /if:interfaces/if:interface/dampening/suppress

   *  /if:interfaces/if:interface/dampening/max-suppress-time

   The following leaves could cause traffic loss on the interface
   because the received or transmitted frames do not comply with the
   frame matching criteria on the interface and hence would be dropped:

   *  /if:interfaces/if:interface/encapsulation

   *  /if:interfaces/if:interface/max-frame-size

   *  /if:interfaces/if:interface/forwarding-mode

   Changing the parent-interface leaf could cause all traffic on the
   affected interface to be dropped.  The affected leaf is:

   *  /if:interfaces/if:interface/parent-interface

9.2.  ietf-if-ethernet-like.yang

   Generally, the configuration nodes in the ietf-if-ethernet-like YANG
   module are concerned with configuration that is common across all
   types of Ethernet-like interfaces.  The module currently only
   contains a node for configuring the operational MAC address to use on
   an interface.  Adding/modifying/deleting this leaf has the potential
   risk of causing protocol instability, excessive protocol traffic, and
   general traffic loss, particularly if the configuration change caused
   a duplicate MAC address to be present on the local network.  The

Wilton & Mansfield        Expires 2 August 2024                [Page 31]



Internet-Draft          Interface Extensions YANG           January 2024

   following leaf is affected:

   *  interfaces/interface/ethernet-like/mac-address

10.  References

10.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

10.2.  Informative References

   [I-D.ietf-netmod-sub-intf-vlan-model]
              Wilton, R. and S. Mansfield, "Sub-interface VLAN YANG Data
              Models", Work in Progress, Internet-Draft, draft-ietf-
              netmod-sub-intf-vlan-model-09, 18 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              sub-intf-vlan-model-09>.

Wilton & Mansfield        Expires 2 August 2024                [Page 32]



Internet-Draft          Interface Extensions YANG           January 2024

   [IEEE_802.3.2_2019]
              IEEE, "IEEE Standard for Ethernet - YANG Data Model
              Definitions", IEEE 802-3,
              DOI 10.1109/IEEESTD.2019.8737019, 14 June 2019,
              <https://ieeexplore.ieee.org/document/8737019>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7224]  Bjorklund, M., "IANA Interface Type YANG Module",
              RFC 7224, DOI 10.17487/RFC7224, May 2014,
              <https://www.rfc-editor.org/info/rfc7224>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

Authors’ Addresses

   Robert Wilton
   Cisco Systems
   Email: rwilton@cisco.com

   Scott Mansfield
   Ericsson
   Email: scott.mansfield@ericsson.com

Wilton & Mansfield        Expires 2 August 2024                [Page 33]



Internet Engineering Task Force                         R.G. Wilton, Ed.
Internet-Draft                                             Cisco Systems
Intended status: Standards Track                       S. Mansfield, Ed.
Expires: 2 August 2024                                          Ericsson
                                                         30 January 2024

                  Sub-interface VLAN YANG Data Models
                draft-ietf-netmod-sub-intf-vlan-model-10

Abstract

   This document defines YANG modules to add support for classifying
   traffic received on interfaces as Ethernet/VLAN framed packets to
   sub-interfaces based on the fields available in the Ethernet/VLAN
   frame headers.  These modules allow configuration of Layer 3 and
   Layer 2 sub-interfaces (e.g.  L2VPN attachment circuits) that can
   interoperate with IETF based forwarding protocols; such as IP and
   L3VPN services; or L2VPN services like VPWS, VPLS, and EVPN.  The
   sub-interfaces also interoperate with VLAN tagged traffic orignating
   from an IEEE 802.1Q compliant bridge.

   The model differs from an IEEE 802.1Q bridge model in that the
   configuration is interface/sub-interface based as opposed to being
   based on membership of an 802.1Q VLAN bridge.

   The YANG data models in this document conforms to the Network
   Management Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 August 2024.

Wilton & Mansfield        Expires 2 August 2024                 [Page 1]



Internet-Draft           Sub-interface VLAN YANG            January 2024

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
     1.2.  Tree Diagrams . . . . . . . . . . . . . . . . . . . . . .   4
     1.3.  Prefixes in Data Node Names . . . . . . . . . . . . . . .   4
   2.  Objectives  . . . . . . . . . . . . . . . . . . . . . . . . .   4
     2.1.  Interoperability with IEEE 802.1Q compliant bridges . . .   5
   3.  Interface VLAN Encapsulation Model  . . . . . . . . . . . . .   5
   4.  Interface Flexible Encapsulation Model  . . . . . . . . . . .   5
   5.  VLAN Encapsulation YANG Module  . . . . . . . . . . . . . . .   8
   6.  Flexible Encapsulation YANG Module  . . . . . . . . . . . . .  11
   7.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  22
     7.1.  Layer 3 sub-interfaces with IPv6  . . . . . . . . . . . .  22
     7.2.  Layer 2 sub-interfaces with L2VPN . . . . . . . . . . . .  24
   8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  26
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  26
     9.1.  YANG Module Registrations . . . . . . . . . . . . . . . .  26
   10. Security Considerations . . . . . . . . . . . . . . . . . . .  27
     10.1.  ietf-if-vlan-encapsulation.yang  . . . . . . . . . . . .  28
     10.2.  ietf-if-flexible-encapsulation.yang  . . . . . . . . . .  28
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  30
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  30
     11.2.  Informative References . . . . . . . . . . . . . . . . .  31
   Appendix A.  Comparison with the IEEE 802.1Q Configuration
           Model . . . . . . . . . . . . . . . . . . . . . . . . . .  32
     A.1.  Sub-interface based configuration model overview  . . . .  32
     A.2.  IEEE 802.1Q Bridge Configuration Model Overview . . . . .  33
     A.3.  Possible Overlap Between the Two Models . . . . . . . . .  34
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  34

Wilton & Mansfield        Expires 2 August 2024                 [Page 2]



Internet-Draft           Sub-interface VLAN YANG            January 2024

1.  Introduction

   This document defines two YANG [RFC7950] modules that augment the
   encapsulation choice YANG element defined in Interface Extensions
   YANG [I-D.ietf-netmod-intf-ext-yang] and the generic interfaces data
   model defined in [RFC8343].  The two modules provide configuration
   nodes to support classification of Ethernet/VLAN traffic to sub-
   interfaces, that can have interface based feature and service
   configuration applied to them.

   The purpose of these models is to allow IETF defined forwarding
   protocols, for example, IPv6 [RFC8200], Ethernet Pseudo Wires
   [RFC4448] and VPLS [RFC4761] [RFC4762], when configured via
   appropriate YANG data models [RFC8344] [I-D.ietf-bess-l2vpn-yang], to
   interoperate with VLAN tagged traffic received from an IEEE 802.1Q
   compliant bridge.

   In the case of layer 2 Ethernet services, the flexible encapsulation
   module also supports flexible rewriting of the VLAN tags contained in
   the frame header.

   For reference, a comparison between the sub-interface based YANG
   model documented in this draft and an IEEE 802.1Q bridge model is
   described in Appendix A.

   In summary, the YANG modules defined in this internet draft are:

      ietf-if-vlan-encapsulation.yang - Defines the model for basic
      classification of VLAN tagged traffic, normally to L3 packet
      forwarding services

      ietf-if-flexible-encapsulation.yang - Defines the model for
      flexible classification of Ethernet/VLAN traffic, normally to L2
      frame forwarding services

1.1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The term ’sub-interface’ is defined in section 2.6 of Interface
   Extensions YANG [I-D.ietf-netmod-intf-ext-yang].

Wilton & Mansfield        Expires 2 August 2024                 [Page 3]



Internet-Draft           Sub-interface VLAN YANG            January 2024

1.2.  Tree Diagrams

   Tree diagrams used in this document follow the notation defined in
   [RFC8340].

1.3.  Prefixes in Data Node Names

   In this document, names of data nodes and other data model objects
   are prefixed using the standard prefix associated with the
   corresponding YANG imported modules, as shown in Table 1.

     +=========+===================+=================================+
     | Prefix  | YANG Module       | Reference                       |
     +=========+===================+=================================+
     | if-vlan | ietf-if-vlan-     | This document                   |
     |         | encapsulation     |                                 |
     +---------+-------------------+---------------------------------+
     | if-flex | ietf-if-flexible- | This document                   |
     |         | encapsulation     |                                 |
     +---------+-------------------+---------------------------------+
     | if-ext  | ietf-if-          | [I-D.ietf-netmod-intf-ext-yang] |
     |         | extensions        |                                 |
     +---------+-------------------+---------------------------------+
     | if      | ietf-interfaces   | [RFC8343]                       |
     +---------+-------------------+---------------------------------+
     | ianaift | iana-if-type      | [RFC7224]                       |
     +---------+-------------------+---------------------------------+
     | dot1q-  | ieee802-dot1q-    | [IEEE_802.1Q_2022]              |
     | types   | types             |                                 |
     +---------+-------------------+---------------------------------+

                Table 1: Prefixes for imported YANG modules

2.  Objectives

   The primary aim of the YANG modules contained in this draft is to
   provide the core model that is required to implement VLAN transport
   services on router based devices that is fully compatible with IEEE
   802.1Q compliant bridges.

   A secondary aim is for the modules to be structured in such a way
   that they can be cleanly extended in future.

Wilton & Mansfield        Expires 2 August 2024                 [Page 4]



Internet-Draft           Sub-interface VLAN YANG            January 2024

2.1.  Interoperability with IEEE 802.1Q compliant bridges

   The modules defined in this document are designed to fully
   interoperate with IEEE 802.1Q compliant bridges.  In particular, the
   models are restricted to only matching, adding, or rewriting the
   802.1Q VLAN tags in frames in ways that are compatible with IEEE
   802.1Q compliant bridges.

3.  Interface VLAN Encapsulation Model

   The Interface VLAN encapsulation model provides appropriate leaves
   for termination of an 802.1Q VLAN tagged segment to a sub-interface
   (or interface) based L3 service, such as IP.  It allows for
   termination of traffic with one or two 802.1Q VLAN tags.

   The L3 service must be configured via a separate YANG data model,
   e.g., [RFC8344].  A short example of configuring 802.1Q VLAN sub-
   interfaces with IP using YANG is provided in Section 7.1.

   The "ietf-if-vlan-encapsulation" YANG module has the following
   structure:

   module: ietf-if-vlan-encapsulation
     augment /if:interfaces/if:interface/if-ext:encapsulation
               /if-ext:encaps-type:
       +--:(dot1q-vlan)
          +--rw dot1q-vlan
             +--rw outer-tag
             |  +--rw tag-type dot1q-tag-type
             |  +--rw vlan-id     vlanid
             +--rw second-tag!
                +--rw tag-type dot1q-tag-type
                +--rw vlan-id     vlanid

4.  Interface Flexible Encapsulation Model

   The Interface Flexible Encapsulation model is designed to allow for
   the flexible provisioning of layer 2 services.  It provides the
   capability to classify and demultiplex Ethernet/VLAN frames received
   on an Ethernet trunk interface to sub-interfaces based on the fields
   available in the layer 2 headers.  Once classified to sub-interfaces,
   it provides the capability to selectively modify fields within the
   layer 2 frame header before the frame is handed off to the
   appropriate forwarding code for further handling.  The forwarding
   instance, e.g., L2VPN, VPLS, etc., is configured using a separate
   YANG configuration model defined elsewhere, e.g.,

Wilton & Mansfield        Expires 2 August 2024                 [Page 5]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   [I-D.ietf-bess-l2vpn-yang].

   The model supports a common core set of layer 2 header matches based
   on the 802.1Q tag type and VLAN Ids contained within the header up to
   a tag stack depth of two tags.

   The model supports flexible rewrites of the layer 2 frame header for
   data frames as they are processed on the interface.  It defines a set
   of standard tag manipulations that allow for the insertion, removal,
   or rewrite of one or two 802.1Q VLAN tags.  The expectation is that
   manipulations are generally implemented in a symmetrical fashion,
   i.e. if a manipulation is performed on ingress traffic on an
   interface then the reverse manipulation is always performed on egress
   traffic out of the same interface.  However, the model also allows
   for asymmetrical rewrites, which may be required to implement some
   forwarding models (such as E-Tree).

   The model also allows a flexible encapsulation and rewrite to be
   configured directly on an Ethernet or LAG interface without
   configuring separate child sub-interfaces.  Ingress frames that do
   not match the encapsulation are dropped.  Egress frames MUST conform
   to the encapsulation.

   The final aim for the model design is for it to be cleanly extensible
   to add in additional match and rewrite criteria of the layer 2
   header, such as matching on the source or destination MAC address,
   PCP or DEI fields in the 802.1Q tags, or the EtherType of the frame
   payload.  Rewrites can also be extended to allow for modification of
   other fields within the layer 2 frame header.

   A short example of configuring 802.1Q VLAN sub-interfaces with L2VPN
   using YANG is provided in Section 7.2.

   The "ietf-if-flexible-encapsulation" YANG module has the following
   structure:

   module: ietf-if-flexible-encapsulation
     augment /if:interfaces/if:interface/if-ext:encapsulation
               /if-ext:encaps-type:
       +--:(flexible)
          +--rw flexible
             +--rw match
             |  +--rw (match-type)
             |     +--:(default)
             |     |  +--rw default?                 empty
             |     +--:(untagged)
             |     |  +--rw untagged?                empty

Wilton & Mansfield        Expires 2 August 2024                 [Page 6]



Internet-Draft           Sub-interface VLAN YANG            January 2024

             |     +--:(dot1q-priority-tagged)
             |     |  +--rw dot1q-priority-tagged
             |     |     +--rw tag-type dot1q-types:dot1q-tag-type
             |     +--:(dot1q-vlan-tagged)
             |        +--rw dot1q-vlan-tagged
             |           +--rw outer-tag
             |           |  +--rw tag-type dot1q-tag-type
             |           |  +--rw vlan-id     union
             |           +--rw second-tag!
             |           |  +--rw tag-type dot1q-tag-type
             |           |  +--rw vlan-id     union
             |           +--rw match-exact-tags?   empty
             +--rw rewrite {flexible-rewrites}?
             |  +--rw (direction)?
             |     +--:(symmetrical)
             |     |  +--rw symmetrical
             |     |     +--rw dot1q-tag-rewrite {dot1q-tag-rewrites}?
             |     |        +--rw pop-tags?    uint8
             |     |        +--rw push-tags!
             |     |           +--rw outer-tag
             |     |           |  +--rw tag-type dot1q-tag-type
             |     |           |  +--rw vlan-id     vlanid
             |     |           +--rw second-tag!
             |     |              +--rw tag-type dot1q-tag-type
             |     |              +--rw vlan-id     vlanid
             |     +--:(asymmetrical) {asymmetric-rewrites}?
             |        +--rw ingress
             |        |  +--rw dot1q-tag-rewrite {dot1q-tag-rewrites}?
             |        |     +--rw pop-tags?    uint8
             |        |     +--rw push-tags!
             |        |        +--rw outer-tag
             |        |        |  +--rw tag-type dot1q-tag-type
             |        |        |  +--rw vlan-id     vlanid
             |        |        +--rw second-tag!
             |        |           +--rw tag-type dot1q-tag-type
             |        |           +--rw vlan-id     vlanid
             |        +--rw egress
             |           +--rw dot1q-tag-rewrite {dot1q-tag-rewrites}?
             |              +--rw pop-tags?    uint8
             |              +--rw push-tags!
             |                 +--rw outer-tag
             |                 |  +--rw tag-type dot1q-tag-type
             |                 |  +--rw vlan-id     vlanid
             |                 +--rw second-tag!
             |                    +--rw tag-type dot1q-tag-type
             |                    +--rw vlan-id     vlanid
             +--rw local-traffic-default-encaps!
                +--rw outer-tag

Wilton & Mansfield        Expires 2 August 2024                 [Page 7]



Internet-Draft           Sub-interface VLAN YANG            January 2024

                |  +--rw tag-type dot1q-tag-type
                |  +--rw vlan-id     vlanid
                +--rw second-tag!
                   +--rw tag-type dot1q-tag-type
                   +--rw vlan-id     vlanid

5.  VLAN Encapsulation YANG Module

   This YANG module augments the ’encapsulation’ container defined in
   ietf-if-extensions.yang [I-D.ietf-netmod-intf-ext-yang].  It also
   contains references to [RFC8343], [RFC7224], and [IEEE_802.1Q_2022].

   <CODE BEGINS> file "ietf-if-vlan-encapsulation@2023-01-26.yang"
   module ietf-if-vlan-encapsulation {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation";
     prefix if-vlan;

     import ietf-interfaces {
       prefix if;
       reference
         "RFC 8343: A YANG Data Model For Interface Management";
     }

     import iana-if-type {
       prefix ianaift;
       reference
         "RFC 7224: IANA Interface Type YANG Module";
     }

     import ieee802-dot1q-types {
       prefix dot1q-types;
       revision-date 2022-01-19;
       reference
         "IEEE Std 802.1Q-2022: IEEE Standard for Local and
          metropolitan area networks -- Bridges and Bridged Networks";
     }

     import ietf-if-extensions {
       prefix if-ext;
       reference
         "RFC XXXX: Common Interface Extension YANG Data Models";
     }

     organization
       "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

Wilton & Mansfield        Expires 2 August 2024                 [Page 8]



Internet-Draft           Sub-interface VLAN YANG            January 2024

     contact
       "WG Web:   <http://tools.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Editor:   Robert Wilton
                  <mailto:rwilton@cisco.com>";

     description
       "This YANG module models configuration to classify IEEE 802.1Q
        VLAN tagged Ethernet traffic by exactly matching the tag type
        and VLAN identifier of one or two 802.1Q VLAN tags in the frame.

        Copyright (c) 2023 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

     revision 2023-01-26 {
       description
         "Latest draft revision";
       reference
         "RFC XXXX: Sub-interface VLAN YANG Data Models";
     }

     augment "/if:interfaces/if:interface/if-ext:encapsulation/"
           + "if-ext:encaps-type" {
       when "derived-from-or-self(../if:type,
                                  ’ianaift:ethernetCsmacd’) or
             derived-from-or-self(../if:type,
                                  ’ianaift:ieee8023adLag’) or
             derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
             derived-from-or-self(../if:type,
                                  ’if-ext:ethSubInterface’)" {

Wilton & Mansfield        Expires 2 August 2024                 [Page 9]



Internet-Draft           Sub-interface VLAN YANG            January 2024

           description
             "Applies only to Ethernet-like interfaces and
              sub-interfaces.";
       }

       description
         "Augment the generic interface encapsulation with basic 802.1Q
          VLAN tag classifications";

       case dot1q-vlan {
         container dot1q-vlan {

           description
             "Classifies 802.1Q VLAN tagged Ethernet frames to a
              sub-interface (or interface) by exactly matching the
              number of tags, tag type(s) and VLAN identifier(s).

              Only frames matching the classification configured on a
              sub-interface/interface are processed on that
              sub-interface/interface.

              Frames that do not match any sub-interface are processed
              directly on the parent interface, if it is associated with
              a forwarding instance, otherwise they are dropped.";

           container outer-tag {
             must ’tag-type = "dot1q-types:s-vlan" or ’
                + ’tag-type = "dot1q-types:c-vlan"’ {

               error-message
                 "Only C-VLAN and S-VLAN tags can be matched.";

               description
                 "For IEEE 802.1Q interoperability, only C-VLAN and
                  S-VLAN tags are matched.";
             }

             description
               "Specifies the VLAN tag values to match against the
                outermost (first) 802.1Q VLAN tag in the frame.";

             uses dot1q-types:dot1q-tag-classifier-grouping;
           }

           container second-tag {
             must ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
                + ’tag-type = "dot1q-types:c-vlan"’ {

Wilton & Mansfield        Expires 2 August 2024                [Page 10]



Internet-Draft           Sub-interface VLAN YANG            January 2024

               error-message
                 "When matching two 802.1Q VLAN tags, the outermost
                  (first) tag in the frame MUST be specified and be of
                  S-VLAN type and the second tag in the frame must be of
                  C-VLAN tag type.";

               description
                 "For IEEE 802.1Q interoperability, when matching two
                  802.1Q VLAN tags, it is REQUIRED that the outermost
                  tag exists and is an S-VLAN, and the second tag is a
                  C-VLAN.";
             }

             presence "Classify frames that have two 802.1Q VLAN tags.";

             description
               "Specifies the VLAN tag values to match against the
                second outermost 802.1Q VLAN tag in the frame.";

             uses dot1q-types:dot1q-tag-classifier-grouping;
           }
         }
       }
     }
   }
   <CODE ENDS>

6.  Flexible Encapsulation YANG Module

   This YANG module augments the ’encapsulation’ container defined in
   ietf-if-extensions.yang [I-D.ietf-netmod-intf-ext-yang].  This YANG
   module also augments the ’interface’ list entry defined in [RFC8343].
   It also contains references to [RFC7224], and [IEEE_802.1Q_2022].

   <CODE BEGINS> file "ietf-if-flexible-encapsulation@2023-01-26.yang"
   module ietf-if-flexible-encapsulation {
     yang-version 1.1;
     namespace
       "urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation";
     prefix if-flex;

     import ietf-interfaces {
       prefix if;
       reference
         "RFC 8343: A YANG Data Model For Interface Management";
     }

     import iana-if-type {

Wilton & Mansfield        Expires 2 August 2024                [Page 11]



Internet-Draft           Sub-interface VLAN YANG            January 2024

       prefix ianaift;
       reference
         "RFC 7224: IANA Interface Type YANG Module";
     }

     import ieee802-dot1q-types {
       prefix dot1q-types;
       revision-date 2022-01-19;
       reference
         "IEEE Std 802.1Q-2022: IEEE Standard for Local and
          metropolitan area networks -- Bridges and Bridged Networks";
     }

     import ietf-if-extensions {
       prefix if-ext;
       reference
         "RFC XXXX: Common Interface Extension YANG Data Models";
     }

     organization
       "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

     contact
       "WG Web:   <http://tools.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Editor:   Robert Wilton
                  <mailto:rwilton@cisco.com>";

     description
       "This YANG module describes interface configuration for flexible
        classification and rewrites of IEEE 802.1Q VLAN tagged Ethernet
        traffic.

        Copyright (c) 2022 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.

Wilton & Mansfield        Expires 2 August 2024                [Page 12]



Internet-Draft           Sub-interface VLAN YANG            January 2024

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

     revision 2023-01-26 {
       description
         "Latest draft revision";
       reference
         "RFC XXXX: Sub-interface VLAN YANG Data Models";
     }

     feature flexible-rewrites {
       description
         "This feature indicates that the network element supports
           specifying flexible rewrite operations.";
     }

     feature asymmetric-rewrites {
       description
         "This feature indicates that the network element supports
          specifying different rewrite operations for the ingress
          rewrite operation and egress rewrite operation.";
     }

     feature dot1q-tag-rewrites {
       description
         "This feature indicates that the network element supports the
          flexible rewrite functionality specifying 802.1Q tag
          rewrites.";
     }

     grouping flexible-match {
       description
         "Represents a flexible frame classification:

          The rules for a flexible match are:
            1. Match-type: default, untagged, priority tag, or tag
               stack.
            2. Each tag in the stack of tags matches:
             a. tag type (802.1Q or 802.1ad) +
             b. tag value:
               i.   single tag
               ii.  set of tag ranges/values.
               iii. ’any’ keyword";

       choice match-type {

Wilton & Mansfield        Expires 2 August 2024                [Page 13]



Internet-Draft           Sub-interface VLAN YANG            January 2024

         mandatory true;

         description
           "Provides a choice of how the frames may be
            matched";

         case default {
           description
             "Default match";

           leaf default {
             type empty;

             description
               "Default match.  Matches all traffic not matched to any
                other peer sub-interface by a more specific
                encapsulation.";
           }
         }

         case untagged {
           description
             "Match untagged Ethernet frames only";

           leaf untagged {
             type empty;

             description
               "Untagged match.  Matches all untagged traffic.";
           }
         }

         case dot1q-priority-tagged {
           description
             "Match 802.1Q priority tagged Ethernet frames only";

           container dot1q-priority-tagged {
             description
               "802.1Q priority tag match";

             leaf tag-type {
               type dot1q-types:dot1q-tag-type;
               mandatory true;

               description
                 "The 802.1Q tag type of matched priority
                  tagged packets";
             }

Wilton & Mansfield        Expires 2 August 2024                [Page 14]



Internet-Draft           Sub-interface VLAN YANG            January 2024

           }
         }

         case dot1q-vlan-tagged {
           container dot1q-vlan-tagged {
             description
               "Matches VLAN tagged frames";

             container outer-tag {
               must ’tag-type = "dot1q-types:s-vlan" or ’
                  + ’tag-type = "dot1q-types:c-vlan"’ {

                 error-message
                   "Only C-VLAN and S-VLAN tags can be matched.";

                 description
                   "For IEEE 802.1Q interoperability, only C-VLAN and
                    S-VLAN tags can be matched.";
               }

               description
                 "Classifies traffic using the outermost (first) VLAN
                  tag on the frame.";

               uses "dot1q-types:"
                  + "dot1q-tag-ranges-or-any-classifier-grouping";
             }

             container second-tag {
               must
                 ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
               + ’tag-type = "dot1q-types:c-vlan"’ {

                 error-message
                   "When matching two tags, the outermost (first) tag
                    must be specified and of S-VLAN type and the second
                    outermost tag must be of C-VLAN tag type.";

                 description
                   "For IEEE 802.1Q interoperability, when matching two
                    tags, it is required that the outermost (first) tag
                    exists and is an S-VLAN, and the second outermost
                    tag is a C-VLAN.";
               }

               presence "Also classify on the second VLAN tag.";

               description

Wilton & Mansfield        Expires 2 August 2024                [Page 15]



Internet-Draft           Sub-interface VLAN YANG            January 2024

                 "Classifies traffic using the second outermost VLAN tag
                  on the frame.";

               uses "dot1q-types:"
                  + "dot1q-tag-ranges-or-any-classifier-grouping";
             }

             leaf match-exact-tags {
               type empty;
               description
                 "If set, indicates that all 802.1Q VLAN tags in the
                  Ethernet frame header must be explicitly matched, i.e.
                  the EtherType following the matched tags must not be a
                  802.1Q tag EtherType.  If unset then extra 802.1Q VLAN
                  tags are allowed.";
             }
           }
         }
       }
     }

     grouping dot1q-tag-rewrite {
       description
         "Flexible rewrite grouping.  Can be either be expressed
          symmetrically, or independently in the ingress and/or egress
          directions.";

       leaf pop-tags {
         type uint8 {
           range "1..2";
         }

         description
           "The number of 802.1Q VLAN tags to pop, or translate if used
            in conjunction with push-tags.

            Popped tags are the outermost tags on the frame.";
       }

       container push-tags {
         presence "802.1Q tags are pushed or translated";

         description
           "The 802.1Q tags to push on the front of the frame, or
            translate if configured in conjunction with pop-tags.";

         container outer-tag {
           must ’tag-type = "dot1q-types:s-vlan" or ’

Wilton & Mansfield        Expires 2 August 2024                [Page 16]



Internet-Draft           Sub-interface VLAN YANG            January 2024

              + ’tag-type = "dot1q-types:c-vlan"’ {

             error-message "Only C-VLAN and S-VLAN tags can be pushed.";

             description
               "For IEEE 802.1Q interoperability, only C-VLAN and S-VLAN
                tags can be pushed.";
           }

           description
             "The outermost (first) VLAN tag to push onto the frame.";

           uses dot1q-types:dot1q-tag-classifier-grouping;
         }

         container second-tag {
           must ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
              + ’tag-type = "dot1q-types:c-vlan"’ {

             error-message
               "When pushing/rewriting two tags, the outermost tag must
                be specified and of S-VLAN type and the second outermost
                tag must be of C-VLAN tag type.";

             description
               "For IEEE 802.1Q interoperability, when pushing two tags,
                it is required that the outermost tag exists and is an
                S-VLAN, and the second outermost tag is a C-VLAN.";
           }

           presence
             "In addition to the first tag, also push/rewrite a second
              VLAN tag.";

           description
             "The second outermost VLAN tag to push onto the frame.";

           uses dot1q-types:dot1q-tag-classifier-grouping;
         }
       }
     }

     grouping flexible-rewrite {
       description
         "Grouping for flexible rewrites of fields in the L2 header.

          Restricted to flexible 802.1Q VLAN tag rewrites, but could be
          extended to cover rewrites of other fields in the L2 header in

Wilton & Mansfield        Expires 2 August 2024                [Page 17]



Internet-Draft           Sub-interface VLAN YANG            January 2024

          future.";

       container dot1q-tag-rewrite {
         if-feature "dot1q-tag-rewrites";

         description
           "802.1Q VLAN tag rewrite.

            Translate operations are expressed as a combination of tag
            push and pop operations.  E.g., translating the outer tag is
            expressed as popping a single tag, and pushing a single tag.
            802.1Q tags that are translated SHOULD preserve the PCP and
            DEI fields unless if a different QoS behavior has been
            specified.";
         uses dot1q-tag-rewrite;
       }
     }

     augment "/if:interfaces/if:interface/if-ext:encapsulation/"
           + "if-ext:encaps-type" {
       when "derived-from-or-self(../if:type,
                                  ’ianaift:ethernetCsmacd’) or
             derived-from-or-self(../if:type,
                                  ’ianaift:ieee8023adLag’) or
             derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
             derived-from-or-self(../if:type,
                                  ’if-ext:ethSubInterface’)" {

           description
             "Applies only to Ethernet-like interfaces and
              sub-interfaces.";
       }

       description
         "Augment the generic interface encapsulation with flexible
          match and rewrite for VLAN sub-interfaces.";

       case flexible {
         description
           "Flexible encapsulation and rewrite";

         container flexible {
           description
             "Flexible encapsulation allows for the matching of ranges
              and sets of 802.1Q VLAN Tags and performing rewrite
              operations on the VLAN tags.

              The structure is also designed to be extended to allow for

Wilton & Mansfield        Expires 2 August 2024                [Page 18]



Internet-Draft           Sub-interface VLAN YANG            January 2024

              matching/rewriting other fields within the L2 frame header
              if required.";

           container match {
             description
               "Flexibly classifies Ethernet frames to a sub-interface
                (or interface) based on the L2 header fields.

                Only frames matching the classification configured on a
                sub-interface/interface are processed on that
                sub-interface/interface.

                Frames that do not match any sub-interface are processed
                directly on the parent interface, if it is associated
                with a forwarding instance, otherwise they are dropped.

                If a frame could be classified to multiple
                sub-interfaces then they get classified to the
                sub-interface with the most specific match.  E.g.,
                matching two VLAN tags in the frame is more specific
                than matching the outermost VLAN tag, which is more
                specific than the catch all ’default’ match.";

             uses flexible-match;
           }

           container rewrite {
             if-feature "flexible-rewrites";

             description
               "L2 frame rewrite operations.

                Rewrites allows for modifications to the L2 frame header
                as it transits the interface/sub-interface.  Examples
                include adding a VLAN tag, removing a VLAN tag, or
                rewriting the VLAN Id carried in a VLAN tag.";

             choice direction {
               description
                 "Whether the rewrite policy is symmetrical or
                  asymmetrical.";

               case symmetrical {
                 container symmetrical {
                   uses flexible-rewrite;

                   description
                     "Symmetrical rewrite.  Expressed in the ingress

Wilton & Mansfield        Expires 2 August 2024                [Page 19]



Internet-Draft           Sub-interface VLAN YANG            January 2024

                      direction, but the reverse operation is applied to
                      egress traffic.

                      E.g., if a tag is pushed on ingress traffic, then
                      the reverse operation is a ’pop 1’, that is
                      performed on traffic egressing the interface, so
                      a peer device sees a consistent L2 encapsulation
                      for both ingress and egress traffic.";
                 }
               }

               case asymmetrical {
                 if-feature "asymmetric-rewrites";

                 description
                   "Asymmetrical rewrite.

                    Rewrite operations may be specified in only a single
                    direction, or different rewrite operations may be
                    specified in each direction.";

                 container ingress {
                   uses flexible-rewrite;

                   description
                     "A rewrite operation that only applies to ingress
                      traffic.

                      Ingress rewrite operations are performed before
                      the frame is subsequently processed by the
                      forwarding operation.";
                 }

                 container egress {
                   uses flexible-rewrite;

                   description
                     "A rewrite operation that only applies to egress
                      traffic.";
                 }
               }
             }
           }

           container local-traffic-default-encaps {
             presence "A local traffic default encapsulation has been
                       specified.";

Wilton & Mansfield        Expires 2 August 2024                [Page 20]



Internet-Draft           Sub-interface VLAN YANG            January 2024

             description
               "Specifies the 802.1Q VLAN tags to use by default for
                locally sourced traffic from the interface.

                Used for encapsulations that match a range of VLANs (or
                ’any’), where the source VLAN Ids are otherwise
                ambiguous.";

             container outer-tag {
               must ’tag-type = "dot1q-types:s-vlan" or ’
                  + ’tag-type = "dot1q-types:c-vlan"’ {

                 error-message
                   "Only C-VLAN and S-VLAN tags can be matched.";

                 description
                   "For IEEE 802.1Q interoperability, only C-VLAN and
                    S-VLAN tags can be matched.";
               }

               description
                 "The outermost (first) VLAN tag for locally sourced
                  traffic.";

               uses dot1q-types:dot1q-tag-classifier-grouping;
             }

             container second-tag {
               must
                 ’../outer-tag/tag-type = "dot1q-types:s-vlan" and ’
               + ’tag-type = "dot1q-types:c-vlan"’ {

                 error-message
                   "When specifying two tags, the outermost (first) tag
                    must be specified and of S-VLAN type and the second
                    outermost tag must be of C-VLAN tag type.";

                 description
                   "For IEEE 802.1Q interoperability, when specifying
                    two tags, it is required that the outermost (first)
                    tag exists and is an S-VLAN, and the second
                    outermost tag is a C-VLAN.";
               }

               presence
                 "Indicates existence of a second outermost VLAN tag.";

               description

Wilton & Mansfield        Expires 2 August 2024                [Page 21]



Internet-Draft           Sub-interface VLAN YANG            January 2024

                 "The second outermost VLAN tag for locally sourced
                  traffic.";

               uses dot1q-types:dot1q-tag-classifier-grouping;
             }
           }
         }
       }
     }
   }
   <CODE ENDS>

7.  Examples

   The following sections give examples of configuring a sub-interface
   supporting L3 forwarding, and a sub-interface being used in
   conjunction with the IETF L2VPN YANG model
   [I-D.ietf-bess-l2vpn-yang].

7.1.  Layer 3 sub-interfaces with IPv6

   This example illustrates two layer sub-interfaces, ’eth0.1’ and
   ’eth0.2’, both are child interfaces of the Ethernet interface ’eth0’.

   ’eth0.1’ is configured to match traffic with two VLAN tags: an outer
   S-VLAN of 10 and an inner C-VLAN of 20.

   ’eth0.2’ is configured to match traffic with a single S-VLAN tag,
   with VLAN Id 11.

   <?xml version="1.0" encoding="utf-8"?>
   <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
     <interfaces
     xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
     xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
     xmlns:dot1q-types="urn:ieee:std:802.1Q:yang:ieee802-dot1q-types"
     xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
       <interface>
         <name>eth0</name>
         <type>ianaift:ethernetCsmacd</type>
       </interface>
       <interface>
         <name>eth0.1</name>
         <type>ianaift:l2vlan</type>
         <if-ext:parent-interface>eth0</if-ext:parent-interface>
         <if-ext:encapsulation>
           <dot1q-vlan

Wilton & Mansfield        Expires 2 August 2024                [Page 22]



Internet-Draft           Sub-interface VLAN YANG            January 2024

            xmlns=
               "urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation">
             <outer-tag>
               <tag-type>dot1q-types:s-vlan</tag-type>
               <vlan-id>10</vlan-id>
             </outer-tag>
             <second-tag>
               <tag-type>dot1q-types:c-vlan</tag-type>
               <vlan-id>20</vlan-id>
             </second-tag>
           </dot1q-vlan>
         </if-ext:encapsulation>
         <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
           <forwarding>true</forwarding>
           <address>
             <ip>2001:db8:10::1</ip>
             <prefix-length>48</prefix-length>
           </address>
         </ipv6>
       </interface>
       <interface>
         <name>eth0.2</name>
         <type>ianaift:l2vlan</type>
         <if-ext:parent-interface>eth0</if-ext:parent-interface>
         <if-ext:encapsulation>
           <dot1q-vlan
            xmlns=
               "urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation">
             <outer-tag>
               <tag-type>dot1q-types:s-vlan</tag-type>
               <vlan-id>11</vlan-id>
             </outer-tag>
           </dot1q-vlan>
         </if-ext:encapsulation>
         <ipv6 xmlns="urn:ietf:params:xml:ns:yang:ietf-ip">
           <forwarding>true</forwarding>
           <address>
             <ip>2001:db8:11::1</ip>
             <prefix-length>48</prefix-length>
           </address>
         </ipv6>
       </interface>
     </interfaces>
   </config>

Wilton & Mansfield        Expires 2 August 2024                [Page 23]



Internet-Draft           Sub-interface VLAN YANG            January 2024

7.2.  Layer 2 sub-interfaces with L2VPN

   This example illustrates a layer 2 sub-interface ’eth0.3’ configured
   to match traffic with a S-VLAN tag of 10, and C-VLAN tag of 21; and
   remov the outer tag (S-VLAN 10) before the traffic is passed off to
   the L2VPN service.

   It also illustrates another sub-interface ’eth1.0’ under a separate
   physical interface configured to match traffic with a C-VLAN of 50,
   with the tag removed before traffic is given to any service.  Sub-
   interface ’eth1.0’ is not currently bound to any service and hence
   traffic classified to that sub-interface is dropped.

   <?xml version="1.0" encoding="utf-8"?>
   <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
     <interfaces
     xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
     xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
     xmlns:dot1q-types="urn:ieee:std:802.1Q:yang:ieee802-dot1q-types"
     xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
       <interface>
         <name>eth0</name>
         <type>ianaift:ethernetCsmacd</type>
       </interface>
       <interface>
         <name>eth0.3</name>
         <type>ianaift:l2vlan</type>
         <if-ext:parent-interface>eth0</if-ext:parent-interface>
         <if-ext:encapsulation>
           <flexible xmlns=
           "urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation">
             <match>
               <dot1q-vlan-tagged>
                 <outer-tag>
                   <tag-type>dot1q-types:s-vlan</tag-type>
                   <vlan-id>10</vlan-id>
                 </outer-tag>
                 <second-tag>
                   <tag-type>dot1q-types:c-vlan</tag-type>
                   <vlan-id>21</vlan-id>
                 </second-tag>
               </dot1q-vlan-tagged>
             </match>
             <rewrite>
               <symmetrical>
                 <dot1q-tag-rewrite>
                   <pop-tags>1</pop-tags>

Wilton & Mansfield        Expires 2 August 2024                [Page 24]



Internet-Draft           Sub-interface VLAN YANG            January 2024

                 </dot1q-tag-rewrite>
               </symmetrical>
             </rewrite>
           </flexible>
         </if-ext:encapsulation>
       </interface>
       <interface>
         <name>eth1</name>
         <type>ianaift:ethernetCsmacd</type>
       </interface>
       <interface>
         <name>eth1.0</name>
         <type>ianaift:l2vlan</type>
         <if-ext:parent-interface>eth0</if-ext:parent-interface>
         <if-ext:encapsulation>
           <flexible xmlns=
           "urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation">
             <match>
               <dot1q-vlan-tagged>
                 <outer-tag>
                   <tag-type>dot1q-types:c-vlan</tag-type>
                   <vlan-id>50</vlan-id>
                 </outer-tag>
               </dot1q-vlan-tagged>
             </match>
             <rewrite>
               <symmetrical>
                 <dot1q-tag-rewrite>
                   <pop-tags>1</pop-tags>
                 </dot1q-tag-rewrite>
               </symmetrical>
             </rewrite>
           </flexible>
         </if-ext:encapsulation>
       </interface>
     </interfaces>
     <network-instances
         xmlns="urn:ietf:params:xml:ns:yang:ietf-network-instance">
       <network-instance
        xmlns:l2vpn="urn:ietf:params:xml:ns:yang:ietf-l2vpn">
         <name>p2p-l2-1</name>
         <description>Point to point L2 service</description>
         <l2vpn:type>l2vpn:vpws-instance-type</l2vpn:type>
         <l2vpn:signaling-type>
           l2vpn:ldp-signaling
         </l2vpn:signaling-type>
         <endpoint xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn">
           <name>local</name>

Wilton & Mansfield        Expires 2 August 2024                [Page 25]



Internet-Draft           Sub-interface VLAN YANG            January 2024

           <ac>
             <name>eth0.3</name>
           </ac>
         </endpoint>
         <endpoint xmlns="urn:ietf:params:xml:ns:yang:ietf-l2vpn">
           <name>remote</name>
           <pw>
             <name>pw1</name>
           </pw>
         </endpoint>
         <vsi-root>
         <!-- Does not Validate -->
         </vsi-root>
       </network-instance>
     </network-instances>
     <pseudowires
         xmlns="urn:ietf:params:xml:ns:yang:ietf-pseudowires">
       <pseudowire>
         <name>pw1</name>
           <peer-ip>2001:db8::50></peer-ip>
           <pw-id>100</pw-id>
       </pseudowire>
     </pseudowires>
   </config>

8.  Acknowledgements

   The authors would particularly like to thank Benoit Claise, John
   Messenger, Glenn Parsons, and Dan Romascanu for their help
   progressing this draft.

   The authors would also like to thank Martin Bjorklund, Alex Campbell,
   Don Fedyk, Eric Gray, Giles Heron, Marc Holness, Iftekhar Hussain,
   Neil Ketley, William Lupton, John Messenger, Glenn Parsons, Ludwig
   Pauwels, Joseph White, Vladimir Vassilev, and members of the IEEE
   802.1 WG for their helpful reviews and feedback on this draft.

9.  IANA Considerations

9.1.  YANG Module Registrations

   The following YANG modules are requested to be registered in the IANA
   "YANG Module Names" [RFC6020] registry:

   The ietf-if-vlan-encapsulation module:

      Name: ietf-if-vlan-encapsulation

Wilton & Mansfield        Expires 2 August 2024                [Page 26]



Internet-Draft           Sub-interface VLAN YANG            January 2024

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-vlan-
      encapsulation

      Prefix: if-vlan

      Reference: RFCXXXX

   The ietf-if-flexible-encapsulation module:

      Name: ietf-if-flexible-encapsulation

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-flexible-
      encapsulation

      Prefix: if-flex

      Reference: RFCXXXX

   This document registers two URIs in the "IETF XML Registry"
   [RFC3688].  Following the format in RFC 3688, the following
   registrations have been made.

      URI: urn:ietf:params:xml:ns:yang:ietf-if-vlan-encapsulation

      Registrant Contact: The IESG.

      XML: N/A, the requested URI is an XML namespace.

      URI: urn:ietf:params:xml:ns:yang:ietf-if-flexible-encapsulation

      Registrant Contact: The IESG.

      XML: N/A, the requested URI is an XML namespace.

10.  Security Considerations

   The YANG module defined in this memo is designed to be accessed via
   the NETCONF protocol [RFC6241].  The lowest NETCONF layer is the
   secure transport layer and the mandatory to implement secure
   transport is SSH [RFC6242] The NETCONF access control model [RFC8341]
   provides the means to restrict access for particular NETCONF users to
   a pre-configured subset of all available NETCONF protocol operations
   and content.

   There are a number of data nodes defined in this YANG module which
   are writable/creatable/deletable (i.e. config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g. edit-config) to

Wilton & Mansfield        Expires 2 August 2024                [Page 27]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   these data nodes without proper protection can have a negative effect
   on network operations.  These are the subtrees and data nodes and
   their sensitivity/vulnerability:

10.1.  ietf-if-vlan-encapsulation.yang

   The nodes in the vlan encapsulation YANG module are concerned with
   matching particular frames received on the network device to connect
   them to a layer 3 forwarding instance, and as such adding/modifying/
   deleting these nodes has a high risk of causing traffic to be lost
   because it is not being classified correctly, or is being classified
   to a separate sub-interface.  The nodes, all under the subtree
   /interfaces/interface/encapsulation/dot1q-vlan, that are sensitive to
   this are:

   *  outer-tag/tag-type

   *  outer-tag/vlan-id

   *  second-tag/tag-type

   *  second-tag/vlan-id

10.2.  ietf-if-flexible-encapsulation.yang

   There are many nodes in the flexible encapsulation YANG module that
   are concerned with matching particular frames received on the network
   device, and as such adding/modifying/deleting these nodes has a high
   risk of causing traffic to be lost because it is not being classified
   correctly, or is being classified to a separate sub-interface.  The
   nodes, all under the subtree
   /interfaces/interface/encapsulation/flexible/match, that are
   sensitive to this are:

   *  default

   *  untagged

   *  dot1q-priority-tagged

   *  dot1q-priority-tagged/tag-type

   *  dot1q-vlan-tagged/outer-tag/vlan-type

   *  dot1q-vlan-tagged/outer-tag/vlan-id

   *  dot1q-vlan-tagged/second-tag/vlan-type

Wilton & Mansfield        Expires 2 August 2024                [Page 28]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   *  dot1q-vlan-tagged/second-tag/vlan-id

   There are also many modes in the flexible encapsulation YANG module
   that are concerned with rewriting the fields in the L2 header for
   particular frames received on the network device, and as such
   adding/modifying/deleting these nodes has a high risk of causing
   traffic to be dropped or incorrectly processed on peer network
   devices, or it could cause layer 2 tunnels to go down due to a
   mismatch in negotiated MTU.  The nodes, all under the subtree
   /interfaces/interface/encapsulation/flexible/rewrite, that are
   sensitive to this are:

   *  symmetrical/dot1q-tag-rewrite/pop-tags

   *  symmetrical/dot1q-tag-rewrite/push-tags/outer-tag/tag-type

   *  symmetrical/dot1q-tag-rewrite/push-tags/outer-tag/vlan-id

   *  symmetrical/dot1q-tag-rewrite/push-tags/second-tag/tag-type

   *  symmetrical/dot1q-tag-rewrite/push-tags/second-tag/vlan-id

   *  asymmetrical/ingress/dot1q-tag-rewrite/pop-tags

   *  asymmetrical/ingress/dot1q-tag-rewrite/push-tags/outer-tag/tag-
      type

   *  asymmetrical/ingress/dot1q-tag-rewrite/push-tags/outer-tag/vlan-id

   *  asymmetrical/ingress/dot1q-tag-rewrite/push-tags/second-tag/tag-
      type

   *  asymmetrical/ingress/dot1q-tag-rewrite/push-tags/second-tag/vlan-
      id

   *  asymmetrical/egress/dot1q-tag-rewrite/pop-tags

   *  asymmetrical/egress/dot1q-tag-rewrite/push-tags/outer-tag/tag-type

   *  asymmetrical/egress/dot1q-tag-rewrite/push-tags/outer-tag/vlan-id

   *  asymmetrical/egress/dot1q-tag-rewrite/push-tags/second-tag/tag-
      type

   *  asymmetrical/egress/dot1q-tag-rewrite/push-tags/second-tag/vlan-id

Wilton & Mansfield        Expires 2 August 2024                [Page 29]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   Nodes in the flexible-encapsulation YANG module that are concerned
   with the VLAN tags to use for traffic sourced from the network
   element could cause protocol sessions (such as CFM) to fail if they
   are added, modified or deleted.  The nodes, all under the subtree
   /interfaces/interface/flexible-encapsulation/local-traffic-default-
   encaps that are sensitive to this are:

   *  outer-tag/vlan-type

   *  outer-tag/vlan-id

   *  second-tag/vlan-type

   *  second-tag/vlan-id

11.  References

11.1.  Normative References

   [I-D.ietf-netmod-intf-ext-yang]
              Wilton, R. and S. Mansfield, "Common Interface Extension
              YANG Data Models", Work in Progress, Internet-Draft,
              draft-ietf-netmod-intf-ext-yang-12, 18 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              intf-ext-yang-12>.

   [IEEE_802.1Q_2022]
              IEEE, "IEEE Standard for Local and Metropolitan Area
              Networks--Bridges and Bridged Networks", IEEE 802-1q-2022,
              DOI 10.1109/IEEESTD.2022.10004498, 30 December 2022,
              <https://ieeexplore.ieee.org/document/10004498>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

Wilton & Mansfield        Expires 2 August 2024                [Page 30]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   [RFC7224]  Bjorklund, M., "IANA Interface Type YANG Module",
              RFC 7224, DOI 10.17487/RFC7224, May 2014,
              <https://www.rfc-editor.org/info/rfc7224>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

   [RFC8344]  Bjorklund, M., "A YANG Data Model for IP Management",
              RFC 8344, DOI 10.17487/RFC8344, March 2018,
              <https://www.rfc-editor.org/info/rfc8344>.

11.2.  Informative References

   [I-D.ietf-bess-l2vpn-yang]
              Shah, H. C., Brissette, P., Chen, I., Hussain, I., Wen,
              B., and K. Tiruveedhula, "YANG Data Model for MPLS-based
              L2VPN", Work in Progress, Internet-Draft, draft-ietf-bess-
              l2vpn-yang-10, 2 July 2019,
              <https://datatracker.ietf.org/doc/html/draft-ietf-bess-
              l2vpn-yang-10>.

   [RFC4448]  Martini, L., Ed., Rosen, E., El-Aawar, N., and G. Heron,
              "Encapsulation Methods for Transport of Ethernet over MPLS
              Networks", RFC 4448, DOI 10.17487/RFC4448, April 2006,
              <https://www.rfc-editor.org/info/rfc4448>.

   [RFC4761]  Kompella, K., Ed. and Y. Rekhter, Ed., "Virtual Private
              LAN Service (VPLS) Using BGP for Auto-Discovery and
              Signaling", RFC 4761, DOI 10.17487/RFC4761, January 2007,
              <https://www.rfc-editor.org/info/rfc4761>.

   [RFC4762]  Lasserre, M., Ed. and V. Kompella, Ed., "Virtual Private
              LAN Service (VPLS) Using Label Distribution Protocol (LDP)
              Signaling", RFC 4762, DOI 10.17487/RFC4762, January 2007,
              <https://www.rfc-editor.org/info/rfc4762>.

Wilton & Mansfield        Expires 2 August 2024                [Page 31]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

Appendix A.  Comparison with the IEEE 802.1Q Configuration Model

   In addition to the sub-interface based YANG model proposed here, the
   IEEE 802.1Q working group has developed a YANG model for the
   configuration of 802.1Q VLANs.  This raises the valid question as to
   whether the models overlap and whether it is necessary or beneficial
   to have two different models for superficially similar constructs.
   This section aims to answer that question by summarizing and
   comparing the two models.

A.1.  Sub-interface based configuration model overview

   The key features of the sub-interface based configuration model can
   be summarized as:

   *  The model is primarily designed to enable layer 2 and layer 3
      services on Ethernet interfaces that can be defined in a very
      flexible way to meet the varied requirements of service providers.

   *  Traffic is classified from an Ethernet-like interface to sub-
      interfaces based on fields in the layer 2 header.  This is often
      based on VLAN Ids contained in the frame, but the model is
      extensible to other arbitrary fields in the frame header.

Wilton & Mansfield        Expires 2 August 2024                [Page 32]



Internet-Draft           Sub-interface VLAN YANG            January 2024

   *  Sub-interfaces are just a type of if:interface and hence support
      any feature configuration YANG models that can be applied
      generally to interfaces.  For example, QoS or ACL models that
      reference if:interface can be applied to the sub-interfaces, or
      the sub-interface can be used as an Access Circuit in L2VPN or
      L3VPN models that reference if:interface.

   *  In the sub-interface based configuration model, the classification
      of traffic arriving on an interface to a given sub-interface,
      based on fields in the layer 2 header, is completely independent
      of how the traffic is forwarded.  The sub-interface can be
      referenced (via references to if:interface) by other models that
      specify how traffic is forwarded; thus sub-interfaces can support
      multiple different forwarding paradigms, including but not limited
      to: layer 3 (IPv4/IPv6), layer 2 pseudowires (over MPLS or IP),
      VPLS instances, EVPN instance.

   *  The model is flexible in the scope of the VLAN Identifier space.
      I.e. by default VLAN Ids can be scoped locally to a single
      Ethernet-like trunk interface, but the scope is determined by the
      forwarding paradigm that is used.

A.2.  IEEE 802.1Q Bridge Configuration Model Overview

   The key features of the IEEE 802.1Q bridge configuration model can be
   summarized as:

   *  Each VLAN bridge component has a set of Ethernet interfaces that
      are members of that bridge.  Sub-interfaces are not used, nor
      required in the 802.1Q bridge model.

   *  Within a VLAN bridge component, the VLAN tag in the packet is
      used, along with the destination MAC address, to determine how to
      forward the packet.  Other forwarding paradigms are not supported
      by the 802.1Q model.

   *  Classification of traffic to a VLAN bridge component is based only
      on the Ethernet interface that it arrived on.

   *  VLAN Identifiers are scoped to a VLAN bridge component.  Often
      devices only support a single bridge component and hence VLANs are
      scoped globally within the device.

   *  Feature configuration is specified in the context of the bridge,
      or particular VLANs on a bridge.

Wilton & Mansfield        Expires 2 August 2024                [Page 33]



Internet-Draft           Sub-interface VLAN YANG            January 2024

A.3.  Possible Overlap Between the Two Models

   Both models can be used for configuring similar basic layer 2
   forwarding topologies.  The 802.1Q bridge configuration model is
   optimised for configuring Virtual LANs that span across enterprises
   and data centers.

   The sub-interface model can also be used for configuring equivalent
   Virtual LAN networks that span across enterprises and data centers,
   but often requires more configuration to be able to configure the
   equivalent constructs to the 802.1Q bridge model.

   The sub-interface model really excels when implementing flexible L2
   and L3 services, where those services may be handled on the same
   physical interface, and where the VLAN Identifier is being solely
   used to identify the customer or service that is being provided
   rather than a Virtual LAN.  The sub-interface model provides more
   flexibility as to how traffic can be classified, how features can be
   applied to traffic streams, and how the traffic is to be forwarded.

   Conversely, the 802.1Q bridge model can also be use to implement L2
   services in some scenarios, but only if the forwarding paradigm being
   used to implement the service is the native Ethernet forwarding
   specified in 802.1Q - other forwarding paradigms such as pseudowires
   or VPLS are not supported.  The 802.1Q bridge model does not
   implement L3 services at all, although this can be partly mitigated
   by using a virtual L3 interface construct that is a separate logical
   Ethernet-like interface which is a member of the bridge.

   In conclusion, it is valid for both of these models to exist since
   they have different deployment scenarios for which they are
   optimized.  Devices may choose which of the models (or both) to
   implement depending on what functionality the device is being
   designed for.

Authors’ Addresses

   Robert Wilton (editor)
   Cisco Systems
   Email: rwilton@cisco.com

   Scott Mansfield (editor)
   Ericsson
   Email: scott.mansfield@ericsson.com

Wilton & Mansfield        Expires 2 August 2024                [Page 34]



Network Working Group                                     R. Wilton, Ed.
Internet-Draft                                       Cisco Systems, Inc.
Updates: 6020, 7950, 8407, 8525 (if approved)             R. Rahman, Ed.
Intended status: Standards Track                                 Equinix
Expires: 2 September 2024                                B. Lengyel, Ed.
                                                                Ericsson
                                                               J. Clarke
                                                     Cisco Systems, Inc.
                                                               J. Sterne
                                                                   Nokia
                                                            1 March 2024

                 Updated YANG Module Revision Handling
              draft-ietf-netmod-yang-module-versioning-11

Abstract

   This document refines the RFC 7950 module update rules.  It specifies
   a new YANG module update procedure that can document when non-
   backwards-compatible changes have occurred during the evolution of a
   YANG module.  It extends the YANG import statement with a minimum
   revision suggestion to help document inter-module dependencies.  It
   provides guidelines for managing the lifecycle of YANG modules and
   individual schema nodes.  This document updates RFC 7950, RFC 6020,
   RFC 8407 and RFC 8525.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Wilton, et al.          Expires 2 September 2024                [Page 1]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Updates to YANG RFCs  . . . . . . . . . . . . . . . . . .   4
   2.  Terminology and Conventions . . . . . . . . . . . . . . . . .   4
   3.  Refinements to YANG revision handling . . . . . . . . . . . .   5
     3.1.  Updating a YANG module with a new revision  . . . . . . .   6
       3.1.1.  Backwards-compatible rules  . . . . . . . . . . . . .   7
       3.1.2.  Non-backwards-compatible changes  . . . . . . . . . .   8
     3.2.  non-backwards-compatible extension statement  . . . . . .   8
     3.3.  Removing revisions from the revision history  . . . . . .   8
     3.4.  Examples for updating the YANG module revision history  .   9
   4.  Guidance for revision selection on imports  . . . . . . . . .  12
     4.1.  Recommending a minimum revision for module imports  . . .  13
       4.1.1.  Module import examples  . . . . . . . . . . . . . . .  14
   5.  New ietf-yang-status-conformance YANG module  . . . . . . . .  15
     5.1.  Reporting how deprecated and obsolete nodes are
           handled . . . . . . . . . . . . . . . . . . . . . . . . .  15
   6.  Guidelines for using the YANG module update rules . . . . . .  16
     6.1.  Guidelines for YANG module authors  . . . . . . . . . . .  16
       6.1.1.  Making non-backwards-compatible changes to a YANG
               module  . . . . . . . . . . . . . . . . . . . . . . .  17
     6.2.  Versioning Considerations for Clients . . . . . . . . . .  18
   7.  Module Versioning Extension YANG Modules  . . . . . . . . . .  18
   8.  Security considerations . . . . . . . . . . . . . . . . . . .  24
     8.1.  Security considerations for module revisions  . . . . . .  24
     8.2.  Security considerations for the modules defined in this
           document  . . . . . . . . . . . . . . . . . . . . . . . .  25
   9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  25
     9.1.  YANG Module Registrations . . . . . . . . . . . . . . . .  25
     9.2.  Guidance for versioning in IANA maintained YANG
           modules . . . . . . . . . . . . . . . . . . . . . . . . .  26
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  27
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  27
     10.2.  Informative References . . . . . . . . . . . . . . . . .  28
   Appendix A.  Examples of changes that are NBC . . . . . . . . . .  30
   Appendix B.  Examples of applying the NBC change guidelines . . .  31
     B.1.  Removing a data node  . . . . . . . . . . . . . . . . . .  31
     B.2.  Changing the type of a leaf node  . . . . . . . . . . . .  31

Wilton, et al.          Expires 2 September 2024                [Page 2]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

     B.3.  Reducing the range of a leaf node . . . . . . . . . . . .  32
     B.4.  Changing the key of a list  . . . . . . . . . . . . . . .  32
     B.5.  Renaming a node . . . . . . . . . . . . . . . . . . . . .  33
   Contributors  . . . . . . . . . . . . . . . . . . . . . . . . . .  33
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  34
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  34

1.  Introduction

   The current YANG [RFC7950] module update rules require that updates
   of YANG modules preserve strict backwards compatibility.  This causes
   problems as described in [I-D.ietf-netmod-yang-versioning-reqs].
   This document recognizes the need to sometimes allow YANG modules to
   evolve with non-backwards-compatible changes, which can cause
   breakage to clients and when importing YANG modules.  Accepting that
   non-backwards-compatible changes do sometimes occur -- e.g., for
   bugfixes -- it is important to have mechanisms to report when these
   changes occur, and to manage their effect on clients and the broader
   YANG ecosystem.

   Several other documents build on this document with additional
   capabilities.  [I-D.ietf-netmod-yang-schema-comparison] specifies an
   algorithm that can be used to compare two revisions of a YANG schema
   and provide granular information to allow module users to determine
   if they are impacted by changes between the revisions.  The
   [I-D.ietf-netmod-yang-semver] document defines a YANG extension that
   tags a YANG artifact with a version identifier based on semantic
   versioning.  YANG packages [I-D.ietf-netmod-yang-packages] provides a
   mechanism to group sets of related YANG modules together in order to
   manage schema and conformance of YANG modules as a cohesive set
   instead of individually.  Finally,
   [I-D.ietf-netmod-yang-ver-selection] provides a schema selection
   mechanism that allows a client to choose which schemas to use when
   interacting with a server from the available schema that are
   supported and advertised by the server.  These other documents are
   mentioned here as informative references.  Support of the other
   documents is not required in an implementation in order to take
   advantage of the mechanisms and functionality offered by this module
   versioning document.

   The document comprises four parts:

   *  Refinements to the YANG 1.1 module revision update procedure,
      supported by new extension statements to indicate when a revision
      contains non-backwards-compatible changes.

Wilton, et al.          Expires 2 September 2024                [Page 3]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   *  Updated guidance for revision selection on imports and a YANG
      extension statement allowing YANG module imports to document an
      earliest module revision that may satisfy the import dependency.

   *  Updates and augmentations to ietf-yang-library to report how
      "deprecated" and "obsolete" nodes are handled by a server.

   *  Guidelines for how the YANG module update rules defined in this
      document should be used, along with examples.

   Note to RFC Editor (To be removed by RFC Editor)

   Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/
   issues.

1.1.  Updates to YANG RFCs

   This document updates [RFC7950] section 11 and [RFC6020] section 10.
   Section 3 describes modifications to YANG revision handling and
   update rules, and Section 4.1 describes a YANG extension statement to
   describe potential YANG import revision dependencies.

   This document updates [RFC8407] section 4.7.  Section 6 provides
   guidelines on managing the lifecycle of YANG modules that may contain
   non-backwards-compatible changes and a branched revision history.

   This document updates [RFC8525] with augmentations to include two
   boolean leafs to indicate whether status deprecated and status
   obsolete schema nodes are implemented by the server.

2.  Terminology and Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document makes use of the following terminology introduced in
   the YANG 1.1 Data Modeling Language [RFC7950]:

   *  schema node

   In addition, this document uses the following terminology:

Wilton, et al.          Expires 2 September 2024                [Page 4]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   *  YANG module revision: An instance of a YANG module, uniquely
      identified with a revision date, with no implied ordering or
      backwards compatibility between different revisions of the same
      module.

   *  Backwards-compatible (BC) change: A backwards-compatible change
      between two YANG module revisions, as defined in Section 3.1.1

   *  Non-backwards-compatible (NBC) change: A non-backwards-compatible
      change between two YANG module revisions, as defined in
      Section 3.1.2

3.  Refinements to YANG revision handling

   [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
   revision history for a YANG module or submodule is strictly linear,
   i.e., it is prohibited to have two independent revisions of a YANG
   module or submodule that are both directly derived from the same
   parent revision.

   This document clarifies [RFC7950] and [RFC6020] to explicitly allow
   non-linear development of YANG module and submodule revisions, so
   that they MAY have multiple revisions that directly derive from the
   same parent revision.  As per [RFC7950] and [RFC6020], YANG module
   and submodule revisions continue to be uniquely identified by their
   revision date, and hence all revisions of a given module or submodule
   MUST have unique revision dates.

   However, using revision dates alone to identify revisions of a YANG
   module versioned with a branched revision history is likely to be
   confusing because the relationship between module revisions is no
   longer guaranteed to be chronologically ordered.  Instead, for
   modules that may use a branched revision history, it is RECOMMENDED
   to use a version identifier, such as the one described in
   [I-D.ietf-netmod-yang-semver], that better describes the semantic
   relationship between the revisions.

   For a given YANG module revision, revision B is defined as being
   derived from revision A, if revision A is listed in the revision
   history of revision B.  Although this document allows for a branched
   revision history, a given YANG module revision history does not
   contain all revisions in all possible branches, it only lists those
   from which is was derived, i.e., the module revision’s history
   describes a single path of derived revisions back to the root of the
   module’s revision history.

Wilton, et al.          Expires 2 September 2024                [Page 5]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   A corollary to the text above is that the ancestry (derived
   relationship) between two module or submodule revisions cannot be
   determined by comparing the module or submodule revision date or
   version identifier alone - the revision history must be consulted.

   A module’s name and revision date identifies a specific immutable
   definition of that module within its revision history.  Hence, if a
   module includes submodules then to ensure that the module’s content
   is uniquely defined, the module’s "include" statements SHOULD use
   "revision-date" substatements to specify the exact revision date of
   each included submodule.  When a module does not include its
   submodules by revision-date, the revision of submodules used cannot
   be derived from the including module.  Mechanisms such as YANG
   packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
   could be used to specify the exact submodule revisions used when the
   submodule revision date is not constrained by the "include"
   statement.

   [RFC7950] section 11 and [RFC6020] section 10 require that all
   updates to a YANG module are backwards-compatible (BC) to the
   previous revision of the module.  This document introduces a method
   to indicate that an non-backwards-compatible (NBC) change has
   occurred between module revisions: this is done by using a new "non-
   backwards-compatible" YANG extension statement in the module revision
   history.

   Two revisions of a module or submodule MAY have identical content
   except for the revision history.  This could occur, for example, if a
   module or submodule has a branched history and identical changes are
   applied in multiple branches.

3.1.  Updating a YANG module with a new revision

   This section updates [RFC7950] section 11 and [RFC6020] section 10 to
   refine the rules for permissible changes when a new YANG module
   revision is created.

   New module revisions SHOULD NOT contain NBC changes because they
   often create problems for clients, however they can be helpful in
   some scenarios, and hence are discouraged, but allowed.  For example:

   *  Bugfixes, particularly where the likely client impact is low or
      the module is changed to reflect current server behavior.

   *  To mark nodes as obsolete (or remove them), after a suitable
      deprecation period.

Wilton, et al.          Expires 2 September 2024                [Page 6]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   *  To refine new and unstable modules (or new and unstable nodes
      within existing, stable modules).

   *  Restructuring a module to add new functionality where the cost of
      adding the functionality in a BC manner is disproportionate to the
      expected benefits of greater client backwards compatibility.

   A YANG extension, defined in Section 3.2, is used to signal the
   potential for incompatibility to existing module users and readers.

   As per [RFC7950] and [RFC6020], all published revisions of a module
   are given a new unique revision date.

3.1.1.  Backwards-compatible rules

   A change between two module revisions is defined as being "backwards-
   compatible" if the change conforms to the module update rules
   specified in [RFC7950] section 11 and [RFC6020] section 10, updated
   by the following rules:

   *  A "status" "deprecated" statement MAY be added, or changed from
      "current" to "deprecated", but adding or changing "status" to
      "obsolete" is a non-backwards-compatible change.

   *  YANG schema nodes with a "status" "obsolete" substatement MAY be
      removed from published modules, and the removal is classified as a
      backwards-compatible change.  In some circumstances it may be
      helpful to retain the obsolete definitions since their identifiers
      may still be referenced by other modules and to ensure that their
      identifiers are not reused with a different meaning.

   *  A statement that is defined using the YANG "extension" statement
      MAY be added, removed, or changed, if it does not change the
      semantics of the module.  Extension statement definitions SHOULD
      specify whether adding, removing, or changing statements defined
      by that extension are backwards-compatible or non-backwards-
      compatible.

   *  Any change made to the "revision-date" or "recommended-min-date"
      substatements of an "import" statement, including adding new
      "revision-date" or "recommended-min-date" substatements, changing
      the argument of any "revision-date" or "recommended-min-date"
      substatetements, or removing any "revision-date" or "recommended-
      min-date" substatements, is classified as backwards-compatible.

   *  Any changes (including whitespace or formatting changes) that do
      not change the semantic meaning of the module are backwards-
      compatible.

Wilton, et al.          Expires 2 September 2024                [Page 7]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

3.1.2.  Non-backwards-compatible changes

   Any changes to YANG modules that are not defined by Section 3.1.1 as
   being backwards-compatible are classified as "non-backwards-
   compatible" changes.

3.2.  non-backwards-compatible extension statement

   The "rev:non-backwards-compatible" extension statement is used to
   indicate YANG module revisions that contain NBC changes.

   If a revision of a YANG module contains changes, relative to the
   preceding revision in the revision history, that do not conform to
   the module update rules defined in Section 3.1.1, then a "rev:non-
   backwards-compatible" extension statement MUST be added as a
   substatement to the "revision" statement.

   Adding, modifying or removing a "rev:non-backwards-compatible"
   extension statement is considered to be a BC change.

3.3.  Removing revisions from the revision history

   Authors may wish to remove revision statements from a module or
   submodule.  Removal of revision information may be desirable for a
   number of reasons including reducing the size of a large revision
   history, or removing a revision that should no longer be used or
   imported.  Removing revision statements is allowed, but can cause
   issues and SHOULD NOT be done without careful analysis of the
   potential impact to users of the module or submodule since it may
   cause loss of visibility of when non-backwards-compatible changes
   were introduced.

   An author MAY remove a contiguous sequence of entries from the end
   (i.e., oldest entries) of the revision history.  This is acceptable
   even if the first remaining (oldest) revision entry in the revision
   history contains a rev:non-backwards-compatible substatement.

   An author MAY remove a contiguous sequence of entries in the revision
   history as long as the presence or absence of any existing rev:non-
   backwards-compatible substatements on all remaining entries still
   accurately reflect the compatibility relationship to their preceding
   entries remaining in the revision history.

   The author MUST NOT remove the first (i.e., newest) revision entry in
   the revision history.

   Example revision history:

Wilton, et al.          Expires 2 September 2024                [Page 8]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   revision 2020-11-11 {
     rev:non-backwards-compatible;
   }

   revision 2020-08-09 {
     rev:non-backwards-compatible;
   }

   revision 2020-06-07 {
   }

   revision 2020-02-10 {
     rev:non-backwards-compatible;
   }

   revision 2019-10-21 {
   }

   revision 2019-03-04 {
   }

   revision 2019-01-02 {
   }

   In the revision history example above (with revision descriptions
   omitted for clarity), removing the revision history entry for
   2020-02-10 would also remove the rev:non-backwards-compatible
   annotation and hence the resulting revision history would incorrectly
   indicate that revision 2020-06-07 is backwards-compatible with
   revisions 2019-01-02 through 2019-10-21 when it is not, and so this
   change cannot be made.  Conversely, removing one or more revisions
   out of 2019-03-04, 2019-10-21 and 2020-08-09 from the revision
   history would still retain a consistent revision history, and is
   acceptable, subject to an awareness of the concerns raised in the
   first paragraph of this section.

3.4.  Examples for updating the YANG module revision history

   The following diagram, explanation, and module history illustrates
   how a branched revision history for a YANG module could be
   represented chronologically.  To aid clarity, it makes use of both
   the "non-backwards-compatible" extension statement, and the "version"
   extension statement defined in [I-D.ietf-netmod-yang-semver]:

   Example YANG module with branched revision history using version
   identifiers defined in [I-D.ietf-netmod-yang-semver].

Wilton, et al.          Expires 2 September 2024                [Page 9]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

          Module revision date      Example version identifier
            2019-01-01                 <- 1.0.0
                |
            2019-02-01                 <- 2.0.0
                |      \
            2019-03-01  \              <- 3.0.0
                |        \
                |       2019-04-01     <- 2.1.0
                |           |
            2019-05-01      |          <- 3.1.0
                            |
                        2019-06-01     <- 2.2.0

   The tree diagram above illustrates how an example module’s revision
   history might evolve, over time.  For example, the tree might
   represent the following changes, listed in chronological order from
   the oldest revision to the newest revision:

   Example module, revision 2019-05-01:

Wilton, et al.          Expires 2 September 2024               [Page 10]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   module example-module {

     namespace "urn:example:module";
     prefix "prefix-name";

     import ietf-yang-revisions { prefix "rev"; }
     import ietf-yang-semver { prefix "ys"; }

     description
       "to be completed";

     revision 2019-05-01 {
       ys:version 3.1.0;
       description "Add new functionality.";
     }

     revision 2019-03-01 {
       ys:version 3.0.0;
       rev:non-backwards-compatible;
       description
         "Add new functionality. Remove some deprecated nodes.";
     }

     revision 2019-02-01 {
       ys:version 2.0.0;
       rev:non-backwards-compatible;
       description "Apply bugfix to pattern statement";
     }

     revision 2019-01-01 {
       ys:version 1.0.0;
       description "Initial revision";
     }

     //YANG module definition starts here
   }

   Example module, revision 2019-06-01:

Wilton, et al.          Expires 2 September 2024               [Page 11]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   module example-module {

     namespace "urn:example:module";
     prefix "prefix-name";

     import ietf-yang-revisions { prefix "rev"; }
     import ietf-yang-semver { prefix "ys"; }

     description
       "to be completed";

     revision 2019-06-01 {
       ys:version 2.2.0;
       description "Backwards-compatible bugfix to enhancement.";
     }

     revision 2019-04-01 {
       ys:version 2.1.0;
       description "Apply enhancement to older release train.";
     }

     revision 2019-02-01 {
       ys:version 2.0.0;
       rev:non-backwards-compatible;
       description "Apply bugfix to pattern statement";
     }

     revision 2019-01-01 {
       ys:version 1.0.0;
       description "Initial revision";
     }

     //YANG module definition starts here
   }

4.  Guidance for revision selection on imports

   [RFC7950] and [RFC6020] allow YANG module "import" statements to
   optionally require the imported module to have a specific revision
   date.  In practice, importing a module with an exact revision date
   can be too restrictive because it requires the importing module to be
   updated whenever any change to the imported module occurs, and hence
   section Section 6.1 suggests that authors do not restrict YANG module
   imports to exact revision dates.

   Instead, for conformance purposes (section 5.6 of [RFC7950]), the
   recommended approach for defining the relationship between specific
   YANG module revisions is to specify the relationships outside of the

Wilton, et al.          Expires 2 September 2024               [Page 12]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   YANG modules, e.g., via YANG library [RFC8525], YANG packages
   [I-D.ietf-netmod-yang-packages], a filesystem directory containing a
   set of consistent YANG module revisions, or a revision control system
   commit label.

4.1.  Recommending a minimum revision for module imports

   Although the previous section indicates that the actual relationship
   constraints between different revisions of YANG modules should be
   specified outside of the modules, in some scenarios YANG modules are
   designed to be loosely coupled, and implementors may wish to select
   sets of YANG module revisions that are expected to work together.
   For these cases it can be helpful for a module author to provide
   guidance on a recommended minimum revision that is expected to
   satisfy an YANG import.  E.g., the module author may know of a
   dependency on a type or grouping that has been introduced in a
   particular imported YANG module revision.  Although there can be no
   guarantee that all derived future revisions from the particular
   imported module will necessarily also be compatible, older revisions
   of the particular imported module are very unlikely to ever be
   compatible.

   This module introduces, for modules with a linear revision history
   that are versioned using revision dates, a new YANG extension
   statement to provide guidance to module implementors on a recommended
   minimum module revision of an imported module that is anticipated to
   be compatible.  This statement has been designed to be machine-
   readable so that tools can parse the minimum revision extension
   statement and generate warnings if appropriate, but this extension
   statement does not alter YANG module conformance of valid YANG module
   versions in any way, and specifically it does not alter the behavior
   of the YANG module import statement from that specified in [RFC7950].

   The ietf-revisions module defines the "recommended-min-date"
   extension statement, a substatement to the YANG "import" statement,
   to allow for a "minimum recommended date" to be documented:

      The argument to the "recommended-min-date" extension statement is
      a revision date.

      A particular revision of an imported module adheres to an import’s
      "recommended-min-date" extension statement if the imported
      module’s revision date is equal to or later than the revision date
      argument of the "recommended-min-date" extension statement in the
      importing module.

      Zero or one "recommended-min-date" extension statement is allowed
      for each parent "import" statement.

Wilton, et al.          Expires 2 September 2024               [Page 13]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

      Adding, modifying or removing a "recommended-min-date" extension
      statement is a BC change.

4.1.1.  Module import examples

   Consider the example module "example-module" from Section 3.4 that is
   hypothetically available in the following revisions: 2019-01-01,
   2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and 2019-06-01.  The
   relationship between the revisions is as before:

          Module revision date
            2019-01-01
                |
            2019-02-01
                |      \
            2019-03-01  \
                |        \
                |       2019-04-01
                |           |
            2019-05-01      |
                            |
                        2019-06-01

4.1.1.1.  Example 1

   This example recommends module revisions for import whose revision
   date is or comes after 2019-02-01.  E.g., this dependency might be
   used if there was a new container added in revision 2019-02-01 that
   is augmented by the importing module.  It includes the following
   revisions: 2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and
   2019-06-01.

   import example-module {
     rev:recommended-min-date 2019-02-01;
   }

4.1.1.2.  Example 2

   This example recommends module revisions for import whose revision
   date is or comes after 2019-04-01.  It includes the following
   revisions: 2019-04-01, 2019-05-01 and 2019-06-01, even though
   revision 2019-05-01 may not contain what is desired from 2019-04-01.
   This shows that "recommended-min-date" is not well suited for a
   branched revision history, and is most helpful when a module is
   restricted to a linear chronological development history.

Wilton, et al.          Expires 2 September 2024               [Page 14]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   import example-module {
     rev:recommended-min-date 2019-04-01;
   }

5.  New ietf-yang-status-conformance YANG module

   This document defines the YANG module, ietf-yang-status-conformance,
   that augments YANG library [RFC8525] with two leafs to indicate how a
   server implements deprecated and obsolete schema nodes.

   The "ietf-yang-status-conformance" YANG module has the following
   structure (using the notation defined in [RFC8340]):

   module: ietf-yang-status-conformance
     augment /yanglib:yang-library/yanglib:schema:
       +--ro deprecated-nodes-implemented?   boolean
       +--ro obsolete-nodes-absent?          boolean

5.1.  Reporting how deprecated and obsolete nodes are handled

   The ietf-yang-status-conformance YANG module augments YANG library
   with two boolean leafs to allow a server to report how it implements
   status "deprecated" and status "obsolete" schema nodes.  The leafs
   are:

   deprecated-nodes-implemented:  If set to "true", this leaf indicates
      that all schema nodes with a status "deprecated" are implemented
      equivalently as if they had status "current"; otherwise deviations
      MUST be used by the server to explicitly remove "deprecated" nodes
      from the schema.  If this leaf is set to "false" or absent, then
      the behavior is unspecified.

   obsolete-nodes-absent:  If set to "true", this leaf indicates that
      the server does not implement any status "obsolete" schema nodes.
      If this leaf is set to "false" or absent, then the behaviour is
      unspecified.

   Servers SHOULD set both the "deprecated-nodes-implemented" and
   "obsolete-nodes-absent" leafs to "true", which allows clients to
   determine the exact schema used by the server.

Wilton, et al.          Expires 2 September 2024               [Page 15]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   If a server does not set the "deprecated-nodes-implemented" leaf to
   "true", then clients MUST NOT rely solely on the "rev:non-backwards-
   compatible" statements to determine whether two module revisions are
   backwards-compatible, and MUST also consider whether the status of
   any nodes has changed to "deprecated" and whether those nodes are
   implemented by the server.

6.  Guidelines for using the YANG module update rules

   The following text updates section 4.7 of [RFC8407] to revise the
   guidelines for updating YANG modules.

6.1.  Guidelines for YANG module authors

   All IETF YANG modules MUST conform to this specification.  In
   particular, sections: Section 3, Section 4, and the guidelines
   documented in this section.

   NBC changes to YANG modules may cause problems to clients, who are
   consumers of YANG models, and hence YANG module authors SHOULD
   minimize NBC changes and keep changes BC whenever possible.

   When NBC changes are introduced, consideration should be given to the
   impact on clients and YANG module authors SHOULD try to mitigate that
   impact.

   A "rev:non-backwards-compatible" statement MUST be added if there are
   NBC changes relative to the previous revision.

   Removing old revision statements from a module’s revision history can
   cause a loss of visibility of when non-backwards-compatible changes
   were made, and hence it is RECOMMENDED to retain them.  An
   alternative solution, if the revision section is too long, would be
   to remove, or curtail, the older description statements associated
   with the previous revisions.

   In cases where a revision dependency is helpful for a module import,
   the "rev:recommended-min-date" extension SHOULD be used in preference
   to the "revision-date" statement, which causes overly strict import
   dependencies and SHOULD NOT be used.

   A module that includes submodules SHOULD use the "revision-date"
   statement to include specific submodule revisions.  The revision of
   the including module MUST be updated when any included submodule has
   changed.

Wilton, et al.          Expires 2 September 2024               [Page 16]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   In some cases a module or submodule revision that is not strictly NBC
   by the definition in Section 3.1.2 of this specification may include
   the "non-backwards-compatible" statement.  Here is an example when
   adding the statement may be desirable:

   *  A "config false" leaf had its value space expanded (for example, a
      range was increased, or additional enum values were added) and the
      author or server implementor feels there is a significant
      compatibility impact for clients and users of the module or
      submodule

6.1.1.  Making non-backwards-compatible changes to a YANG module

   There are various valid situations where a YANG module has to be
   modified in an NBC way.  Here are some guidelines on how non-
   backwards-compatible changes can be made incrementally, with the
   assumption that deprecated nodes are implemented by the server, and
   obsolete nodes are not:

   1.  The changes should be made gradually, e.g., a data node’s status
       SHOULD NOT be changed directly from "current" to "obsolete" (see
       Section 4.7 of [RFC8407]), instead the status SHOULD first be
       marked "deprecated".  At some point in the future, when support
       is removed for the data node, there are two options.  The first,
       and preferred, option is to keep the data node definition in the
       model and change the status to obsolete. The second option is
       to simply remove the data node from the model, but this has the
       risk of breaking modules which import the modified module, and
       the removed identifier may be accidentally reused in a future
       revision.

   2.  For deprecated data nodes the "description" statement SHOULD also
       indicate until when support for the node is guaranteed (if
       known).  If there is a replacement data node, rpc, action or
       notification for the deprecated node, this SHOULD be stated in
       the "description".  The reason for deprecating the node can also
       be included in the "description" if it is deemed to be of
       potential interest to the user.

   3.  For obsolete data nodes, it is RECOMMENDED to keep the above
       information, from when the node had status "deprecated", which is
       still relevant.

Wilton, et al.          Expires 2 September 2024               [Page 17]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   4.  When obsoleting or deprecating data nodes, the "deprecated" or
       "obsolete" status SHOULD be applied at the highest possible level
       in the data tree.  For clarity, the "status" statement SHOULD
       also be applied to all descendent data nodes, but the additional
       status related information does not need to be repeated if it
       does not introduce any additional information.

   5.  NBC changes which can break imports SHOULD be avoided because of
       the impact on the importing module.  The importing modules could
       get broken, e.g., if an augmented node in the importing module
       has been removed from the imported module.  Alternatively, the
       schema of the importing modules could undergo an NBC change due
       to the NBC change in the imported module, e.g., if a node in a
       grouping has been removed.  As described in Appendix B.1, instead
       of removing a node, that node SHOULD first be deprecated and then
       obsoleted.

   See Appendix B for examples on how NBC changes can be made.

6.2.  Versioning Considerations for Clients

   Guidelines for clients of modules using the new module revision
   update procedure:

   *  Clients SHOULD be liberal when processing data received from a
      server.  For example, the server may have increased the range of
      an operational node causing the client to receive a value which is
      outside the range of the YANG model revision it was coded against.

   *  Clients SHOULD monitor changes to published YANG modules through
      their revision history, and use appropriate tooling to understand
      the specific changes between module revision.  In particular,
      clients SHOULD NOT migrate to NBC revisions of a module without
      understanding any potential impact of the specific NBC changes.

   *  Clients SHOULD plan to make changes to match published status
      changes.  When a node’s status changes from "current" to
      "deprecated", clients SHOULD plan to stop using that node in a
      timely fashion.  When a node’s status changes to "obsolete",
      clients MUST stop using that node.

7.  Module Versioning Extension YANG Modules

   YANG module with extension statements for annotating NBC changes and
   importing by revision.

Wilton, et al.          Expires 2 September 2024               [Page 18]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   <CODE BEGINS> file "ietf-yang-revisions@2024-02-19.yang"
   module ietf-yang-revisions {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
     prefix rev;

     organization
       "IETF NETMOD (Network Modeling) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Author:   Joe Clarke
                 <mailto:jclarke@cisco.com>

        Author:   Reshad Rahman
                 <mailto:reshad@yahoo.com>

        Author:   Robert Wilton
                 <mailto:rwilton@cisco.com>

        Author:   Balazs Lengyel
                 <mailto:balazs.lengyel@ericsson.com>

        Author:   Jason Sterne
                 <mailto:jason.sterne@nokia.com>";
     description
       "This YANG 1.1 module contains definitions and extensions to
        support updated YANG revision handling.

        Copyright (c) 2024 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; see
        the RFC itself for full legal notices.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

Wilton, et al.          Expires 2 September 2024               [Page 19]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

     // RFC Ed.: update the date below with the date of RFC publication
     // and remove this note.
     // RFC Ed.: replace XXXX (inc above) with actual RFC number and
     // remove this note.

     revision 2024-02-19 {
       description
         "Initial version.";
       reference
         "XXXX: Updated YANG Module Revision Handling";
     }

     typedef revision-date {
       type string {
         pattern ’[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])’;
       }
       description
         "A date associated with a YANG revision.

          Matches dates formatted as YYYY-MM-DD.";
       reference
         "RFC 7950: The YANG 1.1 Data Modeling Language";
     }

     extension non-backwards-compatible {
       description
         "This statement is used to indicate YANG module revisions that
          contain non-backwards-compatible changes.

          The statement MUST only be a substatement of the ’revision’
          statement.  Zero or one ’non-backwards-compatible’ statements
          per parent statement is allowed.  No substatements for this
          extension have been standardized.

          If a revision of a YANG module contains changes, relative to
          the preceding revision in the revision history, that do not
          conform to the backwards-compatible module update rules
          defined in RFC-XXX, then the ’non-backwards-compatible’
          statement MUST be added as a substatement to the revision
          statement.

          Conversely, if a revision does not contain a
          ’non-backwards-compatible’ statement then all changes,
          relative to the preceding revision in the revision history,
          MUST be backwards-compatible.

          A new module revision that only contains changes that are
          backwards-compatible SHOULD NOT include the

Wilton, et al.          Expires 2 September 2024               [Page 20]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

          ’non-backwards-compatible’ statement.  An example of when an
          author might add the ’non-backwards-compatible’ statement is
          if they believe a change could negatively impact clients even
          though the backwards compatibility rules defined in RFC-XXXX
          classify it as a backwards-compatible change.

          Add, removing, or changing a ’non-backwards-compatible’
          statement is a backwards-compatible version change.";
       reference
         "XXXX: Updated YANG Module Revision Handling;
          Section 3.2,
          non-backwards-compatible revision extension statement";
     }

     extension recommended-min-date {
       argument revision-date;
       description
         "Recommends the revision of the module that may be imported to
          one whose revision date matches or is after the specified
          revision-date.

          The argument value MUST conform to the ’revision-date’ defined
          type.

          The statement MUST only be a substatement of the import
          statement.  Zero, one or more ’recommended-min-date’
          statements per parent statement are allowed.  No substatements
          for this extension have been standardized.

          Zero or one ’recommended-min-date’ extension statement is
          allowed for each parent ’import’ statement.

          A particular revision of an imported module adheres to an
          import’s ’recommended-min-date’ extension statement if the
          imported module’s revision date is equal to or later than
          the revision date argument of the ’recommended-min-date’
          extension statement in the importing module.

          Adding, removing or updating a ’recommended-min-date’
          statement to an import is a backwards-compatible change.";
       reference
         "XXXX: Updated YANG Module Revision Handling; Section 4,
          Recommending a minimum revision for module imports";
     }
   }
   <CODE ENDS>

   YANG module for status conformance

Wilton, et al.          Expires 2 September 2024               [Page 21]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   <CODE BEGINS> file "ietf-yang-status-conformance@2024-02-14.yang"
   module ietf-yang-status-conformance {
     yang-version 1.1;
     namespace
       "urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance";
     prefix ys-conf;

     import ietf-yang-library {
       prefix "yanglib";
       reference
         "RFC 8525: YANG Library";
     }
     organization
       "IETF NETMOD (Network Modeling) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Author:   Joe Clarke
                  <mailto:jclarke@cisco.com>

        Author:   Reshad Rahman
                  <mailto:reshad@yahoo.com>

        Author:   Robert Wilton
                  <mailto:rwilton@cisco.com>

        Author:   Balazs Lengyel
                  <mailto:balazs.lengyel@ericsson.com>

        Author:   Jason Sterne
                  <mailto:jason.sterne@nokia.com>";
     description
       "This module contains augmentations to YANG Library to provide an
        indication of how deprecated and obsolete nodes are handled by
        the server.

        Copyright (c) 2024 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Revised BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; see

Wilton, et al.          Expires 2 September 2024               [Page 22]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

        the RFC itself for full legal notices.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

     // RFC Ed.: update the date below with the date of RFC publication
     // and remove this note.
     // RFC Ed.: replace XXXX (including in the imports above) with
     // actual RFC number and remove this note.

     revision 2024-02-14 {
       description
         "Initial revision";
       reference
         "XXXX: Updated YANG Module Revision Handling";
     }

     augment "/yanglib:yang-library/yanglib:schema" {
       description
         "Augmentations to the ietf-yang-library module to indicate how
          deprecated and obsoleted nodes are handled by the server.";
       leaf deprecated-nodes-implemented {
         type boolean;
         description
           "If set to true, this leaf indicates that all schema nodes
            with a status ’deprecated’ are implemented equivalently as
            if they had status ’current’; otherwise deviations MUST be
            used to explicitly remove deprecated nodes from the schema.
            If this leaf is absent or set to false, then the behavior is
            unspecified.";
         reference
           "XXXX: Updated YANG Module Revision Handling;
            Section 5.1, Reporting how deprecated and obsolete nodes
            are handled";
       }
       leaf obsolete-nodes-absent {
         type boolean;
         description
           "If set to true, this leaf indicates that the server does not
            implement any status ’obsolete’ schema nodes.  If this leaf
            is absent or set to false, then the behaviour is
            unspecified.";
         reference
           "XXXX: Updated YANG Module Revision Handling;
            Section 5.1, Reporting how deprecated and obsolete nodes

Wilton, et al.          Expires 2 September 2024               [Page 23]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

            are handled";
       }
     }
   }
   <CODE ENDS>

8.  Security considerations

8.1.  Security considerations for module revisions

   As discussed in the introduction of this document, YANG modules
   occasionally undergo changes that are not backwards compatible.  This
   occurs in both standards and vendor YANG modules despite the
   prohibitions in RFC 7950.  RFC 7950 also allows nodes to change to
   status ’obsolete’ which can change behavior and compatibility for a
   client.

   The fact that YANG modules change in a non-backwards-compatible
   manner may have security implications.  Such changes should be
   carefully considered, including the scenarios described below.  The
   rev:non-backwards-compatible extension statement introduced in this
   document provides an alert that the module or submodule may contain
   changes that impact users and need to be examined more closely for
   both compatibility and potential security implications.  Flagging the
   change reduces the risk of introducing silent exploitable
   vulnerabilities.

   When a module undergoes a non-backwards-compatible change, a server
   may implement different semantics for a given leaf than a client
   using an older version of the module is expecting.  If the particular
   leaf controls any security functions of the device, or is related to
   parts of the configuration or state that are sensitive from a
   security point of view, then the difference in behavior between the
   old and new revisions needs to be considered carefully.  In
   particular, changes to the default of the leaf should be examined.

   Implementors and users should also consider impact to data node
   access control rules (e.g.  The Network Configuration Access Control
   Model (NACM) [RFC8341]) in the face of non-backwards-compatible
   changes.  Access rules may need to be adjusted when a new module
   revision is introduced that contains a non-backwards-compatible
   change.

   If the changes to a module or submodule have security implications,
   it is recommended to highlight those implications in the description
   of the revision statement.

Wilton, et al.          Expires 2 September 2024               [Page 24]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

8.2.  Security considerations for the modules defined in this document

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The NETCONF access control model [RFC8341] provides the means to
   restrict access for particular NETCONF or RESTCONF users to a
   preconfigured subset of all available NETCONF or RESTCONF protocol
   operations and content.

   This document does not define any new protocol or data nodes that are
   writable.

   This document updates YANG Library [RFC8525] with augmentations to
   include two boolean leafs that indicate whether status deprecated and
   status obsolete schema nodes are implemented by the server.  These
   read-only augmentations do not add any new security considerations
   beyond those already present in [RFC8525].

9.  IANA Considerations

9.1.  YANG Module Registrations

   This document requests IANA to registers a URI in the "IETF XML
   Registry" [RFC3688].  Following the format in RFC 3688, the following
   registrations are requested.

      URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
      Registrant Contact: The IESG.
      XML: N/A, the requested URI is an XML namespace.

      URI: urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance
      Registrant Contact: The IESG.
      XML: N/A, the requested URI is an XML namespace.

   The following YANG module is requested to be registred in the "IANA
   Module Names" [RFC6020].  Following the format in RFC 6020, the
   following registrations are requested:

   The ietf-yang-revisions module:

      Name: ietf-yang-revisions

Wilton, et al.          Expires 2 September 2024               [Page 25]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

      Prefix: rev

      Reference: [RFCXXXX]

   The ietf-yang-status-conformance module:

      Name: ietf-yang-status-conformance

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-status-
      conformance

      Prefix: ys-conf

      Reference: [RFCXXXX]

9.2.  Guidance for versioning in IANA maintained YANG modules

   Note for IANA (to be removed by the RFC editor): Please check that
   the registries and IANA YANG modules are referenced in the
   appropriate way.

   IANA is responsible for maintaining and versioning YANG modules that
   are derived from other IANA registries.  For example,
   "iana-if-type.yang" [IfTypeYang] is derived from the "Interface Types
   (ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"
   [RoutingTypesYang] is derived from the "Address Family Numbers"
   [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
   Parameters" [SAFIReg] IANA registries.

   Normally, updates to the registries cause any derived YANG modules to
   be updated in a backwards-compatible way, but there are some cases
   where the registry updates can cause non-backward-compatible updates
   to the derived YANG module.  An example of such an update is the
   2020-12-31 revision of iana-routing-types.yang
   [RoutingTypesDecRevision], where the enum name for two SAFI values
   was changed.

   In all cases, IANA MUST follow the versioning guidance specified in
   Section 3.1, and MUST include a "rev:non-backwards-compatible"
   substatement to the latest revision statement whenever an IANA
   maintained module is updated in a non-backwards-compatible way, as
   described in Section 3.2.

Wilton, et al.          Expires 2 September 2024               [Page 26]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   Note: For published IANA maintained YANG modules that contain non-
   backwards-compatible changes between revisions, a new revision should
   be published with the "rev:non-backwards-compatible" substatement
   retrospectively added to any revisions containing non-backwards-
   compatible changes.

   Non-normative examples of updates to enumeration types in IANA
   maintained modules that would be classified as non-backwards-
   compatible changes are: Changing the status of an enumeration typedef
   to obsolete, changing the status of an enum entry to obsolete,
   removing an enum entry, changing the identifier of an enum entry, or
   changing the described meaning of an enum entry.

   Non-normative examples of updates to enumeration types in IANA
   maintained modules that would be classified as backwards-compatible
   changes are: Adding a new enum entry to the end of the enumeration,
   changing the status or an enum entry to deprecated, or improving the
   description of an enumeration that does not change its defined
   meaning.

   Non-normative examples of updates to identity types in IANA
   maintained modules that would be classified as non-backwards-
   compatible changes are: Changing the status of an identity to
   obsolete, removing an identity, renaming an identity, or changing the
   described meaning of an identity.

   Non-normative examples of updates to identity types in IANA
   maintained modules that would be classified as backwards-compatible
   changes are: Adding a new identity, changing the status or an
   identity to deprecated, or improving the description of an identity
   that does not change its defined meaning.

10.  References

10.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

Wilton, et al.          Expires 2 September 2024               [Page 27]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8407]  Bierman, A., "Guidelines for Authors and Reviewers of
              Documents Containing YANG Data Models", BCP 216, RFC 8407,
              DOI 10.17487/RFC8407, October 2018,
              <https://www.rfc-editor.org/info/rfc8407>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC8525]  Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
              and R. Wilton, "YANG Library", RFC 8525,
              DOI 10.17487/RFC8525, March 2019,
              <https://www.rfc-editor.org/info/rfc8525>.

10.2.  Informative References

Wilton, et al.          Expires 2 September 2024               [Page 28]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   [AddrFamilyReg]
              "Address Family Numbers IANA Registry",
              <https://www.iana.org/assignments/address-family-numbers/
              address-family-numbers.xhtml>.

   [I-D.clacla-netmod-yang-model-update]
              Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
              YANG Module Update Procedure", Work in Progress, Internet-
              Draft, draft-clacla-netmod-yang-model-update-06, 2 July
              2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
              netmod-yang-model-update-06>.

   [I-D.ietf-netmod-yang-packages]
              Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
              "YANG Packages", Work in Progress, Internet-Draft, draft-
              ietf-netmod-yang-packages-03, 4 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-packages-03>.

   [I-D.ietf-netmod-yang-schema-comparison]
              Andersson, P. and R. Wilton, "YANG Schema Comparison",
              Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
              schema-comparison-02, 14 March 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-schema-comparison-02>.

   [I-D.ietf-netmod-yang-semver]
              Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
              J., and B. Claise, "YANG Semantic Versioning", Work in
              Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
              12, 2 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-semver-12>.

   [I-D.ietf-netmod-yang-ver-selection]
              Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
              "YANG Schema Selection", Work in Progress, Internet-Draft,
              draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-ver-selection-00>.

   [I-D.ietf-netmod-yang-versioning-reqs]
              Clarke, J., "YANG Module Versioning Requirements", Work in
              Progress, Internet-Draft, draft-ietf-netmod-yang-
              versioning-reqs-09, 14 January 2024,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-versioning-reqs-09>.

Wilton, et al.          Expires 2 September 2024               [Page 29]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   [IfTypesReg]
              "Interface Types (ifType) IANA Registry",
              <https://www.iana.org/assignments/smi-numbers/smi-
              numbers.xhtml#smi-numbers-5>.

   [IfTypeYang]
              "iana-if-type YANG Module",
              <https://www.iana.org/assignments/iana-if-type/iana-if-
              type.xhtml>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RoutingTypesDecRevision]
              "2020-12-31 revision of iana-routing-types.yang",
              <https://www.iana.org/assignments/yang-parameters/iana-
              routing-types@2020-12-31.yang>.

   [RoutingTypesYang]
              "iana-routing-types YANG Module",
              <https://www.iana.org/assignments/iana-routing-types/iana-
              routing-types.xhtml>.

   [SAFIReg]  "Subsequent Address Family Identifiers (SAFI) Parameters
              IANA Registry", <https://www.iana.org/assignments/safi-
              namespace/safi-namespace.xhtml>.

Appendix A.  Examples of changes that are NBC

   Examples of NBC changes include:

   *  Deleting a data node, or changing it to status obsolete.

   *  Changing the name, type, or units of a data node.

   *  Modifying the description in a way that changes the semantic
      meaning of the data node.

   *  Any changes that remove any previously allowed values from the
      allowed value set of the data node, either through changes in the
      type definition, or the addition or changes to "must" statements,
      or changes in the description.

   *  Adding or modifying "when" statements that reduce when the data
      node is available in the schema.

   *  Making the statement conditional on if-feature.

Wilton, et al.          Expires 2 September 2024               [Page 30]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

Appendix B.  Examples of applying the NBC change guidelines

   The following sections give steps that could be taken for making NBC
   changes to a YANG module or submodule using the incremental approach
   described in section Section 6.1.1.

   The examples are all for "config true" nodes.

B.1.  Removing a data node

   Removing a leaf or container from the data tree, e.g., because
   support for the corresponding feature is being removed:

   1.  The schema node’s status is changed to "deprecated" and the node
       is supported for some period of time (e.g. one year).  This is a
       BC change.

   2.  When the schema node is not supported anymore, its status is
       changed to "obsolete" and the "description" updated.  This is an
       NBC change.

B.2.  Changing the type of a leaf node

   Changing the type of a leaf node. e.g., a "vpn-id" node of type
   integer being changed to a string:

   1.  The status of schema node "vpn-id" is changed to "deprecated" and
       the node is supported for some period of time (e.g. one year).
       This is a BC change.  The description is updated to indicate that
       vpn-name is replacing this node.

   2.  A new schema node, e.g., "vpn-name", of type string is added to
       the same location as the existing node "vpn-id".  This new node
       has status "current" and its description explains that it is
       replacing node "vpn-id".

   3.  During the period of time when both schema nodes are supported,
       the interactions between the two nodes is outside the scope of
       this document and will vary on a case by case basis.  One
       possible option is to have the server prevent the new node from
       being set if the old node is already set (and vice-versa).  The
       new node could have a "when" statement added to it to achieve
       this.  The old node, however, must not have a "when" statement
       added, or an existing "when" modified to be more restrictive,
       since this would be an NBC change.  In any case, the server could
       reject the old node from being set if the new node is already
       set.

Wilton, et al.          Expires 2 September 2024               [Page 31]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   4.  When the schema node "vpn-id" is not supported anymore, its
       status is changed to "obsolete" and the "description" is updated.
       This is an NBC change.

B.3.  Reducing the range of a leaf node

   Reducing the range of values of a leaf-node, e.g., consider a "vpn-
   id" schema node of type uint32 being changed from range 1..5000 to
   range 1..2000:

   1.  If all values which are being removed were never supported, e.g.,
       if a vpn-id of 2001 or higher was never accepted, this is a BC
       change for the functionality (no functionality change).  Even if
       it is an NBC change for the YANG model, there should be no impact
       for clients using that YANG model.

   2.  If one or more values being removed was previously supported,
       e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
       change for the YANG model.  Clients using the old YANG model will
       be impacted, so a change of this nature should be done carefully,
       e.g., by using the steps described in Appendix B.2

B.4.  Changing the key of a list

   Changing the key of a list has a big impact to the client.  For
   example, consider a "sessions" list which has a key "interface" and
   there is a need to change the key to "dest-address".  Such a change
   can be done in steps:

   1.  The status of list "sessions" is changed to "deprecated" and the
       list is supported for some period of time (e.g. one year).  This
       is a BC change.  The description is updated to indicate the new
       list that is replacing this list.

   2.  A new list is created in the same location with the same
       descendant schema nodes but with "dest-address" as key.  Finding
       an appropriate name for the new list can be difficult.  In this
       case the new list is called "sessions-address", has status
       "current" and its description should explain that it is replacing
       list "session".

   3.  During the period of time when both lists are supported, the
       interactions between the two lists is outside the scope of this
       document and will vary on a case by case basis.  One possible
       option is to have the server prevent entries in the new list from
       being created if the old list already has entries (and vice-
       versa).

Wilton, et al.          Expires 2 September 2024               [Page 32]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   4.  When list "sessions" is not available anymore, its status is
       changed to "obsolete" and the "description" is updated.  This is
       an NBC change.

B.5.  Renaming a node

   A leaf or container schema node may be renamed, either due to a
   spelling error in the previous name or because of a better name.  For
   example a node "ip-adress" could be renamed to "ip-address":

   1.  The status of the existing node "ip-adress" is changed to
       "deprecated" and is supported for some period of time (e.g. one
       year).  This is a BC change.  The description is updated to
       indicate the node that is replacing this node.

   2.  The new schema node "ip-address" is added to the same location as
       the existing node "ip-adress".  This new node has status
       "current" and its description should explain that it is replacing
       node "ip-adress".

   3.  During the period of time when both nodes are available, the
       interactions between the two nodes is outside the scope of this
       document and will vary on a case by case basis.  One possible
       option is to have the server prevent the new node from being set
       if the old node is already set (and vice-versa).  The new node
       could have a "when" statement added to it to achieve this.  The
       old node, however, must not have a "when" statement added, or an
       existing "when" modified to be more restrictive, since this would
       be an NBC change.  In any case, the server could reject the old
       node from being set if the new node is already set.

   4.  When node "ip-adress" is not available anymore, its status is
       changed to "obsolete" and the "description" is updated.  This is
       an NBC change.

Contributors

   The following people made substantial contributions to this document:

     Bo Wu
     lana.wubo@huawei.com

     Jan Lindblad
     jlindbla@cisco.com

Wilton, et al.          Expires 2 September 2024               [Page 33]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

Acknowledgments

   This document grew out of the YANG module versioning design team that
   started after IETF 101.  The authors, contributors and the following
   individuals are (or have been) members of the design team and have
   worked on the YANG versioning project:

     Benoit Claise
     benoit.claise@huawei.com

     Ebben Aries
     exa@juniper.net

     Juergen Schoenwaelder
     j.shoenwaelder@jacobs-university.de

     Mahesh Jethanandani
     mjethanandani@gmail.com

     Michael (Wangzitao)
     wangzitao@huawei.com

     Per Andersson
     perander@cisco.com

     Qin Wu
     bill.wu@huawei.com

   The initial revision of this document was refactored and built upon
   [I-D.clacla-netmod-yang-model-update].  We would like to thank Kevin
   D’Souza and Benoit Claise for their initial work in this problem
   space.

   Discussions on the use of Semver for YANG versioning has been held
   with authors of the OpenConfig YANG models.  We would like to thank
   both Anees Shaikh and Rob Shakir for their input into this problem
   space.

   We would also like to thank Lou Berger, Andy Bierman, Martin
   Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, and Kent Watsen for
   their contributions and review comments.

Authors’ Addresses

   Robert Wilton (editor)
   Cisco Systems, Inc.

Wilton, et al.          Expires 2 September 2024               [Page 34]



Internet-Draft    Updated YANG Module Revision Handling       March 2024

   Email: rwilton@cisco.com

   Reshad Rahman (editor)
   Equinix
   Email: reshad@yahoo.com

   Balazs Lengyel (editor)
   Ericsson
   Email: balazs.lengyel@ericsson.com

   Joe Clarke
   Cisco Systems, Inc.
   Email: jclarke@cisco.com

   Jason Sterne
   Nokia
   Email: jason.sterne@nokia.com

Wilton, et al.          Expires 2 September 2024               [Page 35]



Network Working Group                                     J. Clarke, Ed.
Internet-Draft                                            R. Wilton, Ed.
Updates: 8407, 8525, 7950 (if approved)              Cisco Systems, Inc.
Intended status: Standards Track                               R. Rahman
Expires: 5 September 2024                                        Equinix
                                                              B. Lengyel
                                                                Ericsson
                                                               J. Sterne
                                                                   Nokia
                                                               B. Claise
                                                                  Huawei
                                                            4 March 2024

                        YANG Semantic Versioning
                    draft-ietf-netmod-yang-semver-14

Abstract

   This document specifies a YANG extension along with guidelines for
   applying an extended set of semantic versioning rules to revisions of
   YANG artifacts (e.g., modules and packages).  Additionally, this
   document defines a YANG extension for controlling module imports
   based on these modified semantic versioning rules.  This document
   updates RFCs 7950, 8407, and 8525.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 5 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

Clarke, et al.          Expires 5 September 2024                [Page 1]



Internet-Draft                 YANG Semver                    March 2024

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Examples of How Versioning Is Applied To YANG Module
           Revisions . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Terminology and Conventions . . . . . . . . . . . . . . . . .   4
   4.  YANG Semantic Versioning  . . . . . . . . . . . . . . . . . .   4
     4.1.  Relationship Between SemVer and YANG Semver . . . . . . .   5
     4.2.  YANG Semantic Version Extension . . . . . . . . . . . . .   5
     4.3.  YANG Semver Pattern . . . . . . . . . . . . . . . . . . .   5
     4.4.  Semantic Versioning Scheme for YANG Artifacts . . . . . .   6
       4.4.1.  Branching Limitations with YANG Semver  . . . . . . .   8
       4.4.2.  YANG Semver with submodules . . . . . . . . . . . . .   9
       4.4.3.  Examples for YANG semantic versions . . . . . . . . .   9
     4.5.  YANG Semantic Version Update Rules  . . . . . . . . . . .  11
     4.6.  Examples of the YANG Semver Label . . . . . . . . . . . .  13
       4.6.1.  Example Module Using YANG Semver  . . . . . . . . . .  13
       4.6.2.  Example of Package Using YANG Semver  . . . . . . . .  14
   5.  Import Module by YANG Semantic Version  . . . . . . . . . . .  15
     5.1.  The recommended-min-version Extension . . . . . . . . . .  15
     5.2.  Import by YANG Semantic Version Rules . . . . . . . . . .  16
   6.  Guidelines for Using Semver During Module Development . . . .  16
     6.1.  Pre-release Version Precedence  . . . . . . . . . . . . .  18
     6.2.  YANG Semver in IETF Modules . . . . . . . . . . . . . . .  18
       6.2.1.  Guidelines for IETF Module Development  . . . . . . .  18
       6.2.2.  Guidelines for Published IETF Modules . . . . . . . .  19
   7.  Updates to ietf-yang-library  . . . . . . . . . . . . . . . .  19
     7.1.  YANG library versioning augmentations . . . . . . . . . .  19
       7.1.1.  Advertising version . . . . . . . . . . . . . . . . .  20
   8.  YANG Modules  . . . . . . . . . . . . . . . . . . . . . . . .  20
   9.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .  26
   10. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . .  27
   11. Security Considerations . . . . . . . . . . . . . . . . . . .  27
   12. IANA Considerations . . . . . . . . . . . . . . . . . . . . .  27
     12.1.  YANG Module Registrations  . . . . . . . . . . . . . . .  28
     12.2.  Guidance for YANG Semver in IANA maintained YANG modules
            and submodules . . . . . . . . . . . . . . . . . . . . .  29
   13. References  . . . . . . . . . . . . . . . . . . . . . . . . .  29
     13.1.  Normative References . . . . . . . . . . . . . . . . . .  29

Clarke, et al.          Expires 5 September 2024                [Page 2]



Internet-Draft                 YANG Semver                    March 2024

     13.2.  Informative References . . . . . . . . . . . . . . . . .  30
   Appendix A.  Example IETF Module Development  . . . . . . . . . .  32
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  33

1.  Introduction

   [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
   concepts relating to modified rules for updating YANG modules and
   submodules, a means to signal when a new revision of a module or
   submodule has non-backwards-compatible (NBC) changes compared to its
   previous revision, and a scheme that uses the revision history as a
   lineage for determining from where a specific revision of a YANG
   module or submodule is derived.

   This document defines a YANG extension that tags a YANG artifact
   (i.e., YANG modules, YANG submodules, and YANG packages
   [I-D.ietf-netmod-yang-packages] ) with a version identifier that
   adheres to extended semantic versioning rules [SemVer].  The goal
   being to add a human readable version identifier that provides
   compatibility information for the YANG artifact without needing to
   compare or parse its body.  The version identifier and rules defined
   herein represent the RECOMMENDED approach to apply versioning to IETF
   YANG artifacts.  This document defines augmentations to ietf-yang-
   library to reflect the version of YANG modules within the module-set
   data.

   Note that a specific revision of the SemVer 2.0.0 specification is
   referenced here (from June 19, 2020) to provide an immutable version.
   This is because the 2.0.0 version of the specification has changed
   over time without any change to the semantic version itself.  In some
   cases the text has changed in non-backwards-compatible ways.

2.  Examples of How Versioning Is Applied To YANG Module Revisions

   The following diagram illustrates how the branched revision history
   and the YANG Semver version extension statement could be used:

   Example YANG module with branched revision history.

Clarke, et al.          Expires 5 September 2024                [Page 3]



Internet-Draft                 YANG Semver                    March 2024

          Module revision date      Example version identifier
            2019-01-01                 <- 1.0.0
                |
            2019-02-01                 <- 2.0.0
                |      \
            2019-03-01  \              <- 3.0.0
                |        \
                |       2019-04-01     <- 2.1.0
                |           |
            2019-05-01      |          <- 3.1.0
                            |
                        2019-06-01     <- 2.2.0

                                  Figure 1

   The tree diagram above illustrates how an example module’s revision
   history might evolve, over time.

3.  Terminology and Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   Additionally, this document uses the following terminology:

   *  YANG artifact: YANG modules, YANG submodules, and YANG packages
      [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
      the purposes of this document.

   *  SemVer: A version string that corresponds to the rules defined in
      [SemVer].  This specific camel-case notation is the one used by
      the SemVer 2.0.0 website and used within this document to
      distinguish between YANG Semver.

   *  YANG Semver: A version identifier that is consistent with the
      extended set of semantic versioning rules, based on [SemVer],
      defined within this document.

4.  YANG Semantic Versioning

   This section defines YANG Semantic Versioning, explains how it is
   used with YANG artifacts, and describes the rules associated with
   changing an artifact’s semantic version when its contents are
   updated.

Clarke, et al.          Expires 5 September 2024                [Page 4]



Internet-Draft                 YANG Semver                    March 2024

4.1.  Relationship Between SemVer and YANG Semver

   [SemVer] is completely compatible with YANG Semver in that a SemVer
   semantic version number is legal according to the YANG Semver rules
   (though the inverse is not necessarily true).  YANG Semver is a
   superset of the SemVer rules, and allows for limited branching within
   YANG artifacts.  If no branching occurs within a YANG artifact (i.e.,
   you do not use the compatibility modifiers described below), the YANG
   Semver version label will appear as a SemVer version number.

4.2.  YANG Semantic Version Extension

   The ietf-yang-semver module defines a "version" extension -- a
   substatement to a module or submodule’s "revision" statement -- that
   takes a YANG semantic version as its argument and specified the
   version for the given module or submodule.  The syntax for the YANG
   semantic version is defined in a typedef in the same module and
   described below.

4.3.  YANG Semver Pattern

   YANG artifacts that employ semantic versioning as defined in this
   document MUST use a version identifier that corresponds to the
   following pattern: ’X.Y.Z_COMPAT’.  Where:

   *  X, Y and Z are mandatory non-negative integers that are each less
      than or equal to 2147483647 (i.e., the maximum signed 32-bit
      integer value) and MUST NOT contain leading zeroes,

   *  The ’.’ is a literal period (ASCII character 0x2e),

   *  The ’_’ is an optional single literal underscore (ASCII character
      0x5f) and MUST only be present if the following COMPAT element is
      included,

   *  COMPAT, if specified, MUST be either the literal string
      "compatible" or the literal string "non_compatible".

Clarke, et al.          Expires 5 September 2024                [Page 5]



Internet-Draft                 YANG Semver                    March 2024

   Additionally, [SemVer] defines two specific types of metadata that
   may be appended to a semantic version string.  Pre-release metadata
   MAY be appended to a YANG Semver string after a trailing ’-’
   character.  Build metadata MAY be appended after a trailing ’+’
   character.  If both pre-release and build metadata are present, then
   build metadata MUST follow pre-release metadata.  While build
   metadata MUST be ignored when comparing YANG semantic versions, pre-
   release metadata MUST be used during module and submodule development
   as specified in Section 6.  Both pre-release and build metadata are
   allowed in order to support all the [SemVer] rules.  Thus, a version
   lineage that follows strict [SemVer] rules is allowed for a YANG
   artifact.

   The ietf-yang-semver module included in this document defines an
   extension to apply a YANG Semver identifier to a YANG artifact as
   well as a typedef that formally specifies the syntax of the YANG
   Semver.

4.4.  Semantic Versioning Scheme for YANG Artifacts

   This document defines the YANG semantic versioning scheme that is
   used for YANG artifacts.  The versioning identifier has the following
   properties:

   *  The YANG semantic versioning scheme is extended from version 2.0.0
      of the semantic versioning scheme defined at semver.org [SemVer]
      to cover the additional requirements for the management of YANG
      artifact lifecycles that cannot be addressed using the semver.org
      2.0.0 versioning scheme alone.

   *  Unlike the [SemVer] versioning scheme, the YANG semantic
      versioning scheme supports updates to older versions of YANG
      artifacts, to allow for bug fixes and enhancements to artifact
      versions that are not the latest.  However, it does not provide
      for the unlimited branching and updating of older revisions which
      are documented by the general rules in
      [I-D.ietf-netmod-yang-module-versioning].

   *  YANG artifacts that use the [SemVer] versioning scheme are fully
      compatible with implementations that understand the YANG semantic
      versioning scheme defined in this document.

   *  If updates are always restricted to the latest revision of the
      artifact only, then the version identifiers used by the YANG
      semantic versioning scheme are exactly the same as those defined
      by the [SemVer] versioning scheme.

Clarke, et al.          Expires 5 September 2024                [Page 6]



Internet-Draft                 YANG Semver                    March 2024

   Every YANG module and submodule versioned using the YANG semantic
   versioning scheme specifies the module’s or submodule’s semantic
   version as the argument to the ’ys:version’ statement.

   Because the rules put forth in
   [I-D.ietf-netmod-yang-module-versioning] are designed to work well
   with existing versions of YANG and allow for artifact authors to
   migrate to this scheme, it is not expected that all revisions of a
   given YANG artifact will have a semantic version identifier.  For
   example, the first revision of a module or submodule may have been
   produced before this scheme was available.

   YANG packages that make use of this YANG Semver will reflect that in
   the package metadata.

   As stated above, the YANG semantic version is expressed as a string
   of the form: ’X.Y.Z_COMPAT’.

   *  ’X’ is the MAJOR version.  Changes in the MAJOR version number
      indicate changes that are non-backwards-compatible to versions
      with a lower MAJOR version number.

   *  ’Y’ is the MINOR version.  Changes in the MINOR version number
      indicate changes that are backwards-compatible to versions with
      the same MAJOR version number, but a lower MINOR version number
      and no "_compatible" or "_non_compatible" modifier.

   *  ’Z’ is the PATCH version.  Changes in the PATCH version number can
      indicate an editorial change to the YANG artifact.  In conjunction
      with the ’_COMPAT’ modifier (see below) changes to ’Z’ may
      indicate a more substantive module change.  An editorial change is
      defined to be a change in the YANG artifact’s content that does
      not affect the semantic meaning or functionality provided by the
      artifact in any way.  Some examples include correcting a spelling
      mistake in the description of a leaf within a YANG module or
      submodule, non-significant whitespace changes (e.g., realigning
      description statements or changing indentation), or changes to
      YANG comments.  Note: restructuring how a module uses, or does not
      use, submodules is treated as an editorial level change on the
      condition that there is no change in the module’s semantic
      behavior due to the restructuring.

   *  ’_COMPAT’ is an additional modifier, unique to YANG Semver (i.e.,
      not valid in [SemVer] ), that indicates backwards-compatible, or
      non-backwards-compatible changes relative to versions with the
      same MAJOR and MINOR version numbers, but lower PATCH version
      number, depending on what form modifier ’_COMPAT’ takes:

Clarke, et al.          Expires 5 September 2024                [Page 7]



Internet-Draft                 YANG Semver                    March 2024

      -  If the modifier string is absent, the change represents an
         editorial change.

      -  If, however, the modifier string is present, the meaning is
         described below:

      -  "_compatible" - the change represents a backwards-compatible
         change

      -  "_non_compatible" - the change represents a non-backwards-
         compatible change

   The ’_COMPAT’ modifier string is "sticky".  Once a revision of a
   module has a modifier in the version identifier, then all subsequent
   modules in that branch (i.e., those with the same X.Y version digits)
   will also have a modifier.  The modifier can change from
   "_compatible" to "_non_compatible" in a subsequent version, but the
   modifier MUST NOT change from "_non_compatible" to "_compatible" and
   MUST NOT be removed.  The persistence of the "_non_compatible"
   modifier ensures that comparisons of versions do not give the false
   impression of compatibility between two potentially non-compatible
   versions.  If "_non_compatible" was removed, for example between
   versions "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply
   an editorial change), then comparing versions "3.3.3" to "3.0.0"
   would look like they are backwards compatible when they are not
   (since "3.3.2_non_compatible" was on the same MAJOR.MINOR branch and
   introduced a non-backwards-compatible change).

   The YANG artifact name and YANG semantic version uniquely identify a
   revision of said artifact.  There MUST NOT be multiple instances of a
   YANG artifact definition with the same name and YANG semantic version
   but different content (and in the case of modules and submodules,
   different revision dates).

   There MUST NOT be multiple versions of a YANG artifact that have the
   same MAJOR, MINOR and PATCH version numbers, but different patch
   modifier strings.  E.g., artifact version "1.2.3_non_compatible" MUST
   NOT be defined if artifact version "1.2.3" has already been defined.

4.4.1.  Branching Limitations with YANG Semver

   YANG artifacts that use the YANG Semver version scheme MUST ensure
   that two artifacts with the same MAJOR version number and no
   _compatible or _non_compatible modifiers are backwards compatible.
   Therefore, certain branching schemes cannot be used with YANG Semver.
   For example, the following branching approach using the following
   YANG Semver identifiers is not supported:

Clarke, et al.          Expires 5 September 2024                [Page 8]



Internet-Draft                 YANG Semver                    March 2024

         3.5.0 -- 3.6.0 (add leaf foo)
           |
           |
         3.20.0 (added leaf bar)

   In this case, given only the YANG Semver identifiers 3.6.0 and
   3.20.0, one would assume that 3.20.0 is backwards compatible with
   3.6.0.  But in the illegal example above, 3.20.0 is not backwards
   compatible with 3.6.0 since 3.20.0 does not contain the leaf foo.

   Note that this type of branching, where two versions on the same
   branch have different backwards compatible changes is allowed in
   [I-D.ietf-netmod-yang-module-versioning].

4.4.2.  YANG Semver with submodules

   YANG Semver MAY be used to version submodules.  Submodule version are
   separate of any version on the including module, but if a submodule
   has changed, then the version of the including module MUST also be
   updated.

   The rules for determining the version change of a submodule are the
   same as those defined in Section 4.3 and Section 4.4 as applied to
   YANG modules, except they only apply to the part of the module schema
   defined within the submodule’s file.

   One interesting case is moving definitions from one submodule to
   another in a way that does not change the resulting schema of the
   including module.  In this case:

   1.  The including module has editorial changes

   2.  The submodule with the schema definition removed has non-
       backwards-compatible changes

   3.  The submodule with the schema definitions added has backwards-
       compatible changes

   Note that the meaning of a submodule may change drastically despite
   having no changes in content or revision due to changes in other
   submodules belonging to the same module (e.g. groupings and typedefs
   declared in one submodule and used in another).

4.4.3.  Examples for YANG semantic versions

   The following diagram and explanation illustrate how YANG semantic
   versions work.

Clarke, et al.          Expires 5 September 2024                [Page 9]



Internet-Draft                 YANG Semver                    March 2024

   YANG Semantic versions for an example module:

            0.1.0
              |
            0.2.0
              |
            1.0.0
              |
            1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
              |
            1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
              |  \
            2.0.0 \
              |    \--> 1.3.0 -> 1.3.1_non_compatible
            3.0.0         |
              |         1.4.0
            3.1.0

   The tree diagram above illustrates how the version history might
   evolve for an example module.  The tree diagram only shows the
   branching relationships between the versions.  It does not describe
   the chronology of the versions (i.e.  when in time each version was
   published relative to the other versions).

   The following description lists an example of what the chronological
   order of the versions could look like, from oldest version to newest:

      0.1.0 - first pre-release module version

      0.2.0 - second pre-release module version (with NBC changes)

      1.0.0 - first release (may have NBC changes from 0.2.0)

      1.1.0 - added new functionality, leaf "foo" (BC)

      1.2.0 - added new functionality, leaf "baz" (BC)

      2.0.0 - change existing model for performance reasons, e.g. re-key
      list (NBC)

      1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

      1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
      implementing "baz" from 1.2.0.  This revision was created after
      1.2.0 otherwise it may have been released as 1.2.0.  (BC)

      3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
      "wibble"; (NBC)

Clarke, et al.          Expires 5 September 2024               [Page 10]



Internet-Draft                 YANG Semver                    March 2024

      1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
      (NBC)

      1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
      (NBC)

      1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
      due to model changes (NBC)

      1.4.0 - introduce new leaf "ghoti" (BC)

      3.1.0 - introduce new leaf "wobble" (BC)

      1.2.2_non_compatible - backport "wibble".  This is a BC change but
      "non_compatible" modifier is sticky.  (BC)

4.5.  YANG Semantic Version Update Rules

   When a new version of an artifact is produced, then the following
   rules define how the YANG semantic version for the new artifact is
   calculated, based on the changes between the two artifact versions,
   and the YANG semantic version of the original artifact from which the
   changes are derived.

   The following four rules specify the RECOMMENDED, and REQUIRED
   minimum, update to a YANG semantic version:

   1.  If an artifact is being updated in a non-backwards-compatible
       way, then the artifact version
       "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
       "X+1.0.0" unless that version has already been used for this
       artifact but with different content, in which case the artifact
       version "X.Y.Z+1_non_compatible" SHOULD be used instead.

   2.  If an artifact is being updated in a backwards-compatible way,
       then the next version number depends on the format of the current
       version number:

       i    "X.Y.Z" - the artifact version SHOULD be updated to
            "X.Y+1.0", unless that version has already been used for
            this artifact but with different content, when the artifact
            version SHOULD be updated to "X.Y.Z+1_compatible" instead.

       ii   "X.Y.Z_compatible" - the artifact version SHOULD be updated
            to "X.Y.Z+1_compatible".

       iii  "X.Y.Z_non_compatible" - the artifact version SHOULD be
            updated to "X.Y.Z+1_non_compatible".

Clarke, et al.          Expires 5 September 2024               [Page 11]



Internet-Draft                 YANG Semver                    March 2024

   3.  If an artifact is being updated in an editorial way, then the
       next version identifier depends on the format of the current
       version identifier:

       i    "X.Y.Z" - the artifact version SHOULD be updated to
            "X.Y.Z+1"

       ii   "X.Y.Z_compatible" - the artifact version SHOULD be updated
            to "X.Y.Z+1_compatible".

       iii  "X.Y.Z_non_compatible" - the artifact version SHOULD be
            updated to "X.Y.Z+1_non_compatible".

   4.  YANG artifact semantic version identifiers beginning with 0,
       i.e., "0.X.Y", are regarded as pre-release definitions and need
       not follow the rules above.  Either the MINOR or PATCH version
       numbers may be updated, regardless of whether the changes are
       non-backwards-compatible, backwards-compatible, or editorial.
       See Section 6 for more details on using this notation during
       module and submodule development.

   5.  Additional pre-release rules for modules that have had at least
       one release are specified in Section 6.

   Although artifacts SHOULD be updated according to the rules above,
   which specify the recommended (and minimum required) update to the
   version identifier, the following rules MAY be applied when choosing
   a new version identifier:

   1.  An artifact author MAY update the version identifier with a more
       significant update than described by the rules above.  For
       example, an artifact could be given a new MAJOR version number
       (i.e., X+1.0.0), even though no non-backwards-compatible changes
       have occurred, or an artifact could be given a new MINOR version
       number (i.e., X.Y+1.0) even if the changes were only editorial.

   2.  An artifact author MAY skip versions.  That is, an artifact’s
       version history could be 1.0.0, 1.1.0, and 1.3.0 where 1.2.0 is
       skipped.

   Although YANG Semver always indicates when a non-backwards-
   compatible, or backwards-compatible change may have occurred to a
   YANG artifact, it does not guarantee that such a change has occurred,
   or that consumers of that YANG artifact will be impacted by the
   change.  Hence, tooling, e.g.,
   [I-D.ietf-netmod-yang-schema-comparison], also plays an important
   role for comparing YANG artifacts and calculating the likely impact
   from changes.

Clarke, et al.          Expires 5 September 2024               [Page 12]



Internet-Draft                 YANG Semver                    March 2024

   [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
   backwards-compatible" extension statement to indicate where non-
   backwards-compatible changes have occurred in the module revision
   history.  If a revision entry in a module’s revision history includes
   the "rev:non-backwards-compatible" statement then that MUST be
   reflected in any YANG semantic version associated with that revision.
   However, the reverse does not necessarily hold, i.e., if the MAJOR
   version has been incremented it does not necessarily mean that a
   "rev:non-backwards-compatible" statement would be present.

4.6.  Examples of the YANG Semver Label

4.6.1.  Example Module Using YANG Semver

   Below is a sample YANG module that uses YANG Semver based on the
   rules defined in this document.

     module example-versioned-module {
       yang-version 1.1;
       namespace "urn:example:versioned:module";
       prefix "exvermod";

       import ietf-yang-revisions { prefix "rev"; }
       import ietf-yang-semver { prefix "ys"; }

       description
         "to be completed";

       revision 2017-08-30 {
         description "Backport ’wibble’ leaf";
         ys:version 1.2.2_non_compatible;
       }

       revision 2017-07-30 {
         description "Rename ’baz’ to ’bar’";
         ys:version 1.2.1_non_compatible;
         rev:non-backwards-compatible;
       }

       revision 2017-04-20 {
         description "Add new functionality, leaf ’baz’";
         ys:version 1.2.0;
       }

       revision 2017-04-03 {
         description "Add new functionality, leaf ’foo’";
         ys:version 1.1.0;
       }

Clarke, et al.          Expires 5 September 2024               [Page 13]



Internet-Draft                 YANG Semver                    March 2024

       revision 2017-02-07 {
         description "First release version.";
         ys:version 1.0.0;
       }

       // Note: YANG Semver rules do not apply to 0.X.Y labels.
       // The following pre-release revision statements would not
       // appear in any final published version of a module. They
       // are removed when the final version is published.
       // During the pre-release phase of development, only a
       // single one of these revision statements would appear

       // revision 2017-01-30 {
       //   description "NBC changes to initial revision";
       //   ys:version 0.2.0;
       //   rev:non-backwards-compatible; // optional
       //                         // (theoretically no
       //                         // ’previous released version’)
       // }

       // revision 2017-01-26 {
       //   description "Initial module version";
       //   ys:version 0.1.0;
       // }

       //YANG module definition starts here
     }

4.6.2.  Example of Package Using YANG Semver

   Below is an example YANG package that uses the YANG Semver version
   identifier based on the rules defined in this document.  Note: ’\’
   line wrapping per [RFC8792].

Clarke, et al.          Expires 5 September 2024               [Page 14]



Internet-Draft                 YANG Semver                    March 2024

   {
     "ietf-yang-instance-data:instance-data-set": {
       "name": "example-yang-pkg",
       "content-schema": {
         "module": "ietf-yang-packages@2022-03-04"
       },
       "timestamp": "2022-12-06T17:00:38Z",
       "description":  ["Example of a Package  \
          using YANG Semver"],
       "content-data": {
         "ietf-yang-packages:packages": {
           "package": [
             {
               "name": "example-yang-pkg",
               "version": "1.3.1",
               ...
             }
           ]
         }
       }
     }
   }

                                  Figure 2

5.  Import Module by YANG Semantic Version

   [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
   done based on the earliest supported date and later using the
   rev:recommended-min-date extension.  This section defines a similar
   extension for controlling import by YANG semantic version, as well as
   the rules for how imports are resolved.

5.1.  The recommended-min-version Extension

   The ietf-yang-semver module defines a "recommended-min-version"
   extension -- a substatement to the "import" statement -- that takes a
   YANG semantic version as its argument and specifies that the minimum
   version of the associated module being imported SHOULD be greater
   than or equal to the specified value.  The specific conditions for
   determining if a module’s version is greater than or equal is defined
   in Section 5.2 below.  Multiple recommended-min-version statements
   MAY be specified.  If there are multiple recommended-min-version
   statements, they are treated as a logical OR.  Removing recommended-
   min-version statements is considered a backwards compatible change.
   An example use is:

Clarke, et al.          Expires 5 September 2024               [Page 15]



Internet-Draft                 YANG Semver                    March 2024

           import example-module {
               ys:recommended-min-version 3.0.0;
           }

5.2.  Import by YANG Semantic Version Rules

   A module to be imported is considered viable with recommended-min-
   version if it meets one of the following conditions:

   1.  Has the same MAJOR and MINOR version numbers and same or greater
       PATCH number.

   2.  Has the same MAJOR version number and greater MINOR number.  In
       this case the PATCH number is ignored.

   3.  Has a greater MAJOR version number.  In this case MINOR and PATCH
       numbers are ignored.

   In all cases, the "_compatible" and "_non_compatible" version
   modifiers are ignored.

   If the recommended-min-version is specified as 3.1.0, the following
   examples would be viable:

      3.1.1 (by condition 1 above)

      3.2.0 (by condition 2 above)

      4.1.2 (by condition 3 above)

      3.1.1_compatible (by condition 1 above, noting that modifiers are
      ignored)

      3.1.2_non_compatible (by condition 1 above, noting that modifiers
      are ignored)

   If an import by recommended-min-version cannot locate a module with a
   version that is viable according to the conditions above, the YANG
   compiler SHOULD emit a warning, and then continue to resolve the
   import based on established [RFC7950] rules.

6.  Guidelines for Using Semver During Module Development

   This section and the IETF-specific sub-section below provides YANG
   Semver-specific guidelines to consider when developing new YANG
   modules.  As such this section updates [RFC8407].

Clarke, et al.          Expires 5 September 2024               [Page 16]



Internet-Draft                 YANG Semver                    March 2024

   Development of a brand new YANG module or submodule outside of the
   IETF that uses the YANG Semver versioning scheme SHOULD begin with a
   0 for the MAJOR version component.  This allows the module or
   submodule to disregard strict SemVer rules with respect to non-
   backwards-compatible changes during its initial development.
   However, module or submodule developers MAY choose to use the SemVer
   pre-release syntax instead with a 1 for the MAJOR version number.
   For example, an initial module or submodule version might be either
   0.0.1 or 1.0.0-alpha.1.  If the authors choose to use the 0 MAJOR
   version number scheme, they MAY switch to the pre-release scheme with
   a MAJOR version number of 1 when the module or submodule is nearing
   initial release (e.g., a module’s or submodule’s version may
   transition from 0.3.0 to 1.0.0-beta.1 to indicate it is more mature
   and ready for testing).

   When using pre-release notation, the format MUST include at least one
   alphabetic component and MUST end with a ’.’ or ’-’ and then one or
   more digits.  These alphanumeric components will be used when
   deciding pre-release precedence.  The following are examples of valid
   pre-release versions:

      1.0.0-alpha.1

      1.0.0-alpha.3

      2.1.0-beta.42

      3.0.0-202007.rc.1

   When developing a new revision of an existing module or submodule
   using the YANG Semver versioning scheme, the intended target semantic
   version MUST be used along with pre-release notation.  For example,
   if a released module or submodule which has a current version of
   1.0.0 is being modified with the intent to make non-backwards-
   compatible changes, the first development MAJOR version component
   must be 2 with some pre-release notation such as -alpha.1, making the
   version 2.0.0-alpha.1.  That said, every publicly available release
   of a module or submodule MUST have a unique YANG Semver identifier
   (where a publicly available release is one that could be implemented
   by a vendor or consumed by an end user).  Therefore, it may be
   prudent to include the year or year and month development began
   (e.g., 2.0.0-201907-alpha.1).  As a module or submodule undergoes
   development, it is possible that the original intent changes.  For
   example, a 1.0.0 version of a module or submodule that was destined
   to become 2.0.0 after a development cycle may have had a scope change
   such that the final version has no non-backwards-compatible changes
   and becomes 1.1.0 instead.  This change is acceptable to make during
   the development phase so long as pre-release notation is present in

Clarke, et al.          Expires 5 September 2024               [Page 17]



Internet-Draft                 YANG Semver                    March 2024

   both versions (e.g., 2.0.0-alpha.3 becomes 1.1.0-alpha.4).  However,
   on the next development cycle (after 1.1.0 is released), if again the
   new target release is 2.0.0, new pre-release components must be used
   such that every version for a given module or submodule MUST be
   unique throughout its entire lifecycle (e.g., the first pre-release
   version might be 2.0.0-202005-alpha.1 if keeping the same year and
   month notation mentioned above).

6.1.  Pre-release Version Precedence

   As a module or submodule is developed, the scope of the work may
   change.  That is, while a released module or submodule with version
   1.0.0 is initially intended to become 2.0.0 in its next released
   version, the scope of work may change such that the final version is
   1.1.0.  During the development cycle, the pre-release versions could
   move from 2.0.0-some-pre-release-tag to 1.1.0-some-pre-release-tag.
   This downwards changing of version identifiers makes it difficult to
   evaluate semantic version rules between pre-release versions.
   However, taken independently, each pre-release version can be
   compared to the previously ratified version (e.g., 1.1.0-some-pre-
   release-tag and 2.0.0-some-pre-release-tag can each be compared to
   1.0.0).  Module and submodule developers SHOULD maintain only one
   revision statement in a pre-released module or submodule that
   reflects the latest revision.  IETF authors MAY choose to include an
   appendix in the associated draft to track overall changes to the
   module or submodule.

6.2.  YANG Semver in IETF Modules

   All published IETF modules and submodules MUST use YANG semantic
   versions in their revisions.

   Development of a new module or submodule within the IETF SHOULD begin
   with the 0 MAJOR number scheme as described above.  When revising an
   existing IETF module or submodule, the version MUST use the target
   (i.e., intended) MAJOR and MINOR version components with a 0 PATCH
   version number.  If the intended RFC release will be non-backwards-
   compatible with the current RFC release, the MINOR version number
   MUST be 0.

6.2.1.  Guidelines for IETF Module Development

   All IETF modules and submodules in development MUST use the whole
   document name as a pre-release version identifier, including the
   current document revision.  For example, if a module or submodule
   which is currently released at version 1.0.0 is being revised to
   include non-backwards-compatible changes in draft-user-netmod-foo,
   its development versions MUST include 2.0.0-draft-user-netmod-foo

Clarke, et al.          Expires 5 September 2024               [Page 18]



Internet-Draft                 YANG Semver                    March 2024

   followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
   foo-02).  This will ensure each pre-release version is unique across
   the lifecycle of the module or submodule.  Even when using the 0
   MAJOR version for initial module or submodule development (where
   MINOR and PATCH can change), appending the draft name as a pre-
   release component helps to ensure uniqueness when there are perhaps
   multiple, parallel efforts creating the same module or submodule.

   Some draft revisions may not include an update to the YANG modules or
   submodules contained in the draft.  In that case, those modules or
   submodules that are not updated do not not require a change to their
   versions.  Updates to the YANG Semver version MUST only be done when
   the revision of the module changes.

   See Appendix A for a detailed example of IETF pre-release versions.

6.2.2.  Guidelines for Published IETF Modules

   For IETF YANG modules and submodules that have already been
   published, versions MUST be retroactively applied to all existing
   revisions when the next new revision is created, starting at version
   "1.0.0" for the initial published revision, and then incrementing
   according to the YANG Semver version rules specified in Section 4.5.
   For example, if a module or submodule started out in the pre-NMDA
   ([RFC8342] ) world, and then had NMDA support added without removing
   any legacy "state" branches -- and you are looking to add additional
   new features -- a sensible choice for the target YANG Semver would be
   1.2.0 (since 1.0.0 would have been the initial, pre-NMDA release, and
   1.1.0 would have been the NMDA revision).

7.  Updates to ietf-yang-library

   This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
   to clarify how ambiguous module imports are resolved.  It also
   defines the YANG module, ietf-yang-library-semver, that augments YANG
   library [RFC8525] with a version leaf for modules and submodules.

7.1.  YANG library versioning augmentations

   The "ietf-yang-library-semver" YANG module has the following
   structure (using the notation defined in [RFC8340]):

Clarke, et al.          Expires 5 September 2024               [Page 19]



Internet-Draft                 YANG Semver                    March 2024

   module: ietf-yang-library-semver

     augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
       +--ro version?   ys:version
     augment /yanglib:yang-library/yanglib:module-set/yanglib:module
               /yanglib:submodule:
       +--ro version?   ys:version
     augment /yanglib:yang-library/yanglib:module-set
               /yanglib:import-only-module:
       +--ro version?   ys:version
     augment /yanglib:yang-library/yanglib:module-set
               /yanglib:import-only-module/yanglib:submodule:
       +--ro version?   ys:version

                                  Figure 3

7.1.1.  Advertising version

   The ietf-yang-library-semver YANG module augments the "module" and
   "submodule" lists in ietf-yang-library with "version" leafs to
   optionally declare the version identifier associated with each module
   and submodule.

8.  YANG Modules

   This YANG module contains the typedef for the YANG semantic version
   and the identity to signal its use.

   <CODE BEGINS> file "ietf-yang-semver@2024-03-01.yang"
   module ietf-yang-semver {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
     prefix ys;

     organization
       "IETF NETMOD (Network Modeling) Working Group";
     contact
       "WG Web:   <http://tools.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Author:   Joe Clarke
                  <mailto:jclarke@cisco.com>
        Author:   Robert Wilton
                  <mailto:rwilton@cisco.com>
        Author:   Reshad Rahman
                  <mailto:reshad@yahoo.com>
        Author:   Balazs Lengyel
                  <mailto:balazs.lengyel@ericsson.com>

Clarke, et al.          Expires 5 September 2024               [Page 20]



Internet-Draft                 YANG Semver                    March 2024

        Author:   Jason Sterne
                  <mailto:jason.sterne@nokia.com>
        Author:   Benoit Claise
                  <mailto:benoit.claise@huawei.com>";
     description
       "This module provides type and grouping definitions for YANG
        packages.

        Copyright (c) 2024 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Revised BSD License
        set forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.

        This version of this YANG module is part of RFC XXXX; see
        the RFC itself for full legal notices.";

     // RFC Ed.: update the date below with the date of RFC publication
     // and remove this note.
     // RFC Ed.: replace XXXX with actual RFC number and remove this
     // note.
     // RFC Ed. update the ys:version to "1.0.0".

     revision 2024-03-01 {
       ys:version "1.0.0-draft-ietf-netmod-yang-semver-13";
       description
         "Initial revision";
       reference
         "RFC XXXX: YANG Semantic Versioning.";
     }

     /*
      * Extensions
      */

     extension version {
       argument yang-semantic-version;
       description

Clarke, et al.          Expires 5 September 2024               [Page 21]



Internet-Draft                 YANG Semver                    March 2024

         "The version extension can be used to provide an additional
          identifier associated with a module or submodule
          revision.

          The format of the version extension argument MUST conform
          to the ’version’ typedef defined in this module.

          The statement MUST only be a substatement of the revision
          statement.  Zero or one version statements per parent
          statement are allowed.  No substatements for this extension
          have been standardized.

          Versions MUST be unique amongst all revisions of a
          module or submodule.

          Adding a version is a backwards-compatible
          change.  Changing or removing an existing version in
          the revision history is a non-backwards-compatible
          change, because it could impact any references to that
          version.";
       reference
         "XXXX: YANG Semantic Versioning;
          Section 3.2, YANG Semantic Version Extension";
     }

     extension recommended-min-version {
       argument yang-semantic-version;
       description
         "Recommends the versions of the module that may be imported to
          one that is greater than or equal to the specified version.

          The format of the recommended-min-version extension argument
          MUST conform to the ’version’ typedef defined in this module.

          The statement MUST only be a substatement of the import
          statement.  Zero, one or more ’recommended-min-version’
          statements per parent statement are allowed.  No
          substatements for this extension have been
          standardized.

          If specified multiple times, then any module revision that
          satisfies at least one of the ’recommended-min-version’
          statements is an acceptable recommended version for
          import.

          A particular version of an imported module adheres to an
          import’s ’recommended-min-version’ extension statement if one
          of the following conditions are met:

Clarke, et al.          Expires 5 September 2024               [Page 22]



Internet-Draft                 YANG Semver                    March 2024

          * Has the same MAJOR and MINOR version numbers and same or
            greater PATCH number.
          * Has the same MAJOR version number and greater MINOR number.
            In this case the PATCH number is ignored.
          * Has a greater MAJOR version number.  In this case
            MINOR and PATCH numbers are ignored.

          Adding, removing or updating a ’recommended-min-version’
          statement to an import is a backwards-compatible change.";
       reference
         "XXXX: YANG Semantic Versioning; Section 4,
          Import Module by Semantic Version";
     }

     /*
      * Typedefs
      */

     typedef version {
       type string {
         pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
               + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
       }
       description
         "Represents a YANG semantic version.  The rules governing the
          use of this version identifier are defined in the
          reference for this typedef.";
       reference
         "RFC XXXX: YANG Semantic Versioning.";
     }
   }
   <CODE ENDS>

   This YANG module contains the augmentations to the ietf-yang-library.

   <CODE BEGINS> file "ietf-yang-library-semver@2024-03-02.yang"
   module ietf-yang-library-semver {
     yang-version 1.1;
     namespace
       "urn:ietf:params:xml:ns:yang:ietf-yang-library-semver";
     prefix yl-semver;

     import ietf-yang-semver {
       prefix ys;
       reference
         "XXXX: YANG Semantic Versioning";
     }
     import ietf-yang-library {

Clarke, et al.          Expires 5 September 2024               [Page 23]



Internet-Draft                 YANG Semver                    March 2024

       prefix yanglib;
       reference
         "RFC 8525: YANG Library";
     }

     organization
       "IETF NETMOD (Network Modeling) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
        WG List:  <mailto:netmod@ietf.org>

        Author:   Joe Clarke
                  <mailto:jclarke@cisco.com>

        Author:   Reshad Rahman
                  <mailto:reshad@yahoo.com>

        Author:   Robert Wilton
                  <mailto:rwilton@cisco.com>

        Author:   Balazs Lengyel
                  <mailto:balazs.lengyel@ericsson.com>

        Author:   Jason Sterne
                  <mailto:jason.sterne@nokia.com>";
     description
       "This module contains augmentations to YANG Library to add module
        and submodule level version identifiers.

        Copyright (c) 2024 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Revised BSD License
        set forth in Section 4.c of the IETF Trust’s Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX; see
        the RFC itself for full legal notices.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

Clarke, et al.          Expires 5 September 2024               [Page 24]



Internet-Draft                 YANG Semver                    March 2024

     // RFC Ed.: update the date below with the date of RFC publication
     // and remove this note.
     // RFC Ed.: replace XXXX (including in the imports above) with
     // actual RFC number and remove this note.
     // RFC Ed.: please replace ys:version with 1.0.0 and
     // remove this note.

     revision 2024-03-02 {
       ys:version "1.0.0-draft-ietf-netmod-yang-semver-14";
       description
         "Initial revision";
       reference
         "XXXX: YANG Semantic Versioning";
     }

     // library 1.0 modules-state is not augmented with version

     augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
       description
         "Add a version to module information";
       leaf version {
         type ys:version;
         description
           "The version associated with this module revision.
            The value MUST match the version value in the
            specific revision of the module loaded in this module-set.";
         reference
           "XXXX: YANG Semantic Versioning;
            Section 7.1.1, Advertising version";
       }
     }

     augment
       "/yanglib:yang-library/yanglib:module-set/yanglib:module/"
     + "yanglib:submodule" {
       description
         "Add a version to submodule information";
       leaf version {
         type ys:version;
         description
           "The version associated with this submodule revision.
            The value MUST match the version value in the
            specific revision of the submodule included by the module
            loaded in this module-set.";
         reference
           "XXXX: YANG Semantic Versioning;
            Section 7.1.1, Advertising version";
       }

Clarke, et al.          Expires 5 September 2024               [Page 25]



Internet-Draft                 YANG Semver                    March 2024

     }

     augment "/yanglib:yang-library/yanglib:module-set/"
           + "yanglib:import-only-module" {
       description
         "Add a version to module information";
       leaf version {
         type ys:version;
         description
           "The version associated with this module revision.
            The value MUST match the version value in the
            specific revision of the module included in this
            module-set.";
         reference
           "XXXX: YANG Semantic Versioning;
            Section 7.1.1, Advertising version";
       }
     }

     augment "/yanglib:yang-library/yanglib:module-set/"
           + "yanglib:import-only-module/yanglib:submodule" {
       description
         "Add a version to submodule information";
       leaf version {
         type ys:version;
         description
           "The version associated with this submodule revision.
            The value MUST match the version value in the specific
            revision of the submodule included by the import-only-module
            loaded in this module-set.";
         reference
           "XXXX: Updated YANG Module Revision Handling;
            Section 7.1.1, Advertising version";
       }
     }
   }
   <CODE ENDS>

9.  Contributors

   The following people made substantial contributions to this document:

     Bo Wu
     lana.wubo@huawei.com

     Jan Lindblad
     jlindbla@cisco.com

Clarke, et al.          Expires 5 September 2024               [Page 26]



Internet-Draft                 YANG Semver                    March 2024

                                  Figure 4

10.  Acknowledgments

   This document grew out of the YANG module versioning design team that
   started after IETF 101.  The team consists of the following members
   whom have worked on the YANG versioning project: Balazs Lengyel,
   Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason Sterne, Joe
   Clarke, Juergen Schoenwaelder, Mahesh Jethanandani, Michael
   (Wangzitao), Per Andersson, Qin Wu, Reshad Rahman, Tom Hill, and Rob
   Wilton.

   The initial revision of this document was refactored and built upon
   [I-D.clacla-netmod-yang-model-update].  We would like the thank Kevin
   D’Souza for his initial work in this problem space.

   Discussions on the use of SemVer for YANG versioning has been held
   with authors of the OpenConfig YANG models based on their own
   [openconfigsemver].  We would like thank both Anees Shaikh and Rob
   Shakir for their input into this problem space.

   We would also like to thank Joseph Donahue from the SemVer.org
   project for his input on SemVer use and overall document readability.

11.  Security Considerations

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The NETCONF access control model [RFC8341] provides the means to
   restrict access for particular NETCONF or RESTCONF users to a
   preconfigured subset of all available NETCONF or RESTCONF protocol
   operations and content.

   That said, the YANG module in this document does not define any
   writeable nodes.  The extensions defined are only used to document
   YANG artifacts.

12.  IANA Considerations

Clarke, et al.          Expires 5 September 2024               [Page 27]



Internet-Draft                 YANG Semver                    March 2024

12.1.  YANG Module Registrations

   This document requests IANA to register URIs in the "IETF XML
   Registry" [RFC3688].  Following the format in RFC 3688, the following
   registrations are requested.

      URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

      Registrant Contact: The IESG.

      XML: N/A, the requested URI is an XML namespace.

      URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-semver

      Registrant Contact: The IESG.

      XML: N/A, the requested URI is an XML namespace.

   The following YANG modules are requested to be registered in the
   "IANA Module Names" [RFC6020].  Following the format in RFC 6020, the
   following registrations are requested:

   The ietf-yang-semver module:

      Name: ietf-yang-semver

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

      Prefix: ys

      Reference: [RFCXXXX]

   The ietf-yang-library-semver module:

      Name: ietf-yang-library-semver

      XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
      semver

      Prefix: yl-semver

      Reference: [RFCXXXX]

Clarke, et al.          Expires 5 September 2024               [Page 28]



Internet-Draft                 YANG Semver                    March 2024

12.2.  Guidance for YANG Semver in IANA maintained YANG modules and
       submodules

   Note for IANA (to be removed by the RFC editor): Please check that
   the registries and IANA YANG modules and submodules are referenced in
   the appropriate way.

   IANA is responsible for maintaining and versioning some YANG modules
   and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
   routing-types.yang [RoutingTypesYang].

   In addition to following the rules specified in the IANA
   Considerations section of [I-D.ietf-netmod-yang-module-versioning],
   IANA maintained YANG modules and submodules MUST also include a YANG
   Semver version identifier for all new revisions, as defined in
   Section 4.

   The YANG Semver version associated with the new revision MUST follow
   the rules defined in Section 4.5.

   Note: For IANA maintained YANG modules and submodules that have
   already been published, versions MUST be retroactively applied to all
   existing revisions when the next new revision is created, starting at
   version "1.0.0" for the initial published revision, and then
   incrementing according to the YANG Semver rules specified in
   Section 4.5.

   Most changes to IANA maintained YANG modules and submodules are
   expected to be backwards-compatible changes and classified as MINOR
   version changes.  The PATCH version may be incremented instead when
   only editorial changes are made, and the MAJOR version would be
   incremented if non-backwards-compatible changes are made.

   Given that IANA maintained YANG modules are versioned with a linear
   history, it is anticipated that it should not be necessary to use the
   "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
   version element.

13.  References

13.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

Clarke, et al.          Expires 5 September 2024               [Page 29]



Internet-Draft                 YANG Semver                    March 2024

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8407]  Bierman, A., "Guidelines for Authors and Reviewers of
              Documents Containing YANG Data Models", BCP 216, RFC 8407,
              DOI 10.17487/RFC8407, October 2018,
              <https://www.rfc-editor.org/info/rfc8407>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8525]  Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
              and R. Wilton, "YANG Library", RFC 8525,
              DOI 10.17487/RFC8525, March 2019,
              <https://www.rfc-editor.org/info/rfc8525>.

   [I-D.ietf-netmod-yang-module-versioning]
              Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
              Sterne, "Updated YANG Module Revision Handling", Work in
              Progress, Internet-Draft, draft-ietf-netmod-yang-module-
              versioning-11, 1 March 2024,
              <https://datatracker.ietf.org/api/v1/doc/document/draft-
              ietf-netmod-yang-module-versioning/>.

13.2.  Informative References

   [I-D.clacla-netmod-yang-model-update]
              Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
              YANG Module Update Procedure", Work in Progress, Internet-
              Draft, draft-clacla-netmod-yang-model-update-06, 2 July
              2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
              netmod-yang-model-update-06>.

Clarke, et al.          Expires 5 September 2024               [Page 30]



Internet-Draft                 YANG Semver                    March 2024

   [I-D.ietf-netmod-yang-packages]
              Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
              "YANG Packages", Work in Progress, Internet-Draft, draft-
              ietf-netmod-yang-packages-03, 4 March 2022,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-packages-03>.

   [I-D.ietf-netmod-yang-schema-comparison]
              Andersson, P. and R. Wilton, "YANG Schema Comparison",
              Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
              schema-comparison-02, 14 March 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              yang-schema-comparison-02>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

Clarke, et al.          Expires 5 September 2024               [Page 31]



Internet-Draft                 YANG Semver                    March 2024

   [RFC8792]  Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
              "Handling Long Lines in Content of Internet-Drafts and
              RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
              <https://www.rfc-editor.org/info/rfc8792>.

   [openconfigsemver]
              "Semantic Versioning for Openconfig Models",
              <http://www.openconfig.net/docs/semver/>.

   [SemVer]   "Semantic Versioning 2.0.0 (text from June 19, 2020)",
              <https://github.com/semver/semver/
              blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

   [IfTypeYang]
              "iana-if-type YANG Module",
              <https://www.iana.org/assignments/iana-if-type/iana-if-
              type.xhtml>.

   [RoutingTypesYang]
              "iana-routing-types YANG Module",
              <https://www.iana.org/assignments/iana-routing-types/iana-
              routing-types.xhtml>.

Appendix A.  Example IETF Module Development

   Assume a new YANG module is being developed in the netmod working
   group in the IETF.  Initially, this module is being developed in an
   individual internet draft, draft-jdoe-netmod-example-module.  The
   following represents the initial version tree (i.e., value of
   ys:version) of the module as it’s being initially developed.

   Version lineage for initial module development:

         0.0.1-draft-jdoe-netmod-example-module-00
           |
         0.1.0-draft-jdoe-netmod-example-module-01
           |
         0.2.0-draft-jdoe-netmod-example-module-02
           |
         0.2.1-draft-jdoe-netmod-example-module-03

   At this point, development stabilizes, and the workgroup adopts the
   draft.  Thus now the draft becomes draft-ietf-netmod-example-module.
   The initial pre-release lineage continues as follows.

   Continued version progression after adoption:

Clarke, et al.          Expires 5 September 2024               [Page 32]



Internet-Draft                 YANG Semver                    March 2024

       1.0.0-draft-ietf-netmod-example-module-00
         |
       1.0.0-draft-ietf-netmod-example-module-01
         |
       1.0.0-draft-ietf-netmod-example-module-02

   At this point, the draft is standardized and becomes RFC12345 and the
   YANG module version becomes 1.0.0.

   A time later, the module needs to be revised to add additional
   capabilities.  Development will be done in a backwards-compatible
   way.  Two new individual drafts are proposed to go about adding the
   capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
   and draft-asmith-netmod-exmod-changes.  These are initially developed
   in parallel with the following versions.

   Parallel development for next module revision (track 1):

         1.1.0-draft-jdoe-netmod-exmod-enhancements-00
           |
         1.1.0-draft-jdoe-netmod-exmod-enhancements-01

   In parallel with (track 2):

         1.1.0-draft-asmith-netmod-exmod-changes-00
           |
         1.1.0-draft-asmith-netmod-exmod-changes-01

   At this point, the WG decides to merge some aspects of both and adopt
   the work in asmith’s draft as draft-ietf-netmod-exmod-changes.  A
   single version progression continues.

         1.1.0-draft-ietf-netmod-exmod-changes-00
           |
         1.1.0-draft-ietf-netmod-exmod-changes-01
           |
         1.1.0-draft-ietf-netmod-exmod-changes-02
           |
         1.1.0-draft-ietf-netmod-exmod-changes-03

   The draft is standardized, and the new module version becomes 1.1.0.

Authors’ Addresses

Clarke, et al.          Expires 5 September 2024               [Page 33]



Internet-Draft                 YANG Semver                    March 2024

   Joe Clarke (editor)
   Cisco Systems, Inc.
   7200-12 Kit Creek Rd
   Research Triangle Park, North Carolina
   United States of America
   Phone: +1-919-392-2867
   Email: jclarke@cisco.com

   Robert Wilton (editor)
   Cisco Systems, Inc.
   Email: rwilton@cisco.com

   Reshad Rahman
   Equinix
   Email: reshad@yahoo.com

   Balazs Lengyel
   Ericsson
   1117 Budapest
   Magyar Tudosok Korutja
   Hungary
   Phone: +36-70-330-7909
   Email: balazs.lengyel@ericsson.com

   Jason Sterne
   Nokia
   Email: jason.sterne@nokia.com

   Benoit Claise
   Huawei
   Email: benoit.claise@huawei.com

Clarke, et al.          Expires 5 September 2024               [Page 34]



NETMOD                                                       J. Quilbeuf

Internet-Draft                                                 B. Claise

Intended status: Standards Track                              T. Joubert

Expires: 5 September 2024                                         Huawei

                                                            4 March 2024

                            YANG Full Embed

                draft-jouqui-netmod-yang-full-include-01

Abstract

   YANG lacks re-usability of models defined outside of the grouping and

   augmentation mechanisms.  For instance, it is almost impossible to

   reuse a model defined for a device in the context of the network, i.e

   by encapsulating it in a list indexed by device IDs.  [RFC8528]

   defines the YANG mount mechanism, partially solving the problem by

   allowing to mount an arbitrary set of schemas at an arbitrary point.

   However, YANG mount is only focusing on deploy or runtime.  This

   document aims to provide the same mechanism at design time.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 5 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents (https://trustee.ietf.org/

   license-info) in effect on the date of publication of this document.

   Please review these documents carefully, as they describe your rights

   and restrictions with respect to this document.  Code Components

Quilbeuf, et al.        Expires 5 September 2024                [Page 1]



Internet-Draft               YANG Full Embed                  March 2024

   extracted from this document must include Revised BSD License text as

   described in Section 4.e of the Trust Legal Provisions and are

   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2

   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4

   3.  Full Embed  . . . . . . . . . . . . . . . . . . . . . . . . .   4

     3.1.  Definition  . . . . . . . . . . . . . . . . . . . . . . .   5

     3.2.  Limitations . . . . . . . . . . . . . . . . . . . . . . .   5

     3.3.  Allowed sub-statements  . . . . . . . . . . . . . . . . .   6

   4.  ietf-full-embed YANG module . . . . . . . . . . . . . . . . .   6

   5.  Security Considerations . . . . . . . . . . . . . . . . . . .   8

   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   8

   7.  Contributors  . . . . . . . . . . . . . . . . . . . . . . . .   8

   8.  Open issues . . . . . . . . . . . . . . . . . . . . . . . . .   8

     8.1.  Parent-nodes mechanism from schema mount  . . . . . . . .   8

   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .   9

     9.1.  Normative References  . . . . . . . . . . . . . . . . . .   9

     9.2.  Informative References  . . . . . . . . . . . . . . . . .  10

   Appendix A.  Changes between revisions  . . . . . . . . . . . . .  11

   Appendix B.  Examples . . . . . . . . . . . . . . . . . . . . . .  11

     B.1.  Example using YANG Full Embed . . . . . . . . . . . . . .  12

     B.2.  Using YANG Schema Mount . . . . . . . . . . . . . . . . .  13

     B.3.  Support Files . . . . . . . . . . . . . . . . . . . . . .  14

   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  17

   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  17

1.  Introduction

   [RFC8528] introduces the challenges of reusing existing YANG modules,

   especially when including the full subtree of YANG module under a

   specific node of another module.  In that RFC, three different phases

   of data model life cycle are identified: "design time",

   "implementation time" and "run time".  Only the last two are covered.

   We focus here on the first phase of the life cycle, that is inserting

   modules at design time.

   We identified some use cases that require this design time definition

   of which modules need to be included in the top-level module.  The

   have in common the need to re-use YANG modules defined for the

   devices in the context of a network-level module.  Also, they both

   aim to define a model that is independent of the underlying devices.

   *  The use case that triggered the creation of this document is

      [I-D.ietf-opsawg-collected-data-manifest].  In this draft, the

      goal is to provide a YANG model giving the context in which YANG-

Quilbeuf, et al.        Expires 5 September 2024                [Page 2]



Internet-Draft               YANG Full Embed                  March 2024

      push [RFC8641] data are collected so that they can be exploited a

      posteriori.  To get the full context, we need the hardware and os

      version of each device, but also the list of YANG modules

      supported by the devices and the parameters for the YANG-push

      subscriptions.  For the last two items YANG Library [RFC8525] and

      YANG Push [RFC8641] provide good and standard modules for

      representing this information at the device level.  However, the

      data manifests need to be considered at the network level, so that

      we can distinguish between the devices from which they come.  In

      YANG, that means including them in a list indexed by the device

      id, which proves out to be difficult without copy-pasting the

      original modules.

   *  A similar use case is the digital map

      [I-D.havel-opsawg-digital-map], where the goal is to build a model

      of the network.  In particular, to model the devices a lot of

      standard modules have already been defined by the IETF and there

      is a need to reuse these modules to build this larger network

      model.  The IVY workgroup (https://datatracker.ietf.org/wg/ivy/

      about/) might also rely on the pattern of re-using device level

      modules into a network model.

   YANG Schema Mount [RFC8528] and Peer Mount

   [I-D.clemm-netmod-peermount] focus on mounting a given part of a an

   existing data instance into another data instance.  Although the

   final goal is the same: being able to reuse modules defined elsewhere

   in order to avoid redefining them, the approach is more focused on

   the runtime than the design time.  In the first case, the mapping

   between the mount points and the existing modules to be mounted at

   that mount point is left to the NETCONF [RFC6241] server.  Thus, to

   guarantee that the contents under a given mount point conforms to a

   predefined schema requires the proper configuration of the server.

   In the case of Peer mount, the focus is on synchronizing a given

   subtree of a server (remote or local) with a subtree of the local

   server.  Again, the contents under the local subtree cannot be

   enforced from the design time.

   The notion of reusing an existing schema within a new schema is not

   new.  Several schema definition languages propose this feature, such

   as RELAX NG (https://books.xmlschemata.org/relaxng/relax-CHP-10-SECT-

   1.html), Protobuf (https://protobuf.dev/programming-guides/

   proto3/#other/) or json-schema (https://json-schema.org/

   understanding-json-schema/structuring#dollarref).

   In this document, we propose a new extension, named full embed.  This

   extension enables reusing imported modules by rooting them at an

   arbitrary point of the data model.  The concept of mount point from

   [RFC8528] is replaced by an anydata statement containing list of

Quilbeuf, et al.        Expires 5 September 2024                [Page 3]



Internet-Draft               YANG Full Embed                  March 2024

   "full:embed" statement, each statement corresponding to the inclusion

   of one imported module at that location.  In that sense, the design

   time solution is a pure YANG solution that does not rely on external

   configuration to specify the list of mounted modules, hence the term

   full embed rather than mount.  Also, we use ’embed’ not to conflict

   with the native ’include’ statement in YANG [RFC7950].

   The obtained data model that we want to associate to our construct is

   similar to the one obtained by specifying a mount point and binding

   it to the same set of modules.  Therefore, we can reuse the concepts

   of the YANG schema mount to define the semantics of our new

   extension.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in BCP

   14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

   The following terms are defined in [RFC7950]:

   *  data model

   *  data node

   The following terms are defined in [RFC8528]:

   *  mount point

3.  Full Embed

   The full embed mechanism defined in this document completes

   [RFC8528], by providing a mechanism to "mount" modules at design

   time.  Supporting mounting modules at this step of the data model

   life cycle is left out of scope in [RFC8528].

   The approach for supporting the full embed mechanism is to keep the

   semantics of [RFC8528] for the resulting data model.  In [RFC8528],

   the list of modules to mount in each mount point is left to the

   NETCONF server.  In this document, we propose the full embed

   mechanism to define this mapping directly in the YANG module that

   embeds the mounted modules.

   To ensure interoperability with clients that do not support the full

   embed extension, the full embed statement can only appear within an

   anydata node.  Clients that do not support the extension will see the

Quilbeuf, et al.        Expires 5 September 2024                [Page 4]



Internet-Draft               YANG Full Embed                  March 2024

   contents of the embedded model as arbitrary data.  Clients that

   support the extension will be able to interpret the contents of the

   anydata node according to the semantics of the embedded YANG modules.

   In the sequel, we use "full" as the prefix for the module ’ietf-yang-

   full-embed’ (see Section 4).  Thus "full:embed" refers to the

   extension ’embed’ defined in that module.

3.1.  Definition

   The "full:embed" statement can appear as a sub-statement of anydata.

   The "full:embed" statement takes as an argument a prefix, that must

   be the prefix associated to an imported module.  Modules can contain

   multiple uses of the "full:embed" statement.  An "anydata" statement

   MAY contain multiple uses of the "full:embed" statement.  These

   multiple uses define the full list of modules to be embedded, rooted

   in the anydata node where the "full:embed" statement is used.

   The "full:embed" statement can be interpreted using YANG Schema Mount

   [RFC8528], by following these steps:

   1.  For each anydata node containing a set of "full:embed" statement,

       replace them by a container containing single "mount-point" with

       a unique label.

   2.  Declare each of these "mount-points" as "shared-schema" in the

       data model defined in [RFC8528].

   3.  In the instance corresponding to each "mount-point", define the

       ietf-yang-library [RFC8525] to include a module-set (at ’/yang-

       library/module-set/) with the following.  The list ’module’

       contains an entry for every module referred to in the set of

       "full:embed" statements corresponding to the "mount-point".

       Additionally, the list ’module’ contains an entry for "ietf-yang-

       library" as it is needed by YANG Schema mount.  As usual, the

       list ’imported-modules’ contains the list of dependencies needed

       by the modules in the ’module’ list.

   An example of module using "full:embed" and its translation into a

   similar YANG Schema mount version is presented in Appendix B.

3.2.  Limitations

   A module MUST NOT use the "full:embed" statement with its own prefix

   as argument.  This rule prevents any infinite recursion in the

   mounted schemas.

Quilbeuf, et al.        Expires 5 September 2024                [Page 5]



Internet-Draft               YANG Full Embed                  March 2024

   As for YANG Schema Mount, the set of embedded modules is an

   independent YANG context, where every reference (for instance leaf-

   ref, augment, when) is contained in that context.  It is not possible

   for an embedded module to refer to the embedding module, which would

   be rejected by the compiler anyway because it would create a

   dependency loop.  If a server supports a module both at top-level and

   embedded in another module, the corresponding data instances are

   disjoint.

   Activation of the features for the embedded module follows the same

   rules as for normal module.  Therefore its not possible to activate

   some features for some embedded modules only.  The feature is either

   supported by the server and then activated for every module (embedded

   or not) or not supported and then deactivated for all modules

   (embedded or not).

3.3.  Allowed sub-statements

   The following sub-statements are allowed in the "full:embed"

   statement:

   *  when

   *  if-feature

   Both statements have the same meaning as in [RFC7950].  The when

   statement MUST NOT refer to nodes which are in the embedded module

   designated by the "full:embed" statement.

4.  ietf-full-embed YANG module

   We present in this section the YANG module defining the "full-embed"

   extension.  The module in itself defines solely the ’embed’

   extension.  A module importing this extension SHOULD use the prefix

   ’full’, so that the statement reads "full:embed" when used in the

   code.

   <CODE BEGINS> file "ietf-full-embed@2023-11-03.yang"

   module ietf-yang-full-embed {

     yang-version 1.1;

     namespace "urn:ietf:params:xml:ns:yang:ietf-yang-full-embed";

     prefix full;

     organization

       "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

     contact

       "WG Web:   <https://datatracker.ietf.org/wg/netmod/>

        WG List:  <mailto:netmod@ietf.org>

Quilbeuf, et al.        Expires 5 September 2024                [Page 6]



Internet-Draft               YANG Full Embed                  March 2024

        Editor:   ";

     description

       "This module defines a YANG extension statement that can be used

        to incorporate data models defined in other YANG modules in a

        module.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL

        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,

        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as

        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

        they appear in all capitals, as shown here.

        Copyright (c) 2023 IETF Trust and the persons identified as

        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or

        without modification, is permitted pursuant to, and subject to

        the license terms contained in, the Revised BSD License set

        forth in Section 4.c of the IETF Trust’s Legal Provisions

        Relating to IETF Documents

        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX;

        see the RFC itself for full legal notices.";

     revision 2023-11-05 {

       description

         "Initial revision.";

       reference

         "RFC XXXX: YANG Full Embed";

     }

     extension embed {

       argument prefix;

       description

         "The argument ’prefix’ MUST be the prefix of a module imported

          by the calling module.

          The ’embed’ statement MUST NOT be used in a YANG version 1

          module, neither explicitly nor via a ’uses’ statement.

          The ’embed’ statement MAY be present as a substatement of

          ’anydata’ and MUST NOT be present elsewhere.

          Whenever a sequence of ’embed’ statements is used, the schema

          tree defined by the set of the included modules is inserted

          in the schema tree of the calling module, at the place where

          the sequence is declared";

Quilbeuf, et al.        Expires 5 September 2024                [Page 7]



Internet-Draft               YANG Full Embed                  March 2024

     }

   }

   <CODE ENDS>

5.  Security Considerations

   TODO

6.  IANA Considerations

   TODO

7.  Contributors

8.  Open issues

   *  What name should we give to this draft?  Any suggestions instead

      of full embed?

   *  Do we want to support the parent-nodes mechanism from [RFC8528]?

      (see below)

   *  Do we allow full embed into an augment?  We could even relax no

      self-reference to have a module embed itself into another by

      augmenting it?

   *  Does this mechanism already exist?

   *  Do we want to add a partial embed with an xpath instead of just

      the prefix?  The goal would be to include only part of a module.

      This complexifies a bit the validation as leaf-ref, must, when and

      other statement involving Xpath will need to be reinterpreted in

      that new context.

8.1.  Parent-nodes mechanism from schema mount

   YANG Schema Mount includes a mechanism to make some nodes from the

   embedding model available to the embedded model for validation

   purposes.  We could achieve the same by adding a second extension,

   which can also only appear under a "full:embed" nodes.  That

   extension, for instance named "full:embed-parent-refs" would take a

   Xpath expression as the in the "parent-reference" leaflist defined in

   the YANG Schema Mount and would have the same semantics.  If several

   XPath are needed for clarity, the statement can be repeated with

   several values.

Quilbeuf, et al.        Expires 5 September 2024                [Page 8]



Internet-Draft               YANG Full Embed                  March 2024

   As an example, Figure 1 restates the parent-references example from

   [RFC8528] using this new extension.  We might want to put some

   restrictions on the nodes that can be referred to in the Xpath

   argument.

   ...

   import "ietf-routing" {

     prefix "rt";

   }

   import "ietf-interfaces" {

     prefix "if";

   }

   ...

   container network-instances {

     list network-instance {

       leaf name {...}

       anydata root {

         full:embed "rt" {

           full:embed-parent-refs "if:interfaces/if:interface[\

                 ni:bind-network-instance-name = current()/../ni:name]";

         }

         // other full:embed if needed

       }

     }

   }

     Figure 1: Pseudo-YANG example of parent-references from [RFC8528]

                             with "full:embed"

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

              Requirement Levels", BCP 14, RFC 2119,

              DOI 10.17487/RFC2119, March 1997,

              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

              RFC 7950, DOI 10.17487/RFC7950, August 2016,

              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Quilbeuf, et al.        Expires 5 September 2024                [Page 9]



Internet-Draft               YANG Full Embed                  March 2024

   [RFC8528]  Bjorklund, M. and L. Lhotka, "YANG Schema Mount",

              RFC 8528, DOI 10.17487/RFC8528, March 2019,

              <https://www.rfc-editor.org/info/rfc8528>.

9.2.  Informative References

   [I-D.clemm-netmod-peermount]

              Clemm, A., Voit, E., Guo, A., and I. D. Martinez-

              Casanueva, "Mounting YANG-Defined Information from Remote

              Datastores", Work in Progress, Internet-Draft, draft-

              clemm-netmod-peermount-02, 23 October 2023,

              <https://datatracker.ietf.org/doc/html/draft-clemm-netmod-

              peermount-02>.

   [I-D.havel-opsawg-digital-map]

              Havel, O., Claise, B., de Dios, O. G., Elhassany, A.,

              Graf, T., and M. Boucadair, "Modeling the Digital Map

              based on RFC 8345: Sharing Experience and Perspectives",

              Work in Progress, Internet-Draft, draft-havel-opsawg-

              digital-map-01, 23 October 2023,

              <https://datatracker.ietf.org/doc/html/draft-havel-opsawg-

              digital-map-01>.

   [I-D.ietf-opsawg-collected-data-manifest]

              Claise, B., Quilbeuf, J., Lopez, D. R., Dominguez, I., and

              T. Graf, "A Data Manifest for Contextualized Telemetry

              Data", Work in Progress, Internet-Draft, draft-ietf-

              opsawg-collected-data-manifest-03, 4 March 2024,

              <https://datatracker.ietf.org/api/v1/doc/document/draft-

              ietf-opsawg-collected-data-manifest/>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

              and A. Bierman, Ed., "Network Configuration Protocol

              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8525]  Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,

              and R. Wilton, "YANG Library", RFC 8525,

              DOI 10.17487/RFC8525, March 2019,

              <https://www.rfc-editor.org/info/rfc8525>.

   [RFC8641]  Clemm, A. and E. Voit, "Subscription to YANG Notifications

              for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,

              September 2019, <https://www.rfc-editor.org/info/rfc8641>.

Quilbeuf, et al.        Expires 5 September 2024               [Page 10]



Internet-Draft               YANG Full Embed                  March 2024

Appendix A.  Changes between revisions

   00 -> 01

   *  Renamed full include -> full embed

   *  Require extension to appear in anydata for clients not supporting

      extension

   *  Allow "if-feature" and "must" as sub-statement of full:embed,

      explain that feature work at server level

Appendix B.  Examples

   In this section we present some minimalistic examples in order to

   illustrate the "full:embed" statement.  For these examples, we are in

   a situation where we have a device-level module already defined and

   we want to have a network-level module that represent a list of

   device, each having an independent instance of the device-level

   module.  This situation might arise if we want to simplify the

   network management by presenting a unified model for the network.  In

   that case, the heterogeneity of the devices should be handled by

   mapping their model to the device-level module (which is clearly out

   of scope for this draft).

   In our simplistic example, the device-level module simply exposes the

   hostname and the cpu-usage of the device.  Note that we cannot modify

   this device-level module, because in a more realistic example we

   would be reusing standard modules.  The tree representation

   ([RFC8340]) of the ’device-level’ module is depicted in Figure 2.

   module: device-level

     +--rw hostname     string

     +--ro cpu-usage?   int8

       Figure 2: YANG Tree representation of the device-level module.

   For the network-level module, we have a list of devices indexed by

   their ’device-id’.  The tree representation ([RFC8340]) of such a

   module is depicted in Figure 3.

   module: network-level-stub

     +--rw devices

        +--rw device* [device-id]

           +--rw device-id    string

       Figure 3: YANG Tree representation of a stub for the network-

                                level module

Quilbeuf, et al.        Expires 5 September 2024               [Page 11]



Internet-Draft               YANG Full Embed                  March 2024

   The goal is now to complete this stub so that the full contents of

   the ’device-level’ is added under the "device" list.

B.1.  Example using YANG Full Embed

   We propose in this section a YANG module for ’network-level’.  The

   YANG code is presented in Figure 4.

   module network-level {

     yang-version 1.1;

     namespace "urn:network-level";

     prefix "net-l";

     import "ietf-yang-full-include" {

       prefix "full";

     }

     import "device-level" {

       prefix "dev-l";

     }

     container devices {

       list device {

         key device-id;

         leaf device-id {

           type string;

         }

         anydata device-content {

              full:include "dev-l";

         }

       }

     }

   }

       Figure 4: Version of the network-level module using full:embed

   At the moment, this code is accepted by the YANG compilers, but since

   the extension is not implemented, it simply ignores it.  Note that

   all the information (which modules to embed, where to embed them) is

   defined in this module.  More specifically, the line ’full:embed

   "dev-l";’ states that the full schema of the ’device-level’ module,

   identified by its prefix "dev-l" must be embedded at that location.

   By adding more occurrences of "full:embed" there, one can define a

   more complex schema to be embedded at that location.

Quilbeuf, et al.        Expires 5 September 2024               [Page 12]



Internet-Draft               YANG Full Embed                  March 2024

B.2.  Using YANG Schema Mount

   In this section, we show how a similar result could be attained using

   YANG Schema Mount.  The network-level module is presented in

   Figure 5.

   module network-level {

     yang-version 1.1;

     namespace "urn:network-level";

     prefix "net-l";

     import ietf-yang-schema-mount {

       prefix yangmnt;

     }

     container devices {

       list device {

         key device-id;

         leaf device-id {

           type string;

         }

         container device-contents{

           yangmnt:mount-point "device-schema";

         }

       }

     }

   }

      Figure 5: Version of the network-level module using Schema Mount

   As explained in Section 3.1, the yang-library corresponding to the

   modules to embed, as well as the data required by ’ietf-yang-mount’

   needs to be specified in some other files.  Using the ’yanglint’ tool

   from libyang (https://github.com/CESNET/libyang), this module can be

   compiled to provide a tree representation as shown in Figure 6.

   module: network-level

     +--rw devices

        +--rw device* [device-id]

           +--rw device-id          string

           +--mp device-contents

              +--rw hostname/    string

              +--ro cpu-usage/?  int8

        Figure 6: Full tree of both network- and device-level using

                                Schema Mount

Quilbeuf, et al.        Expires 5 September 2024               [Page 13]



Internet-Draft               YANG Full Embed                  March 2024

   The command for obtaining that schema is ’yanglint -f tree -p . -x

   extension-data.xml -Y network-level-yanglib.xml yang/network-

   level.yang’, assuming all the YANG modules and the two xml files are

   in the current folder.  The file ’network-level-yanglib.xml’ contains

   the YANG Library data for the network-level module.  The file

   ’extension-data.xml’ contains the YANG Library data defining the

   schema to use at the mount point, as well as the data required by

   YANG Schema Mount.  Both are reproduced in Appendix B.3.

B.3.  Support Files

   The code of the ’device-level’ module is given in Figure 7.  Then the

   data files ’network-level-yanglib.xml’ and ’extension_data.xml’ are

   provided.  These files are needed to compile the Schema Mount version

   of our example with yanglint.

   module device-level {

     yang-version 1.1;

     namespace "urn:device-level";

     prefix mnt;

     leaf hostname {

       type string;

       mandatory true;

     }

     leaf cpu-usage {

       type int8;

       config false;

     }

   }

                     Figure 7: device-level YANG module

   <CODE BEGINS> file "network-level-yanglib.xml"

   <yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"

        xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

      <module-set>

        <name>main-set</name>

        <module>

          <name>ietf-datastores</name>

          <revision>2018-02-14</revision>

          <namespace>

              urn:ietf:params:xml:ns:yang:ietf-datastores

          </namespace>

        </module>

        <module>

          <name>ietf-yang-library</name>

          <revision>2019-01-04</revision>

Quilbeuf, et al.        Expires 5 September 2024               [Page 14]



Internet-Draft               YANG Full Embed                  March 2024

          <namespace>

              urn:ietf:params:xml:ns:yang:ietf-yang-library

          </namespace>

        </module>

        <module>

          <name>ietf-yang-schema-mount</name>

          <revision>2019-01-14</revision>

          <namespace>

              urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount

          </namespace>

        </module>

        <module>

          <name>network-level</name>

          <namespace>urn:network-level</namespace>

        </module>

        <import-only-module>

          <name>ietf-yang-types</name>

          <revision>2013-07-15</revision>

          <namespace>

              urn:ietf:params:xml:ns:yang:ietf-yang-types

          </namespace>

        </import-only-module>

        <import-only-module>

          <name>ietf-inet-types</name>

          <revision>2013-07-15</revision>

          <namespace>

              urn:ietf:params:xml:ns:yang:ietf-inet-types

          </namespace>

        </import-only-module>

      </module-set>

      <schema>

        <name>main-schema</name>

        <module-set>main-set</module-set>

      </schema>

      <datastore>

        <name>ds:running</name>

        <schema>main-schema</schema>

      </datastore>

      <datastore>

        <name>ds:operational</name>

        <schema>main-schema</schema>

      </datastore>

      <content-id>1</content-id>

    </yang-library>

    <modules-state

      xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">

      <module-set-id>2</module-set-id>

    </modules-state>

Quilbeuf, et al.        Expires 5 September 2024               [Page 15]



Internet-Draft               YANG Full Embed                  March 2024

   <CODE ENDS>

   <CODE BEGINS> file "extension_data.xml"

   <yang-library xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library"

                xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">

       <module-set>

           <name>mountee-set</name>

           <module>

               <name>device-level</name>

               <namespace>urn:device-level</namespace>

           </module>

           <module>

               <name>ietf-datastores</name>

               <revision>2018-02-14</revision>

               <namespace>

                   urn:ietf:params:xml:ns:yang:ietf-datastores

               </namespace>

           </module>

           <module>

               <name>ietf-yang-library</name>

               <revision>2019-01-04</revision>

               <namespace>

                   urn:ietf:params:xml:ns:yang:ietf-yang-library

               </namespace>

           </module>

           <import-only-module>

               <name>ietf-yang-types</name>

               <revision>2013-07-15</revision>

               <namespace>

                   urn:ietf:params:xml:ns:yang:ietf-yang-types

               </namespace>

           </import-only-module>

           <import-only-module>

               <name>ietf-inet-types</name>

               <revision>2013-07-15</revision>

               <namespace>

                   urn:ietf:params:xml:ns:yang:ietf-inet-types

               </namespace>

           </import-only-module>

       </module-set>

       <schema>

           <name>test-schema</name>

           <module-set>mountee-set</module-set>

       </schema>

       <datastore>

           <name>ds:running</name>

           <schema>test-schema</schema>

       </datastore>

Quilbeuf, et al.        Expires 5 September 2024               [Page 16]



Internet-Draft               YANG Full Embed                  March 2024

       <datastore>

           <name>ds:operational</name>

           <schema>test-schema</schema>

       </datastore>

       <content-id>2</content-id>

   </yang-library>

   <modules-state

       xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-library">

       <module-set-id>2</module-set-id>

   </modules-state>

   <schema-mounts

       xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount">

       <mount-point>

           <module>network-level</module>

           <label>device-schema</label>

           <shared-schema/>

       </mount-point>

   </schema-mounts>

   <CODE ENDS>

Acknowledgements

   Thanks to Ladislav Lhotka and Ignacio Dominguez Martinez-Casanueva

   for their reviews and comments.

Authors’ Addresses

   Jean Quilbeuf

   Huawei

   Email: jean.quilbeuf@huawei.com

   Benoit Claise

   Huawei

   Email: benoit.claise@huawei.com

   Thomas Joubert

   Huawei

   Email: thomas.joubert1@huawei-partners.com

Quilbeuf, et al.        Expires 5 September 2024               [Page 17]



Network Working Group                                         K. Larsson

Internet-Draft                                          Deutsche Telekom

Intended status: Standards Track                         18 October 2023

Expires: 20 April 2024

               Mapping YANG Data to Label-Set Time Series

                      draft-kll-yang-label-tsdb-00

Abstract

   This document proposes a standardized approach for representing YANG-

   modeled configuration and state data, for storage in Time Series

   Databases (TSDBs) that identify time series using a label-set.  It

   outlines procedures for translating YANG data representations to fit

   within the label-centric structures of TSDBs and vice versa.  This

   mapping ensures clear and efficient storage and querying of YANG-

   modeled data in TSDBs.

Discussion Venues

   This note is to be removed before publishing as an RFC.

   Source for this draft and an issue tracker can be found at

   https://github.com/plajjan/draft-kll-yang-label-tsdb.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 20 April 2024.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

Larsson                   Expires 20 April 2024                 [Page 1]



Internet-Draft               yang-label-tsdb                October 2023

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents (https://trustee.ietf.org/

   license-info) in effect on the date of publication of this document.

   Please review these documents carefully, as they describe your rights

   and restrictions with respect to this document.  Code Components

   extracted from this document must include Revised BSD License text as

   described in Section 4.e of the Trust Legal Provisions and are

   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2

   2.  Specification of the Mapping Procedure  . . . . . . . . . . .   3

     2.1.  Example: Packet Counters in IETF Interfaces Model . . . .   3

     2.2.  Mapping values  . . . . . . . . . . . . . . . . . . . . .   4

     2.3.  Choice  . . . . . . . . . . . . . . . . . . . . . . . . .   4

     2.4.  Host / device name  . . . . . . . . . . . . . . . . . . .   4

   3.  Querying YANG modeled time series data  . . . . . . . . . . .   5

     3.1.  1. *Basic Queries*  . . . . . . . . . . . . . . . . . . .   5

     3.2.  2. *Filtering by Labels*  . . . . . . . . . . . . . . . .   5

     3.3.  3. *Time-based Queries* . . . . . . . . . . . . . . . . .   6

     3.4.  4. *Aggregations* . . . . . . . . . . . . . . . . . . . .   6

     3.5.  5. *Combining Filters*  . . . . . . . . . . . . . . . . .   6

     3.6.  6. *Querying Enumeration Types* . . . . . . . . . . . . .   6

   4.  Requirements on time series databases . . . . . . . . . . . .   7

     4.1.  Support for String Values . . . . . . . . . . . . . . . .   7

     4.2.  Sufficient Path Length  . . . . . . . . . . . . . . . . .   7

     4.3.  High Cardinality  . . . . . . . . . . . . . . . . . . . .   8

   5.  Normative References  . . . . . . . . . . . . . . . . . . . .   8

   Author’s Address  . . . . . . . . . . . . . . . . . . . . . . . .   8

1.  Introduction

   The aim of this document is to define rules for representing

   configuration and state data defined using the YANG data modeling

   language [RFC7950] as time series using a label-centric model.

   The majority of modern Time Series Databases (TSDBs) employ a label-

   centric model.  In this structure, time series are identified by a

   set of labels, each consisting of a key-value pair.  These labels

   facilitate efficient querying, aggregation, and filtering of data

   over time intervals.  Such a model contrasts with the hierarchical

   nature of YANG-modeled data.  The challenge, therefore, lies in

   ensuring that YANG-defined data, with its inherent structure and

   depth, can be seamlessly integrated into the flat, label-based

   structure of most contemporary TSDBs.

Larsson                   Expires 20 April 2024                 [Page 2]



Internet-Draft               yang-label-tsdb                October 2023

   This document seeks to bridge this structural gap, laying out rules

   and guidelines to ensure that YANG-modeled configuration and state

   data can be effectively stored, queried, and analyzed within label-

   centric TSDBs.

2.  Specification of the Mapping Procedure

   Instances of YANG data nodes are mapped to metrics.  Only nodes that

   carry a value are mapped.  This includes leafs and presence

   containers.  The hierarchical path to a value, including non-presence

   containers and lists, form the path that is used as the name of the

   metric.  The path is formed by joining YANG data nodes using _.

   Special symbols, e.g. -, in node names are replaced with _.

   List keys are mapped into labels.  The path to the list key is

   transformed in the same way as the primary name of the metric.

   Compound keys have each key part as a separate label.

2.1.  Example: Packet Counters in IETF Interfaces Model

   Consider the in-unicast-pkts leaf from the IETF interfaces model that

   captures the number of incoming unicast packets on an interface:

   Original YANG Instance-Identifier: yang

   /interfaces/interface[name=’eth0’]/statistics/in-unicast-pkts

   Following the mapping rules defined:

   1.  The path components, including containers and list names, are

       transformed into the metric name by joining the node names with

       _. Special symbols, e.g. - are replaced with _.

   Resulting Metric Name:

   interfaces_interface_statistics_in_unicast_pkts

   1.  The list key "predicate", which in this case is the interface

       name (eth0), is extracted and stored as a separate label.  The

       label key represents the complete path to the key.

   Resulting Label: interfaces_interface_name = eth0

   1.  The leaf value, which represents the actual packet counter,

       remains unchanged and is directly mapped to the value in the time

       series database.

   For instance, if the packet counter reads 5,432,100 packets:

   Value: 5432100

Larsson                   Expires 20 April 2024                 [Page 3]



Internet-Draft               yang-label-tsdb                October 2023

   1.  As part of the standard labels, a server identification string is

       also included.  A typical choice of identifier might be the

       hostname.  For this example, let’s assume the device name is

       router-01:

   Label: host = router-01

   Final Mapping in the TSDB:

   *  Metric: interfaces_interface_statistics_in_unicast_pkts

   *  Value: 5432100

   *  Labels:

      -  host = router-01

      -  interfaces_interface_name = eth0

2.2.  Mapping values

   Leaf values are mapped based on their intrinsic type:

   *  All integer types are mapped to integers and retain their native

      representation

      -  some implementations only support floats for numeric values

   *  decimal64 values are mapped to floats and the value should be

      rounded and truncated as to minimize the loss of information

   *  Enumeration types are mapped using their string representation.

   *  String types remain unchanged.

2.3.  Choice

   Choice constructs from YANG are disregarded and not enforced during

   the mapping process.  Given the temporal nature of TSDBs, where data

   spans across time, different choice branches could be active in a

   single data set, rendering validation and storage restrictions

   impractical.

2.4.  Host / device name

   There is an implicit host label identifying the server, typically set

   to the name of the host originating the time series data.

Larsson                   Expires 20 April 2024                 [Page 4]



Internet-Draft               yang-label-tsdb                October 2023

   Instance data retrieved from YANG-based servers do not generally

   identify the server it originates from.  As a time series database is

   likely going to contain data from multiple servers, the host label is

   used to identify the source of the data.

3.  Querying YANG modeled time series data

   The process of storing YANG-modeled data in label-centric TSDBs, as

   defined in the previous sections, inherently structures the data in a

   way that leverages the querying capabilities of modern TSDBs.  This

   chapter provides guidelines on how to construct queries to retrieve

   this data effectively.

3.1.  1. *Basic Queries*

   To retrieve all data points related to incoming unicast packets from

   the IETF interfaces model:

   *  *InfluxQL*: sql SELECT * FROM

      interfaces_interface_statistics_in_unicast_pkts

   *  *PromQL*: promql interfaces_interface_statistics_in_unicast_pkts

3.2.  2. *Filtering by Labels*

   To retrieve incoming unicast packets specifically for the interface

   eth0:

   *  *InfluxQL*: sql SELECT * FROM

      interfaces_interface_statistics_in_unicast_pkts WHERE

      interfaces_interface_name = ’eth0’

   *  *PromQL*: promql interfaces_interface_statistics_in_unicast_pkts{i

      nterfaces_interface_name="eth0"}

   Similarly, to filter by device / host name:

   *  *InfluxQL*: sql SELECT * FROM

      interfaces_interface_statistics_in_unicast_pkts WHERE host =

      ’router-01’

   *  *PromQL*: promql

      interfaces_interface_statistics_in_unicast_pkts{host="router-01"}

Larsson                   Expires 20 April 2024                 [Page 5]



Internet-Draft               yang-label-tsdb                October 2023

3.3.  3. *Time-based Queries*

   *  *InfluxQL*: sql SELECT * FROM

      interfaces_interface_statistics_in_unicast_pkts WHERE time > now()

      - 24h

   Prometheus fetches data based on the configured scrape interval and

   retention policies, so time-based filters in PromQL often center

   around the range vectors.  For data over the last 24 hours:

   *  *PromQL*: promql

      interfaces_interface_statistics_in_unicast_pkts[24h]

3.4.  4. *Aggregations*

   To get the average number of incoming unicast packets over the last

   hour:

   *  *InfluxQL*: sql SELECT MEAN(value) FROM

      interfaces_interface_statistics_in_unicast_pkts WHERE time > now()

      - 1h GROUP BY time(10m)

   *  *PromQL*: promql

      avg_over_time(interfaces_interface_statistics_in_unicast_pkts[1h])

3.5.  5. *Combining Filters*

   To retrieve the sum of incoming unicast packets for eth0 on router-01

   over the last day:

   *  *InfluxQL*: sql SELECT SUM(value) FROM

      interfaces_interface_statistics_in_unicast_pkts WHERE

      interfaces_interface_name = ’eth0’ AND host = ’router-01’ AND time

      > now() - 24h

   *  *PromQL*: promql sum(interfaces_interface_statistics_in_unicast_pk

      ts{interfaces_interface_name="eth0", host="router-01"})[24h]

3.6.  6. *Querying Enumeration Types*

   In YANG models, enumerations are defined types with a set of named

   values.  The oper-status leaf in the IETF interfaces model is an

   example of such an enumeration, representing the operational status

   of an interface.

   For instance, the oper-status might have values such as up, down, or

   testing.

Larsson                   Expires 20 April 2024                 [Page 6]



Internet-Draft               yang-label-tsdb                October 2023

   To query interfaces that have an oper-status of up:

   *  *InfluxQL*: sql SELECT * FROM interfaces_interface_oper_status

      WHERE value = ’up’

   *  *PromQL*: promql interfaces_interface_oper_status{value="up"}

   Similarly, to filter interfaces with oper-status of down:

   *  *InfluxQL*: sql SELECT * FROM interfaces_interface_oper_status

      WHERE value = ’down’

   *  *PromQL*: promql interfaces_interface_oper_status{value="down"}

   This approach allows us to effectively query interfaces based on

   their operational status, leveraging the enumeration mapping within

   the TSDB.

4.  Requirements on time series databases

   This document specifies a mapping to a conceptual representation, not

   a particular concrete interface.  To effectively support the mapping

   of YANG-modeled data into a label-centric model, certain requirements

   must be met by the Time Series Databases (TSDBs).  These requirements

   ensure that the data is stored and retrieved in a consistent and

   efficient manner.

4.1.  Support for String Values

   Several YANG leaf types carry string values, including the string

   type itself and all its descendants as well as enumerations which are

   saved using their string representation.

   The chosen TSDB must support the storage and querying of string

   values.  Not all TSDBs inherently offer this capability, and thus,

   it’s imperative to ensure compatibility.

4.2.  Sufficient Path Length

   YANG data nodes, especially when representing deep hierarchical

   structures, can result in long paths.  When transformed into metric

   names or labels within the TSDB, these paths might exceed typical

   character limits imposed by some databases.  It’s essential for the

   TSDB to accommodate these potentially long names to ensure data

   fidelity and avoid truncation or loss of information.

Larsson                   Expires 20 April 2024                 [Page 7]



Internet-Draft               yang-label-tsdb                October 2023

4.3.  High Cardinality

   Given the possibility of numerous unique label combinations

   (especially with dynamic values like interface names, device names,

   etc.), the chosen TSDB should handle high cardinality efficiently.

   High cardinality can impact database performance and query times, so

   it’s essential for the TSDB to have mechanisms to manage this

   efficiently.

5.  Normative References

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

              RFC 7950, DOI 10.17487/RFC7950, August 2016,

              <https://www.rfc-editor.org/info/rfc7950>.

Author’s Address

   Kristian Larsson

   Deutsche Telekom

   Email: kristian@spritelink.net

Larsson                   Expires 20 April 2024                 [Page 8]



IVY Working Group                                                  T. Li

Internet-Draft                                                 R. Bonica

Intended status: Standards Track                        Juniper Networks

Expires: 18 April 2024                                   16 October 2023

                   A YANG model for Power Management

                         draft-li-ivy-power-01

Abstract

   Network sustainability is a key issue facing the industry.  Networks

   consume significant amounts of power at a time when the cost of power

   is rising and sensitivity about sustainability is very high.  As an

   industry, we need to find ways to optimize the power efficiency of

   our networks both at a micro and macro level.  We have observed that

   traffic levels fluctuate and when traffic ebbs there is much more

   capacity than is needed.  Powering off portions of network elements

   could save a significant amount of power, but to scale and be

   practical, this must be automated.

   The natural mechanism for enabling automation would be a Yet Another

   Next Generation (YANG) interface, so this document proposes a YANG

   model for power management.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 18 April 2024.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

Li & Bonica               Expires 18 April 2024                 [Page 1]



Internet-Draft            YANG Power Management             October 2023

   This document is subject to BCP 78 and the IETF Trust’s Legal

   Provisions Relating to IETF Documents (https://trustee.ietf.org/

   license-info) in effect on the date of publication of this document.

   Please review these documents carefully, as they describe your rights

   and restrictions with respect to this document.  Code Components

   extracted from this document must include Revised BSD License text as

   described in Section 4.e of the Trust Legal Provisions and are

   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2

     1.1.  Requirement Language  . . . . . . . . . . . . . . . . . .   3

   2.  Power Management Elements . . . . . . . . . . . . . . . . . .   3

     2.1.  Power consumption . . . . . . . . . . . . . . . . . . . .   3

     2.2.  Power control capability  . . . . . . . . . . . . . . . .   4

     2.3.  Power control . . . . . . . . . . . . . . . . . . . . . .   4

     2.4.  Automatic Power Management  . . . . . . . . . . . . . . .   4

   3.  Functional Dependencies . . . . . . . . . . . . . . . . . . .   4

     3.1.  Required Components . . . . . . . . . . . . . . . . . . .   5

     3.2.  Dependent components  . . . . . . . . . . . . . . . . . .   5

   4.  Tree Representation . . . . . . . . . . . . . . . . . . . . .   5

   5.  Traffic Planning  . . . . . . . . . . . . . . . . . . . . . .   5

     5.1.  Tree Representation . . . . . . . . . . . . . . . . . . .   6

   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   6

   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   6

   8.  Normative References  . . . . . . . . . . . . . . . . . . . .   6

   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .   7

1.  Introduction

   Network sustainability is a key issue facing the industry.  Networks

   consume significant amounts of power at a time when the cost of power

   is rising and sensitivity about sustainability is very high.  As an

   industry, we need to find ways to optimize the power efficiency of

   our networks both at a micro and macro level.  We have observed that

   traffic levels fluctuate and when traffic ebbs there is much more

   capacity than is needed.  Powering off portions of network elements

   could save a significant amount of power, but to scale and be

   practical, this must be automated.

   The natural mechanism for enabling automation would be a Yet Another

   Next Generation (YANG) interface, so this document proposes a YANG

   model for power management.

   [RFC8348] already provides a model for server hardware management,

   but does not naturally extend to routers and other network elements.

   That gap is currently being addressed by

Li & Bonica               Expires 18 April 2024                 [Page 2]



Internet-Draft            YANG Power Management             October 2023

   [I-D.wzwb-opsawg-network-inventory-management] and

   [I-D.ietf-ccamp-network-inventory-yang].  This document extends the

   work presented there to include power management.  Specifically, this

   document augments the ’component’ object found at /ietf-network-

   hardware-inventory/network-hardware-inventory/network-elements/

   network-element/components/component in

   [I-D.ietf-ccamp-network-inventory-yang].

   This initial draft only provides a tree representation.  When there

   is rough consensus on the tree represetnation, the details of the

   model will be fleshed out.

1.1.  Requirement Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in

   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.  These words may also appear in this

   document in lower case as plain English words, absent their normative

   meanings.

2.  Power Management Elements

   The models mentioned above already model a router or network element

   as a set of components.  The details of those components are left to

   the specific implementation and can be at any level of specificity.

   Thanks to this flexibility, it is necessary and sufficient that we

   characterize power management relative to components.

   The elements defined below allow management entities to understand

   how much power each component is using and whether the component can

   be placed into a ’power-save’ mode where it would consume less power.

   Another element allows the management plane to put the component into

   power-save mode.

2.1.  Power consumption

           Name: used-power

           Node Type: leaf

           Data Type: uint32

           Description: Power drawn by the component, in watts.

   This node is applied to components in the model.  If an accurate

   dynamic power measurement is not available, then static power

   estimates are acceptable.

Li & Bonica               Expires 18 April 2024                 [Page 3]



Internet-Draft            YANG Power Management             October 2023

2.2.  Power control capability

           Name: power-save-capable

           Node Type: leaf

           Data Type: boolean

           Description: True if the component can be put into power-save

             mode.

2.3.  Power control

           Name: power-save

           Node Type: leaf

           Data Type: Boolean

           Access: Read/write

           Description: True if the component is in power-save mode.

2.4.  Automatic Power Management

   Some systems (e.g., fan trays) have the capability to self-manage

   their power consumption.  However there are cases where this

   capability should be disabled.

           Name: automatic-power-management

           Node Type: leaf

           Data Type: Boolean

           Access: Read/write

           Description: True if the component is regulating its own

             power.

3.  Functional Dependencies

   Most inventory models have a hierarchy of components.  This hierarchy

   reflects the physical structure of the system (e.g., a line card can

   physically contain a port).

   With regard to physical containment, components maintain a one-to-

   many relationship.  That is, Component A can contain many other

   components, including Component B.  However, component B can be

   contain by only one component (i.e., Component A.)

   However, legacy inventory models do not reflect functional

   dependencies.  Specifically, they do not indicate which components

   obtain services from, and therefore depend, components other than

   their container.  Because funtional dependencies are relavant to

   power management, they are included in the proposed model.

Li & Bonica               Expires 18 April 2024                 [Page 4]



Internet-Draft            YANG Power Management             October 2023

   With regard to functional dependencies, components maintain a many-

   to-many relationship.  That is, a component can reuire on many

   components and be required by many other components.

   Functional dependencies may be updated dynamically.

3.1.  Required Components

   This container holds a list of components that the component uses.

   For example, a linecard uses a set of switch cards, so the switch

   cards would be required components.  If the bandwidth used by the

   linecard changes, then the set of switch cards that are required may

   change dynamically.

           Name: required-components

           Node Type: list

           Description: A list of other components that are required for

             this component to operate.

3.2.  Dependent components

   This container holds a list of components that are used by this

   component.  For example, a switch card is used by a set of line

   cards, so the line cards would be dependent components.  This list

   can also change dynamically.

           Name: dependent-components

           Node Type: list

           Description: A list of other components that are used by this

             component.

4.  Tree Representation

    +--ro component* [uuid]

       +--ro uuid                          yang:uuid

       +--ro used-power?                   uint32

       +--ro power-save-capable?           boolean

       +--rw power-save?                   boolean

       +--ro required-components*          -> ../uuid

       +--ro dependent-components*         -> ../uuid

5.  Traffic Planning

   Some systems have the capability of automatically managing their

   power consumption if they have an understanding of the expected

   traffic loads.  To provide this, we provide the expected input and

   output bandwidth for each interface and augment [RFC7223] with the

   following:

Li & Bonica               Expires 18 April 2024                 [Page 5]



Internet-Draft            YANG Power Management             October 2023

           Name: expected-input-bandwidth

           Node Type: leaf

           Data Type: uint32

           Default: 0

           Access: Read/write

           Description: The expected input bandwidth of the interface,

             in Mbps. A value of zero (0) indicates full bandwidth.

           Name: expected-output-bandwidth

           Node Type: leaf

           Data Type: uint32

           Default: 0

           Access: Read/write

           Description: The expected output bandwidth of the interface,

             in Mbps. A value of zero (0) indicates full bandwidth.

5.1.  Tree Representation

    +--rw interface* [name]

       +--rw expected-input-bandwidth?     uint32

       +--rw expected-output-bandwidth?    uint32

6.  Security Considerations

   YANG provides information about and configuration capabilities to the

   network management plane.  Other mechanisms already exist that help

   secure these interactions.  This document extends the scope of what

   can be controlled by the management plane, but creates no new access

   paths.

7.  IANA Considerations

   This document makes no requests for IANA.

8.  Normative References

   [RFC8348]  Bierman, A., Bjorklund, M., Dong, J., and D. Romascanu, "A

              YANG Data Model for Hardware Management", RFC 8348,

              DOI 10.17487/RFC8348, March 2018,

              <https://www.rfc-editor.org/info/rfc8348>.

   [I-D.wzwb-opsawg-network-inventory-management]

              Wu, B., Zhou, C., Wu, Q., and M. Boucadair, "A Network

              Inventory Management Model", Work in Progress, Internet-

              Draft, draft-wzwb-opsawg-network-inventory-management-03,

              24 July 2023, <https://datatracker.ietf.org/doc/html/

              draft-wzwb-opsawg-network-inventory-management-03>.

Li & Bonica               Expires 18 April 2024                 [Page 6]



Internet-Draft            YANG Power Management             October 2023

   [I-D.ietf-ccamp-network-inventory-yang]

              Yu, C., Belotti, S., Bouquier, J., Peruzzini, F., and P.

              Bedard, "A YANG Data Model for Network Hardware

              Inventory", Work in Progress, Internet-Draft, draft-ietf-

              ccamp-network-inventory-yang-02, 9 July 2023,

              <https://datatracker.ietf.org/doc/html/draft-ietf-ccamp-

              network-inventory-yang-02>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate

              Requirement Levels", BCP 14, RFC 2119,

              DOI 10.17487/RFC2119, March 1997,

              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC7223]  Bjorklund, M., "A YANG Data Model for Interface

              Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,

              <https://www.rfc-editor.org/info/rfc7223>.

Authors’ Addresses

   Tony Li

   Juniper Networks

   Email: tony.li@tony.li

   Ron Bonica

   Juniper Networks

   Email: rbonica@juniper.net

Li & Bonica               Expires 18 April 2024                 [Page 7]



NETMOD                                                       J. Lindblad
Internet-Draft                                                     Cisco
Intended status: Standards Track                         20 October 2023
Expires: 22 April 2024

Philatelist, YANG-based collection and aggregation framework integrating
                Telemetry data and Time Series Databases
                   draft-lindblad-tlm-philatelist-00

Abstract

   Timestamped telemetry data is collected en masse today.  Mature tools
   are typically used, but the data is often collected in an ad hoc
   manner.  While the dashboard graphs look great, the resulting data is
   often of questionable quality, not well defined, and hard to compare
   with seemingly similar data from other organizations.

   This document proposes a standard, extensible, cross domain framework
   for collecting and aggregating timestamped telemetry data in a way
   that combines YANG, metadata and Time Series Databases to produce
   more dependable and comparable results.

About This Document

   This note is to be removed before publishing as an RFC.

   The latest revision of this draft can be found at
   https://janlindblad.github.io/netmod-tlm-philatelist/draft-lindblad-
   tlm-philatelist.html.  Status information for this document may be
   found at https://datatracker.ietf.org/doc/draft-lindblad-tlm-
   philatelist/.

   Source for this draft and an issue tracker can be found at
   https://github.com/janlindblad/netmod-tlm-philatelist.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

Lindblad                  Expires 22 April 2024                 [Page 1]



Internet-Draft                 Philatelist                  October 2023

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 22 April 2024.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  The Problem . . . . . . . . . . . . . . . . . . . . . . .   3
     1.2.  The Solution  . . . . . . . . . . . . . . . . . . . . . .   3
     1.3.  The Philatelist Name  . . . . . . . . . . . . . . . . . .   4
   2.  Conventions and Definitions . . . . . . . . . . . . . . . . .   4
   3.  Architecure Overview  . . . . . . . . . . . . . . . . . . . .   5
     3.1.  The Provider Component  . . . . . . . . . . . . . . . . .   7
     3.2.  The Collector Component . . . . . . . . . . . . . . . . .   8
     3.3.  The Processor and Aggregator Components . . . . . . . . .  10
   4.  YANG-based Telemetry Outlook  . . . . . . . . . . . . . . . .  13
   5.  YANG Modules  . . . . . . . . . . . . . . . . . . . . . . . .  13
     5.1.  Base types module for Philatelist . . . . . . . . . . . .  13
     5.2.  Provider interface module for Philatelist . . . . . . . .  21
     5.3.  Collector interface module for Philatelist  . . . . . . .  23
     5.4.  Aggregator interface module for Philatelist . . . . . . .  27
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  30
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  30
   8.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  30
     8.1.  Normative References  . . . . . . . . . . . . . . . . . .  30
     8.2.  Informative References  . . . . . . . . . . . . . . . . .  31
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  31
   Author’s Address  . . . . . . . . . . . . . . . . . . . . . . . .  31

1.  Introduction

Lindblad                  Expires 22 April 2024                 [Page 2]



Internet-Draft                 Philatelist                  October 2023

1.1.  The Problem

   Many organizations today are collecting large amounts of telemetry
   data from their networks and data centers for a variety of purposes.
   Much (most?) of this data is funneled into a Time Series Database
   (TSDB) for display in a dashboard or further (AI-backed) processing
   and decision making.

   While this data collection is often handled using standard tools,
   there generally seems to be little commonality when it comes to what
   is meaured, how the data is aggregated, or definitions of the
   measured quantities (if any).

   Data science issues like adding overlapping quantities, adding
   quantities of different units of measurement, or quantities with
   different scopes, are likely common.  Such errors are hard to detect
   given the ad hoc nature of the collection.  This often leads to
   uncertainty regarding the quality of the conclusions drawn from the
   collected data.

1.2.  The Solution

   The Philatelist framework proposes to standardize the collection,
   definitions of the quantities measured and meta data handling to
   provide a robust ground layer for telemetry collection.  The
   architecture defines a few interfaces, but allows great freedom in
   the implementations with its plug-in architecture.  This allows
   flexibility enough that any kind of quantitiy can be measured, any
   kind of collection protocol and mechanism employed, and the data
   flows aggregated using any kind of operation.

   To do this, YANG is used both to describe the quantities being
   measured, as well as act as the framework for the metadata
   management.  Note that the usa of YANG here does not limit the
   architecture to traditional YANG-based transport protocols.  YANG is
   used to describe the data, regardless of which format it arrives in.

   Initially developed in context of the Power and Energy Efficiency
   work (POWEFF), we realized both the potential and the need for this
   collection and aggregation architecture to become a general framework
   for collection of a variety of metrics.

   There is not much point in knowing the "cost side" of a running
   system (as in energy consumption or CO2-emissions) if that cannot be
   weighed against the "value side" delivered by the system (as in
   transported bytes, VPN connections, music streaming hours, or number
   of cat videos, etc.), which means traditional performance metrics
   will play an equally important role in the collection.

Lindblad                  Expires 22 April 2024                 [Page 3]



Internet-Draft                 Philatelist                  October 2023

   In this initial version, we have done nothing to pull the proposed
   YANG modules out of its POWEFF roots and generalize it for general
   telemetry.  We believe the ideas and merits of this framework
   architecture will be apparent nonetheless in this first version.  For
   the next version, we certainly need to generalize the quantities
   measured and rename the YANG modules and node names.

1.3.  The Philatelist Name

   This specification is about a framework for collection, aggregation
   and interpretation of timestamped telemetry data.  The definition of
   "philatelist" seems close enough.

   1. philatelist

   noun. [’flætlst’] a collector and student of postage stamps.

   Synonyms
   - collector
   - aggregator

       Figure 1: Source: https://www.synonym.com/synonyms/philatelist

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   This document uses the terminology defined in [RFC7950].

   In addition, this document defines the following terms:

   TSDB  Time Series Database.

   Sensor  An entity in a system that delivers a snapshot value of some
      quantity pertaining to the system.  Sensors are identified by
      their Sensor Path.

   Sensor Path  A textual representation of the sensor’s address within
      the system.

Lindblad                  Expires 22 April 2024                 [Page 4]



Internet-Draft                 Philatelist                  October 2023

3.  Architecure Overview

   The deployment of a Philatelist framework consists of a collection of
   plug-in compomnents with well defined interfaces.  Here is an example
   of a deployment.  Each box is numbered in the lower right for easy
   reference.

                         +-----------------+
                         | USER INTERFACE  |
                         |    Dashboard    |
                         |                 |
                         +--------------11-+
                                  |
                         +-----------------+
                         |    PROCESSOR    |
                         | Recommendation  |
                         |     Engine      |
                         +--------------21-+
                                  |
                         +-----------------+
                         |   AGGREGATOR    |
                         |   Data Center   |
                         +--------------31-+
                                  |
          +---------------+-------+-------+--------------+
          |               |               |              |
   +------------+  +------------+  +------------+  +------------+
   | PROCESSOR  |  | AGGREGATOR |  | AGGREGATOR |  | AGGREGATOR |
   | Normalizer |  |  Network   |  |  Storage   |  |  Compute   |
   +---------41-+  +---------42-+  +---------43-+  +---------44-+
          |           |                   |\             |\
   +------------+     |     +------+------------+  +------------+------+
   | COLLECTOR  |     |     | YANG | COLLECTOR  |  | COLLECTOR  | YANG |
   |  Cooling   |     |     +---52-+ Storage 1  |  | Compute 1  +---55-+
   +---------51-+     |            +---------53-+  +---------54-+
          |           |             \ Storage 2  \  \ Compute 2  \
   +------------+     |              +------------+  +------------+
   |  PROVIDER  |     |               \ Storage N  \  \ Compute N  \
   |Utility Bill|     |                +------------+  +------------+
   +---------61-+     |
                      +--------------+
                      |              |
               +------------+  +------------+
               | PROCESSOR  |  | COLLECTOR  |
               | Normalizer |  |  Routers   |
               +---------71-+  +---------72-+
                      |              |\
               +------------+  +------------+

Lindblad                  Expires 22 April 2024                 [Page 5]



Internet-Draft                 Philatelist                  October 2023

               | COLLECTOR  |  |  PROVIDER  |
               |  Firewall  |  |  Router 1  |
               +---------81-+  +---------82-+
                      |         \  Router 2  \
               +------------+    +------------+
               |  PROVIDER  |     \  Router N  \
               |  Firewall  |      +------------+
               +---------91-+

            Figure 2: Example Philatelist component deployment.

   Each component in the above diagram, represents a logical function.
   Many boxes could be running within a single server, or they could be
   fully distrubuted, or anything in between.

   Provider components (61, 82, 91) are running on a telemetry source
   system that supports a YANG-based telemetry data server.  The
   telemetry data flows from the telemetry source system to a Time
   Series Database (TSDB).

   Collector components (51, 72, 81) ensure the Providers are programmed
   properly to deliver the telemetry data to the TSDB designated by the
   collector.  In some cases this flow may be direct from the source to
   the TSDB, in other cases, it may be going through the collector.  In
   some cases the collector may be polling the source, in others it may
   have set up an automatic, periodic subscription.

   Many telemetry source systems will not have any on-board YANG-based
   telemetry server.  Such servers will instead be managed by a
   collector specialized to handle a particular kind of source server
   (53, 54).  These specialized collectors are still responsible to set
   up a telemetry data stream from them to the collector’s TSDB.  In
   this case, the collector will also supply a YANG description (52, 55)
   of the incoming data stream.

   Processor components (21, 41, 71) are transforming the data stream in
   some way, e.g. converting from one unit of measurement to another, or
   adjusting the data values recorded to also include some aspect that
   this particular sensor is not taking into account.

   Aggregator components (31, 42, 43, 44) combine the time series
   telemetry data flows using some operation, e.g. summing, averaging or
   computing the max or min over them.  In this example there are
   aggregators for Network, Storage, Compute and the entire Data Center

Lindblad                  Expires 22 April 2024                 [Page 6]



Internet-Draft                 Philatelist                  October 2023

   On top of the stack, we may often find a (graphical) user interface
   (11), for human consumption of the intelligence acquired by the
   system.  Equally relevant is of course an (AI) application making
   decisions based on findings in the aggregated telemetry flow.

3.1.  The Provider Component

   A Provider is a source of telemetry data that also offers a YANG-
   based management interface.  Each provider typically has a large
   number of "sensors" that can be polled or in some cases subscribed
   to.

   One problem with the sensors is that they are spread around inside
   the source system, and may not be trivial to locate.  Also, the
   metadata assciated with the sensor is often only missing or only
   available in human readable form (free form strings), rather than in
   a strict machine parsable format.

       /hardware/component[name="psu3"]/.../sensor-data/value
       ...
       /interfaces/interface[name="eth0/0"]/.../out-broadcast-packets
       ...
       /routing/mpls/mpls-label-blocks/.../inuse-labels-count
       ...

       Figure 3: Example of scattered potential sensors in a device.

   To solve these problems, the Provider YANG module contains a sensor-
   catalog list.  Essentially a list of all interesting sensors
   available on the system, with their sensor paths and machine parsable
   units, definition and any other metadata.

   An admin user or application can then copy the sensor definition from
   the sensor catalog and insert into the configuration in the colletor.

     +--ro sensor-catalog
         +--ro sensors
           +--ro sensor* [path]
               +--ro path?                     xpath
               +--ro sensor-type?              identityref
               +--ro sensor-location?          something
               +--ro sensor-state?             something
               +--ro sensor-current-reading?   something
               +--ro sensor-precision?         string

        Figure 4: YANG tree diagram of the Provider sensor-catalog.

Lindblad                  Expires 22 April 2024                 [Page 7]



Internet-Draft                 Philatelist                  October 2023

   Note: The "something" YANG-type is used in many places in this
   document.  That is just a temporarty placeholder we use until we have
   figured out what the appropriate type should be.

   The sensor types are defined as YANG identities, making them
   maximally extensible.  Examples of sensor types might be energy
   measured in kWh, or energy measured in J, or temperature measured in
   F, or in C, or in K.

3.2.  The Collector Component

   Collector components collect data points from sources, typically by
   periodic polling or subscriptions, and ensure the collected data is
   stored in a Time Series Database (TSDB).  The actual data stream may
   or may not be passing through the collector component; the collector
   is responsible for ensuring data flows from the source to the
   destination TSDB and that the data has a YANG description and is
   tagged with necessary metadata.  How the collector agrees with a
   source to deliver data in a timely manner is beyond the scope of this
   document.

            +-------------+
            |  COLLECTOR  |
            +-------------+                     ___________
                   |                           /           \
         +------------------+                 ( DESTINATION )
         v                  v                 |\___________/|
   +------------+    +------------+  STREAM 1 |             |
   |   SOURCE   |    |   SOURCE   |  =======> |             |
   | - sensor 1 |    | - sensor 1 |           |             |
   | - sensor 2 |    | - sensor 4 |  STREAM 2 |             |
   | - sensor 3 |    | - sensor 7 |  =======> |             |
   +------------+    +------------+           |             |
             \\                      STREAM 3 |             |
               =============================>  \___________/

         Figure 5: Example of Collector setting up three streams of
            telemetry data from two sources to one desitination.

   Each source holds a number of sensors that may be queried or
   subscribed to.  The collector arranges the sensors into sensour
   groups that presumably are logically related, and that are collected
   using the same method.  A number of collection methods (some YANG-
   based, some not) are modeled directly in the ietf-poweff-
   collector.yang module, but the set is designed to be easily
   extensible.

Lindblad                  Expires 22 April 2024                 [Page 8]



Internet-Draft                 Philatelist                  October 2023

     +-- sensor-groups
     |  +-- sensor-group* [id]
     |     +-- id?                                something
     |     +-- method?                            identityref
     |     +-- get-static-url-once
     |     |  +-- url?                            something
     |     |  +-- format?                         something
     |     +-- gnmi-polling
     |     |  +-- encoding?                       something
     |     |  +-- protocol?                       something
     |     +-- restconf-get-polling
     |     |  +-- xxx?                            something
     |     +-- netconf-get-polling
     |     |  +-- xxx?                            something
     |     +-- restconf-yang-push-subscription
     |     |  +-- xxx?                            something
     |     +-- netconf-yang-push-subscription
     |     |  +-- xxx?                            something
     |     +-- redfish-polling
     |     |  +-- xxx?                            something
     |     +-- frequency?                         sample-frequency
     |     +-- path* [path]
     |        +-- path?                           xpath
     |        +-- sensor-type?                    identityref
     +-- streams
       +-- stream* [id]
           +-- id?                                something
           +-- source*                            string
           +-- sensor-group* [name]
           |  +-- name?   -> ../../../sensor-groups/sensor-group/id
           +-- destination?    -> ../../../destinations/destination/id

       Figure 6: YANG tree diagram of the Collector sensor-groups and
                                  streams.

   The sensor groups are then arranged into streams from a collection of
   sources (that support the same set of sensor groups) to a
   destination.  This structure has been chosen with the assumption that
   there will be many source devices with the same set of sensor groups,
   and we want to minimize repetition.

Lindblad                  Expires 22 April 2024                 [Page 9]



Internet-Draft                 Philatelist                  October 2023

3.3.  The Processor and Aggregator Components

   Processor components take an incoming data flow and transforms it
   somehow, and possibly augments it with a flow of derived information.
   The purpose of the transformation could be to convert between
   different units of measurement, correct for known errors in in the
   input data, or fill in approximate values where there are holes in
   the input data.

   Aggregator components take multiple incoming data flows and combine
   them, typically by adding them together, taking possible differences
   in cadence in the input data flows into account.

   Processor and Aggregator components provide a YANG model of the
   output data, just like the Collector components, so that all data
   flowing in the system has a YANG description and is associated with
   metadata.

   Note: In the current version of the YANG modules, a Processor is
   simply an Aggregator with a single input and output.  Unless we see a
   need to keep these two component types separate, we might remove the
   Processor component and keep it baked in with the Aggregator.

                   +-------------+
                   | AGGREGATOR  |
                   +-------------+
                          |
              +-----------+-----------+
              v                       v
         ___________             ___________
        /           \           /           \
       (  SOURCE 1   )         ( DESTINATION )
       |\___________/| FLOW 1  |\___________/|
       |             | ======> |             |
       |             |         |             |
       |             | FLOW 2  |             |
        \___________/  ===##=>  \___________/
                          ||
         ___________      ||
        /           \     ||
       (  SOURCE 2   )   //
       |\___________/| ==
       |             |
       |             |
       |             |
        \___________/

Lindblad                  Expires 22 April 2024                [Page 10]



Internet-Draft                 Philatelist                  October 2023

         Figure 7: Example of an Aggregator setting up two flows of
            telemetry data from two sources to one desitination.

   In this diagram, the sources and destination look like separate
   TSDBs, which they might be.  They may also be different buckets
   within the same TSDB.

   Each flow is associated with one or more inputs, one output and a
   series of processing operations.  Each input flow and output flow may
   have an pre-processing or post-processing operation applied to it
   separately.  Then all the input flows are combined using one or more
   aggregation operations.  Some basic operations have been defined in
   the Aggregator YANG module, but the set of operations has been
   designed to be maximally extensible.

Lindblad                  Expires 22 April 2024                [Page 11]



Internet-Draft                 Philatelist                  October 2023

     +-- flows
     |  +-- flow* [id]
     |     +-- id?                                string
     |     +-- (chain-position)?
     |        +--:(input)
     |        |  +-- input
     |        |     +-- source?
     |        |           -> ../../../../../sources/source/id
     |        +--:(output)
     |        |  +-- output
     |        |     +-- destination?
     |        |           -> ../../../../../destinations/destination/id
     |        +--:(middle)
     |           +-- middle
     |              +-- inputs*
     |              |     -> ../../../../flows/flow/id
     |              +-- pre-process-inputs?
     |              |     -> ../../../../operations/operation/id
     |              +-- aggregate?
     |              |     -> ../../../../operations/operation/id
     |              +-- post-process-output?
     |                    -> ../../../../operations/operation/id
     +-- operations
       +-- operation* [id]
           +-- id?                                something
           +-- (op-type)?
             +--:(linear-sum)
             |  +-- linear-sum
             +--:(linear-average)
             |  +-- linear-average
             +--:(linear-max)
             |  +-- linear-max
             +--:(linear-min)
             |  +-- linear-min
             +--:(rolling-average)
             |  +-- rolling-average
             |     +-- timespan?                  something
             +--:(filter-age)
             |  +-- filter-age
             |     +-- min-age?                   something
             |     +-- max-age?                   something
             +--:(function)
                 +-- function
                   +-- name?                      something

    Figure 8: YANG tree diagram of the Aggregator flows and operations.

Lindblad                  Expires 22 April 2024                [Page 12]



Internet-Draft                 Philatelist                  October 2023

   The operations listed above are basic aggregation operations.
   Linear-sum is just adding all the input sources together, with linear
   interpolation when their data points don’t align perfectly in time.
   Rolling average is averaging the input flows over a given length of
   time.  The filter-age drops all data points that are outside the min
   to max age.  The function allows plugging in any other function the
   Aggregator may have defined, but more importantly, the operations
   choice is easily extended using YANG augment to include any other
   IETF or vendor specified extensions.

4.  YANG-based Telemetry Outlook

   Much work has already gone into the area of telemetry, YANG, and even
   their intersection.  E.g.
   [I-D.draft-ietf-opsawg-collected-data-manifest-01] and
   [I-D.draft-claise-netconf-metadata-for-collection-03] come to mind.

   Even though this work has a solid foundation and shares many or most
   of the goals with this work, we (the POWEFF team) have not found it
   easy to apply the above work directly in the practical work we do.
   So what we have tried to do is a very pragmatic approach to telemetry
   data collection the way we see it happening on the ground combined
   with the benefits of Model Driven Telemetry (MDT), in practice
   meaning YANG-based with additional YANG-modeled metadata.

   Many essential data sources in real world deployments do not support
   any YANG-based interfaces, and that situation is expected to remain
   for the forseable future, which is why we find it important to be
   able to ingest data from free form (often REST-based) interfaces, and
   then add the necessary rigor on the Collector level.  Then output the
   datastreams in formats that existing, mature tools can consume
   directly.

   In particular, this draft depends on the mapping of YANG-based
   structures to the typical TSDB tag-based formats described in
   [I-D.draft-kll-yang-label-tsdb-00].

   For the evolution of the YANG-based telemetry area, we believe this
   approach, combining pragmatism in the data flow interfaces with rigor
   regarding the data content, is key.  We would like to make this work
   fit in with the works of others in the field.

5.  YANG Modules

5.1.  Base types module for Philatelist

Lindblad                  Expires 22 April 2024                [Page 13]



Internet-Draft                 Philatelist                  October 2023

   <CODE BEGINS>
   module ietf-poweff-types {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-types";
     prefix ietf-poweff-types;

     organization
       "IETF OPSA (Operations and Management Area) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>
        Editor:  Jan Lindblad
                 <mailto:jlindbla@cisco.com>
        Editor:  Snezana Mitrovic
                 <mailto:snmitrov@cisco.com>
        Editor:  Marisol Palmero
                 <mailto:mpalmero@cisco.com>";
     description
       "This YANG module defines basic quantities, measurement units
       and sensor types for the POWEFF framework.

        Copyright (c) 2021 IETF Trust and the persons identified as
        authors of the code. All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Simplified BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions

        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2023-10-12 {
       description
         "Initial revision of POWEFF types";
       reference
         "RFC XXXX: ...";
     }

     typedef something { // FIXME: Used when we haven’t decided the type yet
       type string;
     }
     typedef xpath {
       type string; // FIXME: Proper type needed

Lindblad                  Expires 22 April 2024                [Page 14]



Internet-Draft                 Philatelist                  October 2023

     }
     typedef sample-frequency {
       type string; // FIXME: Proper type needed
     }

     // ========== SENSOR-CLASS ==============================
     identity sensor-class {
       description "Sensor’s relation to the asset it sits on.";
     }
     identity sc-input {
       base sensor-class;
       description "Sensor reports input quantity of the asset it sits
         on.";
     }
     identity sc-output {
       base sensor-class;
       description "Sensor reports output quantity of the asset it sits
         on.";
     }
     identity sc-allocated {
       base sensor-class;
       description "Sensor reports (maximum) allocated quantity of the
         asset it sits on.";
     }

     // ========== SENSOR-QUANTITY ==============================
     identity sensor-quantity {
       description "Sensor’s quantity being measured.";
     }
     identity sq-voltage {
       base sensor-quantity;
       description "Sensor reports electric tension, voltage.";
     }
     identity sq-current {
       base sensor-quantity;
       description "Sensor reports electric current.";
     }
     identity sq-power {
       base sensor-quantity;
       description "Sensor reports power draw (energy per unit of time).";
     }
     identity sq-power-apparent {
       base sq-power;
       description "Sensor reports apparent power, i.e. average electrical
         current times voltage (in VA).";
     }
     identity sq-power-true {
       base sq-power;

Lindblad                  Expires 22 April 2024                [Page 15]



Internet-Draft                 Philatelist                  October 2023

       description "Sensor reports true power, i.e. integral over current
         and voltage at each instant in time.";
     }
     identity sq-energy {
       base sensor-quantity;
       description "Sensor reports actual energy drawn by asset.";
     }
     identity sq-co2-emission {
       base sensor-quantity;
       description "Sensor reports CO2 (carbon dioxide) emission by
         asset.";
     }
     identity sq-co2eq-emission {
       base sensor-quantity;
       description "Sensor reports CO2 (carbon dioxide) equivalent
         emission by asset.";
     }
     identity sq-temperature {
       base sensor-quantity;
       description "Sensor reports temperature of asset.";
     }

     // ========== SENSOR-UNIT ==============================
     identity sensor-unit {
       description "Sensor’s unit of reporting.";
     }
     identity su-volt {
       base sensor-unit;
       base sq-voltage;
       description "Sensor unit volt, V.";
     }
     identity su-ampere {
       base sensor-unit;
       base sq-current;
       description "Sensor unit ampere, A.";
     }
     identity su-watt {
       base sensor-unit;
       base sq-power;
       description "Sensor unit watt, W.";
     }
     identity su-voltampere {
       base sensor-unit;
       base sq-power;
       description "Sensor unit Volt*Ampere, VA.";
     }
     identity su-kw {
       base sensor-unit;

Lindblad                  Expires 22 April 2024                [Page 16]



Internet-Draft                 Philatelist                  October 2023

       base sq-power;
       description "Sensor unit kilowatt, kW.";
     }
     identity su-joule {
       base sensor-unit;
       base sq-energy;
       description "Sensor unit joule, J.";
     }
     identity su-wh {
       base sensor-unit;
       base sq-energy;
       description "Sensor unit watthour, Wh.";
     }
     identity su-kwh {
       base sensor-unit;
       base sq-energy;
       description "Sensor unit kliowatthour, kWh.";
     }
     identity su-kelvin {
       base sensor-unit;
       base sq-temperature;
       description "Sensor unit kelvin, K.";
     }
     identity su-celsius {
       base sensor-unit;
       base sq-temperature;
       description "Sensor unit celsius, C.";
     }
     identity su-farenheit {
       base sensor-unit;
       base sq-temperature;
       description "Sensor unit farenheit, F.";
     }
     identity su-gram {
       base sensor-unit;
       base sq-co2-emission;
       description "Sensor unit gram, g.";
     }
     identity su-kg {
       base sensor-unit;
       base sq-co2-emission;
       description "Sensor unit kliogram, kg.";
     }
     identity su-ton {
       base sensor-unit;
       base sq-co2-emission;
       description "Sensor unit ton, t.";
     }

Lindblad                  Expires 22 April 2024                [Page 17]



Internet-Draft                 Philatelist                  October 2023

     // ========== SENSOR-TYPE ==============================
     identity sensor-type {
       description "Sensor’s type, i.e. combination of class, quantity and
         unit.";
     }
     identity st-v-in {
       base sensor-type;
       base sc-input;
       base sq-voltage;
       base su-volt;
       description "Sensor reporting Voltage In to asset.";
     }
     identity st-v-out {
       base sensor-type;
       base sc-output;
       base sq-voltage;
       base su-volt;
       description "Sensor reporting Voltage Out of asset.";
     }
     identity st-i-in {
       base sensor-type;
       base sc-input;
       base sq-current;
       base su-ampere;
       description "Sensor reporting Current In to asset.";
     }
     identity st-i-out {
       base sensor-type;
       base sc-output;
       base sq-current;
       base su-ampere;
       description "Sensor reporting Current Out of asset.";
     }
     identity st-p-in-apparent-watt {
       base sensor-type;
       base sc-input;
       base sq-power-apparent;
       base su-voltampere;
       description "Sensor reporting Power In to asset as apparent (I*U)
         power.";
     }
     identity st-p-out-apparent-watt {
       base sensor-type;
       base sc-output;
       base sq-power-apparent;
       base su-voltampere;
       description "Sensor reporting Power Out of asset as apparent (I*U)
         power.";

Lindblad                  Expires 22 April 2024                [Page 18]



Internet-Draft                 Philatelist                  October 2023

     }
     identity st-p-in-true-watt {
       base sensor-type;
       base sc-input;
       base sq-power-true;
       base su-watt;
       description "Sensor reporting Power In to asset as true power.";
     }
     identity st-p-out-true-watt {
       base sensor-type;
       base sc-output;
       base sq-power-true;
       base su-watt;
       description "Sensor reporting Power Out of asset as true power.";
     }
     identity st-p-allocated-watt {
       base sensor-type;
       base sc-allocated;
       base sq-power;
       base su-watt;
       description "Sensor reporting Allocated Power for asset.";
     }
     identity st-w-j {
       base sensor-type;
       base sq-energy;
       base su-joule;
       description "Sensor reporting energy draw of asset in J.";
     }
     identity st-w-wh {
       base sensor-type;
       base sq-energy;
       base su-wh;
       description "Sensor reporting energy draw of asset in Wh.";
     }
     identity st-w-kwh {
       base sensor-type;
       base sq-energy;
       base su-kwh;
       description "Sensor reporting energy draw of asset in kWh.";
     }
     identity st-t-k {
       base sensor-type;
       base sq-temperature;
       base su-kelvin;
       description "Sensor reporting Temperature of asset in K.";
     }
     identity st-t-c {
       base sensor-type;

Lindblad                  Expires 22 April 2024                [Page 19]



Internet-Draft                 Philatelist                  October 2023

       base sq-temperature;
       base su-celsius;
       description "Sensor reporting Temperature of asset in °C.";
     }
     identity st-t-f {
       base sensor-type;
       base sq-temperature;
       base su-farenheit;
       description "Sensor reporting Temperature of asset in °F.";
     }

     // ========== COLLECTION-METHOD ==============================

     identity collection-method;
     identity cm-polled {
       base collection-method;
     }
     identity cm-gnmi {
       base collection-method;
     }
     identity cm-restconf {
       base collection-method;
     }
     identity cm-netconf {
       base collection-method;
     }
     identity cm-redfish {
       base collection-method;
     }
     identity get-static-url-once {
       base collection-method;
     }
     identity gnmi-polling {
       base cm-gnmi;
       base cm-polled;
     }
     identity restconf-get-polling {
       base cm-restconf;
       base cm-polled;
     }
     identity netconf-get-polling {
       base cm-netconf;
       base cm-polled;
     }
     identity restconf-yang-push-subscription {
       base cm-restconf;
     }
     identity netconf-yang-push-subscription {

Lindblad                  Expires 22 April 2024                [Page 20]



Internet-Draft                 Philatelist                  October 2023

       base cm-netconf;
     }
     identity redfish-polling {
       base cm-redfish;
     }
   }
   <CODE ENDS>

5.2.  Provider interface module for Philatelist

   <CODE BEGINS>
   module ietf-poweff-provider {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-provider";
     prefix ietf-poweff-provider;

     import ietf-poweff-types {
       prefix ietf-poweff-types;
     }

     organization
       "IETF OPSA (Operations and Management Area) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>
        Editor:  Jan Lindblad
                 <mailto:jlindbla@cisco.com>
        Editor:  Snezana Mitrovic
                 <mailto:snmitrov@cisco.com>
        Editor:  Marisol Palmero
                 <mailto:mpalmero@cisco.com>";
     description
       "This YANG module defines the POWEFF Provider.

        Copyright (c) 2021 IETF Trust and the persons identified as
        authors of the code. All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Simplified BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions

        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

Lindblad                  Expires 22 April 2024                [Page 21]



Internet-Draft                 Philatelist                  October 2023

     revision 2023-10-12 {
       description
         "Initial revision of POWEFF Provider";
       reference
         "RFC XXXX: ...";
     }

     grouping provider-g {
       container sensor-catalog {
         config false;
         container sensors {
           list sensor {
             key path;
             leaf path { type ietf-poweff-types:xpath; }
             leaf sensor-type { type identityref { base ietf-poweff-types:sensor-
type; }}

             leaf sensor-location {
               type ietf-poweff-types:something;
               description
                 "Indicates the current location where the sensor is located
                   in the chassis,typically refers to slot";
             }
             leaf sensor-state { // FIXME: What does this mean?
               type ietf-poweff-types:something;
               description
                 "Current state of the sensor";
             }
             leaf sensor-current-reading { // FIXME: Do we want a copy of the val
ue here?
               type ietf-poweff-types:something;
               description
                 "Current reading of the sensor";
             }
             leaf sensor-precision {
               type string;
               description
                 "Maximum deviation to be considered. This attribute mainly
                 will apply to drawn power, which corresponds to PSU PowerIn
                 measured power or calculated power; assuming discrepancy
                 between Real Power, power collected from a power meter, and
                 power measured or calculated from the metrics provided by
                 the sensors";
             }
             container sensor-thresholds { // FIXME: Is this for generating alarm
s, or what?
               description
                 "Threshold values for the particular sensor.
                 Default values shall beprovided as part of static data
                 but when configurable need to be pulledfrom the device.
                 Ideally, the sensor should allow configuing

Lindblad                  Expires 22 April 2024                [Page 22]



Internet-Draft                 Philatelist                  October 2023

                 thesethreshold values";

               leaf minor-low {
                 type string;
                 description
                   "minor-low";
               }
               leaf minor-high {
                 type string;
                 description
                   "minor-high";
               }
               leaf major-low {
                 type string;
                 description
                   "major-low";
               }
               leaf major-high {
                 type string;
                 description
                   "major-high";
               }
               leaf critical-low {
                 type string;
                 description
                   "critical-low";
               }
               leaf critical-high {
                 type string;
                 description
                   "critical-high";
               }
               leaf shutdown { // FIXME: What does this mean for a sensor?
                 type string;
                 description
                   "shutdown";
               }
             }
           }
         }
       }
     }
   }
   <CODE ENDS>

5.3.  Collector interface module for Philatelist

Lindblad                  Expires 22 April 2024                [Page 23]



Internet-Draft                 Philatelist                  October 2023

   <CODE BEGINS>
   module ietf-poweff-collector {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-collector";
     prefix ietf-poweff-collector;

     import ietf-poweff-types {
       prefix ietf-poweff-types;
     }

     organization
       "IETF OPSA (Operations and Management Area) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>
        Editor:  Jan Lindblad
                 <mailto:jlindbla@cisco.com>
        Editor:  Snezana Mitrovic
                 <mailto:snmitrov@cisco.com>
        Editor:  Marisol Palmero
                 <mailto:mpalmero@cisco.com>";
     description
       "This YANG module defines the POWEFF Collector.

        Copyright (c) 2021 IETF Trust and the persons identified as
        authors of the code. All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Simplified BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions

        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2023-10-12 {
       description
         "Initial revision of POWEFF Collector";
       reference
         "RFC XXXX: ...";
     }

   /*

Lindblad                  Expires 22 April 2024                [Page 24]



Internet-Draft                 Philatelist                  October 2023

     A COLLECTOR programs one or more SOURCE(s) to generate a
     STREAM of telemetry data.  The STREAM is sent to a specific
     DESTINATION.

     Each STREAM consists of timestamped sensor values from each
     sensor in a sensor group.

                +-------------+
                |  COLLECTOR  |
                +-------------+                     ___________
                       |                           /           \
             +------------------+                 ( DESTINATION )
             v                  v                 |\___________/|
       +------------+    +------------+  STREAM 1 |             |
       |   SOURCE   |    |   SOURCE   |  =======> |             |
       | - sensor 1 |    | - sensor 1 |           |             |
       | - sensor 2 |    | - sensor 4 |  STREAM 2 |             |
       | - sensor 3 |    | - sensor 7 |  =======> |             |
       +------------+    +------------+           |             |
                 \\                      STREAM 3 |             |
                   =============================>  \___________/

   */

     grouping data-endpoint-g {
       leaf url { type ietf-poweff-types:something; }
       leaf organization { type ietf-poweff-types:something; }
       leaf bucket { type ietf-poweff-types:something; }
       container impl-specific {
         list binding {
           key key;
           leaf key { type string; }
           choice value-type {
             leaf value { type string; }
             leaf-list values { type string; ordered-by user; }
             leaf env-var { type string; }
           }
         }
       }
     }

     grouping sensor-group-g {
       leaf method {
         type identityref {
           base ietf-poweff-types:collection-method;
         }
       }
       container get-static-url-once {

Lindblad                  Expires 22 April 2024                [Page 25]



Internet-Draft                 Philatelist                  October 2023

         when "derived-from-or-self(../method, ’ietf-poweff-types:get-static-url-
once’)";
         leaf url { type ietf-poweff-types:something; }
         leaf format { type ietf-poweff-types:something; } // JSON-IETF, XML, etc
       }
       container gnmi-polling {
         when "derived-from-or-self(../method, ’ietf-poweff-types:gnmi-polling’)"
;
         leaf encoding { type ietf-poweff-types:something; } // self-describing-g
pb
         leaf protocol { type ietf-poweff-types:something; } // protocol grpc no-
tls
       }
       container restconf-get-polling {
         when "derived-from-or-self(../method, ’ietf-poweff-types:restconf-get-po
lling’)";
         leaf xxx { type string; }
       }
       container netconf-get-polling {
         when "derived-from-or-self(../method, ’ietf-poweff-types:netconf-get-pol
ling’)";
         leaf xxx { type string; }
       }
       container restconf-yang-push-subscription {
         when "derived-from-or-self(../method, ’ietf-poweff-types:restconf-yang-p
ush-subscription’)";
         leaf xxx { type string; }
       }
       container netconf-yang-push-subscription {
         when "derived-from-or-self(../method, ’ietf-poweff-types:netconf-yang-pu
sh-subscription’)";
         leaf xxx { type string; }
       }
       container redfish-polling {
         when "derived-from-or-self(../method, ’ietf-poweff-types:redfish-polling
’)";
         leaf xxx { type string; }
       }
       leaf frequency {
         when "derived-from(../method, ’ietf-poweff-types:cm-polled’)";
         type ietf-poweff-types:sample-frequency;
       }
       list path {
         key path;
         leaf path { type ietf-poweff-types:xpath; }
         leaf sensor-type { type identityref { base ietf-poweff-types:sensor-type
; }}
         leaf attribution { type string; }
       }
     }

     grouping collector-g {
       container poweff-collector {
         container destinations {
           list destination {
             key id;
             leaf id { type ietf-poweff-types:something; }
             uses data-endpoint-g;



Lindblad                  Expires 22 April 2024                [Page 26]



Internet-Draft                 Philatelist                  October 2023

           }
         }

         container sensor-groups {
           list sensor-group {
             key id;
             leaf id { type ietf-poweff-types:something; }
             uses sensor-group-g;
           }
         }

         container streams {
           list stream {
             key id;
             leaf id { type ietf-poweff-types:something; }
             leaf-list source { type string; } // Implementation specific meaning
, possibly wildcards
             list sensor-group {
               key name;
               leaf name { type leafref { path ../../../sensor-groups/sensor-grou
p/id; }}
             }
             leaf destination { type leafref { path ../../../destinations/destina
tion/id; }}
           }
         }
       }
     }
   }
   <CODE ENDS>

5.4.  Aggregator interface module for Philatelist

   <CODE BEGINS>
   module ietf-poweff-aggregator {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-poweff-aggregator";
     prefix ietf-poweff-aggregator;

     import ietf-poweff-types {
       prefix ietf-poweff-types;
     }
     import ietf-poweff-collector {
       prefix ietf-poweff-collector;
     }

     organization
       "IETF OPSA (Operations and Management Area) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>

Lindblad                  Expires 22 April 2024                [Page 27]



Internet-Draft                 Philatelist                  October 2023

        Editor:  Jan Lindblad
                 <mailto:jlindbla@cisco.com>
        Editor:  Snezana Mitrovic
                 <mailto:snmitrov@cisco.com>
        Editor:  Marisol Palmero
                 <mailto:mpalmero@cisco.com>";
     description
       "This YANG module defines the POWEFF Aggregator.

        Copyright (c) 2021 IETF Trust and the persons identified as
        authors of the code. All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject to
        the license terms contained in, the Simplified BSD License set
        forth in Section 4.c of the IETF Trust’s Legal Provisions

        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2023-10-12 {
       description
         "Initial revision of POWEFF Aggregator";
       reference
         "RFC XXXX: ...";
     }

   /*

     An AGGREGATOR ensures data from one or more SOURCE(s) are
     combined into a FLOW using a (sequence of) OPERATIONs (OPs)
     to generate a new data set in the DESTINATION (which could
     be a new collection in the same data storage system as the
     SOURCE).

                   +-------------+
                   | AGGREGATOR  |
                   +-------------+
                          |
              +-----------+-----------+
              v                       v
         ___________             ___________
        /           \           /           \
       (  SOURCE 1   )         ( DESTINATION )

Lindblad                  Expires 22 April 2024                [Page 28]



Internet-Draft                 Philatelist                  October 2023

       |\___________/| FLOW 1  |\___________/|
       |             | ======> |             |
       |             |         |             |
       |             | FLOW 2  |             |
        \___________/  ===##=>  \___________/
                          ||
         ___________      ||
        /           \     ||
       (  SOURCE 2   )   //
       |\___________/| ==
       |             |
       |             |
       |             |
        \___________/

   */

     grouping aggregator-g {
       container poweff-aggregator {
         container sources {
           list source {
             key id;
             leaf id { type ietf-poweff-types:something; }
             uses ietf-poweff-collector:data-endpoint-g;
           }
         }
         container destinations {
           list destination {
             key id;
             leaf id { type ietf-poweff-types:something; }
             uses ietf-poweff-collector:data-endpoint-g;
           }
         }
         container flows {
           list flow {
             key id;
             leaf id { type string; }
             choice chain-position {
               container input {
                 leaf source { type leafref { path ../../../../../sources/source/
id; }}
               }
               container output {
                 leaf destination { type leafref { path ../../../../../destinatio
ns/destination/id; }}
               }
               container middle {
                 leaf-list inputs { type leafref { path ../../../../flows/flow/id
; }}
                 leaf pre-process-inputs { type leafref { path ../../../../operat
ions/operation/id; }}

Lindblad                  Expires 22 April 2024                [Page 29]



Internet-Draft                 Philatelist                  October 2023

                 leaf aggregate { type leafref { path ../../../../operations/oper
ation/id; }}
                 leaf post-process-output { type leafref { path ../../../../opera
tions/operation/id; }}
               }
             }
           }
         }
         container operations {
           list operation {
             key id;
             leaf id { type ietf-poweff-types:something; }
             choice op-type {
               container linear-sum {}
               container linear-average {}
               container linear-max {}
               container linear-min {}
               container rolling-average {
                 leaf timespan { type ietf-poweff-types:something; }
               }
               container filter-age {
                 leaf min-age { type ietf-poweff-types:something; }
                 leaf max-age { type ietf-poweff-types:something; }
               }
               container function {
                 leaf name { type ietf-poweff-types:something; }
               }
             }
           }
         }
       }
     }
   }
   <CODE ENDS>

6.  Security Considerations

   TODO Security

7.  IANA Considerations

   This document has no IANA actions.

8.  References

8.1.  Normative References

   [I-D.draft-kll-yang-label-tsdb-00]
              Larsson, K., "Mapping YANG Data to Label-Set Time Series",
              Work in Progress, Internet-Draft, draft-kll-yang-label-

Lindblad                  Expires 22 April 2024                [Page 30]



Internet-Draft                 Philatelist                  October 2023

              tsdb-00, 18 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-kll-yang-
              label-tsdb-00>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/rfc/rfc7950>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

8.2.  Informative References

   [I-D.draft-claise-netconf-metadata-for-collection-03]
              Claise, B., Nayyar, M., and A. R. Sesani, "Per-Node
              Capabilities for Optimum Operational Data Collection",
              Work in Progress, Internet-Draft, draft-claise-netconf-
              metadata-for-collection-03, 25 January 2022,
              <https://datatracker.ietf.org/doc/html/draft-claise-
              netconf-metadata-for-collection-03>.

   [I-D.draft-ietf-opsawg-collected-data-manifest-01]
              Claise, B., Quilbeuf, J., Lopez, D., Martinez-Casanueva,
              I. D., and T. Graf, "A Data Manifest for Contextualized
              Telemetry Data", Work in Progress, Internet-Draft, draft-
              ietf-opsawg-collected-data-manifest-01, 10 July 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
              collected-data-manifest-01>.

Acknowledgments

   Kristian Larsson has provided invaluable insights, experience and
   validation of the design.  Many thanks to the entire POWEFF team for
   their committment, flexibility and hard work behind this.  Hat off to
   Benoît Claise, who inspires by the extensive work produced in IETF
   over the years, and in this area in particular.

Author’s Address

   Jan Lindblad
   Cisco
   Email: jlindbla@cisco.com

Lindblad                  Expires 22 April 2024                [Page 31]



Operations and Management Area Working Group                    D. Lopez
Internet-Draft                                                 A. Pastor
Intended status: Informational                                Telefonica
Expires: 2 September 2024                                  A. Huang Feng
                                                               INSA-Lyon
                                                             H. Birkholz
                                                          Fraunhofer SIT
                                                            1 March 2024

           Applying COSE Signatures for YANG Data Provenance
                 draft-lopez-opsawg-yang-provenance-02

Abstract

   This document defines a mechanism based on COSE signatures to provide
   and verify the provenance of YANG data, so it is possible to verify
   the origin and integrity of a dataset, even when those data are going
   to be processed and/or applied in workflows where a crypto-enabled
   data transport directly from the original data stream is not
   available.  As the application of evidence-based OAM automation and
   the use of tools such as AI/ML grow, provenance validation becomes
   more relevant in all scenarios.  The use of compact signatures
   facilitates the inclusion of provenance strings in any YANG schema
   requiring them.

About This Document

   This note is to be removed before publishing as an RFC.

   The latest revision of this draft can be found at
   https://dr2lopez.github.io/yang-provenance/draft-lopez-opsawg-yang-
   provenance.html.  Status information for this document may be found
   at https://datatracker.ietf.org/doc/draft-lopez-opsawg-yang-
   provenance/.

   Discussion of this document takes place on the Operations and
   Management Area Working Group Working Group mailing list
   (mailto:opsawg@ietf.org), which is archived at
   https://mailarchive.ietf.org/arch/browse/opsawg/.  Subscribe at
   https://www.ietf.org/mailman/listinfo/opsawg/.

   Source for this draft and an issue tracker can be found at
   https://github.com/dr2lopez/yang-provenance.

Lopez, et al.           Expires 2 September 2024                [Page 1]



Internet-Draft            yang-data-provenance                March 2024

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Conventions and Definitions . . . . . . . . . . . . . . . . .   4
   3.  Defining Provenance Elements  . . . . . . . . . . . . . . . .   4
     3.1.  Provenance Signature Strings  . . . . . . . . . . . . . .   5
     3.2.  Signature and Verification Procedures . . . . . . . . . .   5
     3.3.  Canonicalization  . . . . . . . . . . . . . . . . . . . .   6
     3.4.  Provenance-Signature YANG Module  . . . . . . . . . . . .   6
   4.  Enclosing Methods . . . . . . . . . . . . . . . . . . . . . .   7
     4.1.  Including a Provenance Leaf in a YANG Element . . . . . .   8
     4.2.  Including a Provenance Signature in NETCONF Event
           Notifications and YANG-Push Notifications . . . . . . . .  10
       4.2.1.  YANG Tree Diagram . . . . . . . . . . . . . . . . . .  11
       4.2.2.  YANG Module . . . . . . . . . . . . . . . . . . . . .  11
     4.3.  Including Provenance as Metadata in YANG Instance Data  .  13
       4.3.1.  YANG Module . . . . . . . . . . . . . . . . . . . . .  13

Lopez, et al.           Expires 2 September 2024                [Page 2]



Internet-Draft            yang-data-provenance                March 2024

     4.4.  Inclduing Provenance in YANG Annotations  . . . . . . . .  13
       4.4.1.  YANG Module . . . . . . . . . . . . . . . . . . . . .  14
   5.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
     6.1.  IETF XML Registry . . . . . . . . . . . . . . . . . . . .  14
     6.2.  YANG Module Name  . . . . . . . . . . . . . . . . . . . .  15
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  15
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  17
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  17
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  17

1.  Introduction

   OAM automation, generally based on closed-loop principles, requires
   at least two datasets to be used.  Using the common terms in Control
   Theory, we need those from the plant (the network device or segment
   under control) and those to be used as reference (the desired values
   of the relevant data).  The usual automation behavior compares these
   values and takes a decision, by whatever the method (algorithmic,
   rule-based, an AI model tuned by ML...) to decide on a control action
   according to this comparison.  Assurance of the origin and integrity
   of these datasets, what we refer in this document as "provenance",
   becomes essential to guarantee a proper behavior of closed-loop
   automation.

   When datasets are made available as an online data flow, provenance
   can be assessed by properties of the data transport protocol, as long
   as some kind of cryptographic protocol is used for source
   authentication, with TLS, SSH and IPsec as the main examples.  But
   when these datasets are stored, go through some pre-processing or
   aggregation stages, or even cryptographic data transport is not
   available, provenance must be assessed by other means.

   The original use case for this provenance mechanism is associated
   with [YANGmanifest], in order to provide a proof of the origin and
   integrity of the provided metadata, and therefore the examples in
   this document use the modules described there, but it soon became
   clear that it could be extended to any YANG datamodel to support
   provenance evidence.  An analysis of other potential use cases
   suggested the interest of defining an independent, generally
   applicable mechanism.

Lopez, et al.           Expires 2 September 2024                [Page 3]



Internet-Draft            yang-data-provenance                March 2024

   Provenance verification by signatures incorporated in YANG data can
   be applied to any data processing pipeline, whether they rely on an
   online flow or use some kind of data store, such as data lakes or
   time-series databases.  The application of recorded data for ML
   training or validation constitute the most relevant examples of these
   scenarios.

   This document provides a mechanism for including digital signatures
   within YANG data.  It applies COSE [RFC9052] to make the signature
   compact and reduce the resources required for calculating it.  This
   mechanism is applicable to any serialization of the YANG data
   supporting a clear method for canonicalization, but this document
   considers three base ones: CBOR, JSON and XML.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The term "data provenance" refers to a documented trail accounting
   for the origin of a piece of data and where it has moved from to
   where it is presently.  The signature mechanism provided here can be
   recursively applied to allow this accounting for YANG data.

3.  Defining Provenance Elements

   The provenance for a given YANG element MUST be convened by a leaf
   element, containing the COSE signature bitstring built according to
   the procedure defined below in this section.  The provenance leaf
   MUST be of type provenance-signature, defined as follows:

typedef provenance-signature {
     type binary;
     description
      "The provenance-signature type represents a digital signature
       corresponding to the associated YANG element. The signature is based
       on COSE and generated using a canonicalized version of the
       associated element.";
     reference
      "RFC 9052: CBOR Object Signing and Encryption (COSE): Structures and Proces
s
       draft-lopez-opsawg-yang-provenance";
}

Lopez, et al.           Expires 2 September 2024                [Page 4]



Internet-Draft            yang-data-provenance                March 2024

3.1.  Provenance Signature Strings

   Provenance signature strings are COSE single signature messages with
   [nil] payload, according to COSE conventions and registries, and with
   the following structure (as defined by [RFC9052], Section 4.2):

   COSE_Sign1 = [
   protected /algorithm-identifier, kid, serialization-method/
   unprotected /algorithm-parameters/
   signature /using as external data the content of the YANG
              (meta-)data without the signature leaf/
   ]

   The COSE_Sign1 procedure yields a bitstring when building the
   signature and expects a bitstring for checking it, hence the proposed
   type for provenance signature leaves.  The structure of the
   COSE_Sign1 consists of:

   *  The algorithm-identifier, which MUST follow COSE conventions and
      registries.

   *  The kid (Key ID), to be locally agreed, used and interpreted by
      the signer and the signature validator.  URIs [RFC3986] and
      RFC822-style [RFC5322] identifiers are typical values to be used
      as kid.

   *  The serialization-method, a string identifying the YANG
      serialization in use.  It MUST be one of the three possible values
      "xml" (for XML serialization [RFC7950]), "json" (for JSON
      serialization [RFC7951]) or "cbor" (for CBOR serialization
      [RFC9254]).

   *  The value algorithm-parameters, which MUST follow the COSE
      conventions for providing relevant parameters to the signing
      algorithm.

   *  The signature for the YANG element provenance is being established
      for, to be produced and verified according to the procedure
      described below for each one of the enclosing methods for the
      provenance string described below.

3.2.  Signature and Verification Procedures

   To keep a concise signature and avoid the need for wrapping YANG
   constructs in COSE envelopes, the whole signature MUST be built and
   verified by means of externally supplied data, as defined in
   [RFC9052], Section 4.3, with a [nil] payload.

Lopez, et al.           Expires 2 September 2024                [Page 5]



Internet-Draft            yang-data-provenance                March 2024

   The byte strings to be used as input to the signature and
   verification procedures MUST be built by:

   *  Selecting the exact YANG content to be used, according to the
      corresponding enclosing methods.

   *  Applying the corresponding canonicalization method as described in
      the following section.

3.3.  Canonicalization

   Signature generation and verification require a canonicalization
   method to be applied, that depends on the serialization used.
   According to the three types of serialization defined, the following
   canonicalization methods MUST be applied:

   *  For CBOR, length-first core deterministic encoding, as defined by
      [RFC8949].

   *  For JSON, JSON Canonicalization Scheme (JCS), as defined by
      [RFC8785].

   *  For XML, Exclusive XML Canonicalization 1.0, as defined by
      [XMLSig].

3.4.  Provenance-Signature YANG Module

   This module defines a provenance-signature type to be used in other
   YANG modules.

   <CODE BEGINS> file "ietf-yang-provenance@2024-02-28.yang"
   module ietf-yang-provenance {
     yang-version 1.1;
     namespace
       "urn:ietf:params:xml:ns:yang:ietf-yang-provenance";
     prefix iyangprov;

     organization "IETF OPSAWG (Operations and Management Area Working Group)";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>

        Authors:  Alex Huang Feng
                  <mailto:alex.huang-feng@insa-lyon.fr>
                  Diego Lopez
                  <mailto:diego.r.lopez@telefonica.com>
                  Antonio Pastor
                  <mailto:antonio.pastorperales@telefonica.com>

Lopez, et al.           Expires 2 September 2024                [Page 6]



Internet-Draft            yang-data-provenance                March 2024

                  Henk Birkholz
                  <mailto:henk.birkholz@sit.fraunhofer.de>";

     description
       "Defines a binary provenance-signature type to be used in other YANG
       modules.

       Copyright (c) 2024 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or without
       modification, is permitted pursuant to, and subject to the license
       terms contained in, the Revised BSD License set forth in Section
       4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC XXXX; see the RFC
       itself for full legal notices.";

     revision 2024-02-28 {
       description
         "First revision";
       reference
         "RFC XXXX: Applying COSE Signatures for YANG Data Provenance";
     }

     typedef provenance-signature {
       type binary;
       description
         "The provenance-signature type represents a digital signature
         corresponding to the associated YANG element. The signature is based
         on COSE and generated using a canonicalized version of the
         associated element.";
       reference
         "RFC XXXX: Applying COSE Signatures for YANG Data Provenance";
     }
   }
   <CODE ENDS>

4.  Enclosing Methods

   Once defined the procedures for generating and verifying the
   provenance signature string, let’s consider how these signatures can
   be integrated with the associated YANG data by enclosing the
   signature in the data structure.  This document considers four
   different enclosing methods, suitable for different stages of the
   YANG schema and usage patterns of the YANG data.  The enclosing
   method defines not only how the provenance signature string is

Lopez, et al.           Expires 2 September 2024                [Page 7]



Internet-Draft            yang-data-provenance                March 2024

   combined with the signed YANG data but also the specific procedure
   for selecting the specific YANG content to be processed when signing
   and verifying

4.1.  Including a Provenance Leaf in a YANG Element

   This enclosing method requires a specific element in the YANG schema
   defining the element to be signed (the enclosing element), and thus
   implies considering provenance signatures when creating the
   corresponding YANG module, or the update of existing modules willing
   to support this provenance enclosing method.

   When using this enclosing method, a provenance-signature leaf MAY
   appear at any position in the enclosing element, but only one such
   leaf MUST be defined for the enclosing element.  If the enclosing
   element contains other non-leaf elements, they MAY provide their own
   provenance-signature leaf, according to the same rule.  In this case,
   the provenance-signature leaves in the children elements are
   applicable to the specific child element where they are enclosed,
   while the provenance-signature leaf enclosed in the top-most element
   is applicable to the whole element contents, including the children
   provenance-signature leaf themselves.  This allows for recursive
   provenance validation, data aggregation, and the application of
   provenance verification of relevant children elements at different
   stages of any data processing pipeline.

   The specific YANG content to be processed SHALL be generated by
   taking the whole enclosing element and eliminiating the leaf
   containing the provenance signature string.

   As example, let us consider the two modules proposed in
   [YANGmanifest].  For the platform-manifest module, the provenance for
   a platform would be provided by the optional platform-provenance leaf
   shown below:

Lopez, et al.           Expires 2 September 2024                [Page 8]



Internet-Draft            yang-data-provenance                March 2024

   module: ietf-platform-manifest
     +--ro platforms
        +--ro platform* [id]
          +--ro id                      string
          +--ro name?                   string
          +--ro vendor?                 string
          +--ro vendor-pen?             uint32
          +--ro software-version?       string
          +--ro software-flavor?        string
          +--ro os-version?             string
          +--ro os-type?                string
          +--ro platform-provenance?    provenance-signature
          +--ro yang-push-streams
          |  +--ro stream* [name]
          |     +--ro name
          |     +--ro description?
          +--ro yang-library
          + . . .
          .
          .
          .

   For data collections, the provenance of each one would be provided by
   the optional collector-provenance leaf, as shown below:

   module: ietf-data-collection-manifest
     +--ro data-collections
        +--ro data-collection* [platform-id]
        +--ro platform-id
        |       -> /p-mf:platforms/platform/id
        +--ro collector-provenance?   provenance-signature
        +--ro yang-push-subscriptions
          +--ro subscription* [id]
            +--ro id
            |      sn:subscription-id
            +
            .
            .
            .
        + . . .
        |
        .
        .
        .

   Note how, in the two examples, the element bearing the provenance
   signature appears at different positions in the enclosing element.
   And note that, for processing the element for signature generation

Lopez, et al.           Expires 2 September 2024                [Page 9]



Internet-Draft            yang-data-provenance                March 2024

   and verification, the signature element MUST be eliminated from the
   enclosing element before applying the corresponding canonicalization
   method.

   Note that, in application of the recursion mechanism described above,
   a provenance element could be included at the top of any of the
   collections, supporting the verification of the provenance of the
   collection itself (as provided by a specific collector), without
   interfering with the verification of the provenance of each of the
   collection elements.  As an example, in the case of the platform
   manifests it would look like:

   module: ietf-platform-manifest
     +--ro platforms
        +--ro platform-collection-provenance? provenance-signature
        +--ro platform* [id]
          +--ro platform-provenance?          provenance-signature
          +--ro id                            string
          +--ro name?                         string
          +--ro vendor?                       string
          + . . .
          .
          .
          .

   Note here that, to generate the YANG content to be processed in the
   case of the collection the provenance leafs of the indivual elements
   SHALL NOT be eliminated, as it SHALL be the case when generating the
   YANG content to be processed for each individual element in the
   collection.

4.2.  Including a Provenance Signature in NETCONF Event Notifications
      and YANG-Push Notifications

   The signature mechanism proposed in this document MAY be used with
   NETCONF Event Notifications [RFC5277] and YANG-Push [RFC8641] to sign
   the generated notifications directly from the publisher nodes.  The
   signature is added to the header of the Notification along with the
   eventTime leaf.

   The YANG content to be processed MUST consist of the content of the
   notificationContent element.

   The following sections define the YANG module augmenting the ietf-
   notification module.

Lopez, et al.           Expires 2 September 2024               [Page 10]



Internet-Draft            yang-data-provenance                March 2024

4.2.1.  YANG Tree Diagram

   The following is the YANG tree diagram [RFC8340] for the ietf-
   notification-provenance augmentation within the ietf-notification.

   module: ietf-notification-provenance

     augment-structure /inotif:notification:
       +-- notification-provenance?   iyangprov:provenance-signature

   And the following is the full YANG tree diagram for the notification.

module: ietf-notification

  structure notification:
    +-- eventTime                             yang:date-and-time
    +-- inotifprov:notification-provenance?   iyangprov:provenance-signature

4.2.2.  YANG Module

   The module augments ietf-notification module
   [I-D.ahuang-netconf-notif-yang] adding the signature leaf in the
   notification header.

   <CODE BEGINS> file "ietf-notification-provenance@2024-02-28.yang"
   module ietf-notification-provenance {
     yang-version 1.1;
     namespace
       "urn:ietf:params:xml:ns:yang:ietf-notification-provenance";
     prefix inotifprov;

     import ietf-notification {
       prefix inotif;
       reference
         "draft-ahuang-netconf-notif-yang: NETCONF Event Notification YANG";
     }
     import ietf-yang-provenance {
       prefix iyangprov;
       reference
         "RFC XXXX: Applying COSE Signatures for YANG Data Provenance";
     }
     import ietf-yang-structure-ext {
       prefix sx;
       reference
         "RFC 8791: YANG Data Structure Extensions";
     }

     organization "IETF OPSAWG (Operations and Management Area Working Group)";

Lopez, et al.           Expires 2 September 2024               [Page 11]



Internet-Draft            yang-data-provenance                March 2024

     contact
       "WG Web:   <https://datatracker.ietf.org/wg/opsawg/>
        WG List:  <mailto:opsawg@ietf.org>

        Authors:  Alex Huang Feng
                  <mailto:alex.huang-feng@insa-lyon.fr>
                  Diego Lopez
                  <mailto:diego.r.lopez@telefonica.com>
                  Antonio Pastor
                  <mailto:antonio.pastorperales@telefonica.com>
                  Henk Birkholz
                  <mailto:henk.birkholz@sit.fraunhofer.de>";

     description
       "Defines a binary provenance-signature type to be used in other YANG
       modules.

       Copyright (c) 2024 IETF Trust and the persons identified as
       authors of the code.  All rights reserved.

       Redistribution and use in source and binary forms, with or without
       modification, is permitted pursuant to, and subject to the license
       terms contained in, the Revised BSD License set forth in Section
       4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
       (https://trustee.ietf.org/license-info).

       This version of this YANG module is part of RFC XXXX; see the RFC
       itself for full legal notices.";

     revision 2024-02-28 {
       description
         "First revision";
       reference
         "RFC XXXX: Applying COSE Signatures for YANG Data Provenance";
     }

     sx:augment-structure "/inotif:notification" {
       leaf notification-provenance {
         type iyangprov:provenance-signature;
         description
           "COSE signature of the content of the Notification for
           provenance verification.";
       }
     }
   }
   <CODE ENDS>

Lopez, et al.           Expires 2 September 2024               [Page 12]



Internet-Draft            yang-data-provenance                March 2024

4.3.  Including Provenance as Metadata in YANG Instance Data

   Provenance signature strings can be included as part of the metadata
   in YANG instance data files, as defined in [RFC9195] for data at
   rest.  The augmented YANG tree diagram including the provenance
   signature is as follows:

   module: ietf-yang-instance-data-provenance
     augment-structure instance-data-set:
       +--provenance-string?   provenance-signature

   The provenance signature string in this enclosing method applies to
   whole content-data element in instance-data-set, independently of
   whether those data contain other provenance signature strings by
   applying other enclosing methods.

   The specific YANG content to be processed SHALL be generated by
   taking the contents of the content-data element and applying the
   corresponding canonicalization method.

   TBD: Example of YANG data file with provenace strings, probably using
   the same examples of [RFC9195].

4.3.1.  YANG Module

   TBD: YANG module derived from [RFC9195], named "ietf-yang-instance-
   data-provenance"

4.4.  Inclduing Provenance in YANG Annotations

   The use of annotations as defined in [RFC7952] seems a natural
   enclosing method, dealing with the provenance signature string as
   metadata and not requiring modification of existing YANG schemas.The
   provenance-string annotation is defined as follows:

    md:annotation provenance-string {
          type provenance-signature;
          description
            "This annotation contains a digital signature corresponding
             to the YANG element in which it appears.";
        }

Lopez, et al.           Expires 2 September 2024               [Page 13]



Internet-Draft            yang-data-provenance                March 2024

   The specific YANG content to be processed SHALL be generated by
   eliminating the provenance-string (encoded according to what is
   described in Section 5 of [RFC7952]) from the element it applies to,
   before invoking the corresponding canonicalization method.  In
   application of the general recursion principle for provenance
   signature strings, any other provenance strings within the element to
   which the provenance-string applies SHALL be left as they appear,
   whatever the enclosing method used for them.

   TBD: Provide an example for a provenance-string annotation, possibly
   follwing the examples in [RFC7952].

4.4.1.  YANG Module

   TBD: YANG module based on [RFC7952], named "yang-provenance-metadata"

5.  Security Considerations

   The provenance assessment mechanism described in this document relies
   on COSE [RFC9052] and the deterministic encoding or canonicalization
   procedures described by [RFC8949], [RFC8785] and [XMLSig].  The
   security considerations made in these references are fully applicable
   here.

   The verification step depends on the association of the kid (Key ID)
   with the proper public key.  This is a local matter for the verifier
   and its specification is out of the scope of this document.  The use
   of certificates, PKI mechanisms, or any other secure distribution of
   id-public key mappings is RECOMMENDED.

6.  IANA Considerations

6.1.  IETF XML Registry

   This document registers the following URIs in the "IETF XML Registry"
   [RFC3688]:

     URI: urn:ietf:params:xml:ns:yang:ietf-yang-provenance
     Registrant Contact: The IESG.
     XML: N/A; the requested URI is an XML namespace.

     URI: urn:ietf:params:xml:ns:yang:ietf-notification-provenance
     Registrant Contact: The IESG.
     XML: N/A; the requested URI is an XML namespace.

Lopez, et al.           Expires 2 September 2024               [Page 14]



Internet-Draft            yang-data-provenance                March 2024

6.2.  YANG Module Name

   This document registers the following YANG modules in the "YANG
   Module Names" registry [RFC6020]:

     name: ietf-yang-provenance
     namespace: urn:ietf:params:xml:ns:yang:ietf-yang-provenance
     prefix: iyangprov
     reference: RFC XXXX

     name: ietf-notification-provenance
     namespace: urn:ietf:params:xml:ns:yang:ietf-notification-provenance
     prefix: inotifprov
     reference: RFC XXXX

   TBD: Others?  At least for the two additional enclosing methods
   (instance files and annotations)

7.  References

7.1.  Normative References

   [I-D.ahuang-netconf-notif-yang]
              Feng, A. H., Francois, P., Graf, T., and B. Claise, "YANG
              model for NETCONF Event Notifications", Work in Progress,
              Internet-Draft, draft-ahuang-netconf-notif-yang-04, 21
              January 2024, <https://datatracker.ietf.org/doc/html/
              draft-ahuang-netconf-notif-yang-04>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/rfc/rfc3688>.

   [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
              Resource Identifier (URI): Generic Syntax", STD 66,
              RFC 3986, DOI 10.17487/RFC3986, January 2005,
              <https://www.rfc-editor.org/rfc/rfc3986>.

   [RFC5277]  Chisholm, S. and H. Trevino, "NETCONF Event
              Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
              <https://www.rfc-editor.org/rfc/rfc5277>.

Lopez, et al.           Expires 2 September 2024               [Page 15]



Internet-Draft            yang-data-provenance                March 2024

   [RFC5322]  Resnick, P., Ed., "Internet Message Format", RFC 5322,
              DOI 10.17487/RFC5322, October 2008,
              <https://www.rfc-editor.org/rfc/rfc5322>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/rfc/rfc6020>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/rfc/rfc7950>.

   [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/rfc/rfc7951>.

   [RFC7952]  Lhotka, L., "Defining and Using Metadata with YANG",
              RFC 7952, DOI 10.17487/RFC7952, August 2016,
              <https://www.rfc-editor.org/rfc/rfc7952>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/rfc/rfc8340>.

   [RFC8641]  Clemm, A. and E. Voit, "Subscription to YANG Notifications
              for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
              September 2019, <https://www.rfc-editor.org/rfc/rfc8641>.

   [RFC8785]  Rundgren, A., Jordan, B., and S. Erdtman, "JSON
              Canonicalization Scheme (JCS)", RFC 8785,
              DOI 10.17487/RFC8785, June 2020,
              <https://www.rfc-editor.org/rfc/rfc8785>.

   [RFC8949]  Bormann, C. and P. Hoffman, "Concise Binary Object
              Representation (CBOR)", STD 94, RFC 8949,
              DOI 10.17487/RFC8949, December 2020,
              <https://www.rfc-editor.org/rfc/rfc8949>.

   [RFC9052]  Schaad, J., "CBOR Object Signing and Encryption (COSE):
              Structures and Process", STD 96, RFC 9052,
              DOI 10.17487/RFC9052, August 2022,
              <https://www.rfc-editor.org/rfc/rfc9052>.

Lopez, et al.           Expires 2 September 2024               [Page 16]



Internet-Draft            yang-data-provenance                March 2024

   [RFC9195]  Lengyel, B. and B. Claise, "A File Format for YANG
              Instance Data", RFC 9195, DOI 10.17487/RFC9195, February
              2022, <https://www.rfc-editor.org/rfc/rfc9195>.

   [RFC9254]  Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann,
              C., and M. Richardson, "Encoding of Data Modeled with YANG
              in the Concise Binary Object Representation (CBOR)",
              RFC 9254, DOI 10.17487/RFC9254, July 2022,
              <https://www.rfc-editor.org/rfc/rfc9254>.

   [XMLSig]   "XML Signature Syntax and Processing Version 2.0", n.d.,
              <https://www.w3.org/TR/xmldsig-core2/>.

7.2.  Informative References

   [YANGmanifest]
              Claise, B., Quilbeuf, J., Lopez, D., Martinez-Casanueva,
              I. D., and T. Graf, "A Data Manifest for Contextualized
              Telemetry Data", Work in Progress, Internet-Draft, draft-
              ietf-opsawg-collected-data-manifest-02, 23 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
              collected-data-manifest-02>.

Acknowledgments

   This document is based on work partially funded by the EU H2020
   project SPIRS (grant 952622), and the EU Horizon Europe projects
   PRIVATEER (grant 101096110), HORSE (grant 101096342) and ACROSS
   (grant 101097122).

Authors’ Addresses

   Diego Lopez
   Telefonica
   Email: diego.r.lopez@telefonica.com

   Antonio Pastor
   Telefonica
   Email: antonio.pastorperales@telefonica.com

   Alex Huang Feng
   INSA-Lyon
   Email: alex.huang-feng@insa-lyon.fr

Lopez, et al.           Expires 2 September 2024               [Page 17]



Internet-Draft            yang-data-provenance                March 2024

   Henk Birkholz
   Fraunhofer SIT
   Rheinstrasse 75
   64295 Darmstadt
   Germany
   Email: henk.birkholz@sit.fraunhofer.de

Lopez, et al.           Expires 2 September 2024               [Page 18]



OPSAWG                                                        Q. Ma, Ed.
Internet-Draft                                                     Q. Wu
Intended status: Standards Track                                  Huawei
Expires: 2 September 2024                              M. Boucadair, Ed.
                                                                  Orange
                                                                 D. King
                                                    Lancaster University
                                                            1 March 2024

                A Common YANG Data Model for Scheduling
                    draft-ma-opsawg-schedule-yang-04

Abstract

   This document defines a common schedule YANG module which is designed
   to be applicable for scheduling information such as event, policy,
   services, or resources based on date and time.  For the sake of
   better modularity, the module includes basic, intermediate, and
   advanced versions of recurrence related groupings.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2 September 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components

Ma, et al.              Expires 2 September 2024                [Page 1]



Internet-Draft            Common Schedule YANG                March 2024

   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Editorial Note (To be removed by RFC Editor)  . . . . . .   3
   2.  Conventions and Definitions . . . . . . . . . . . . . . . . .   3
   3.  Module Overview . . . . . . . . . . . . . . . . . . . . . . .   4
     3.1.  The "generic-schedule-params" Grouping  . . . . . . . . .   4
     3.2.  The "period-of-time" Grouping . . . . . . . . . . . . . .   5
     3.3.  The "recurrence" Grouping . . . . . . . . . . . . . . . .   6
     3.4.  The "recurrence-with-date-times" Grouping . . . . . . . .   8
     3.5.  The "icalendar-recurrence" Grouping . . . . . . . . . . .   9
     3.6.  The "schedule-status" Grouping  . . . . . . . . . . . . .  11
   4.  Features and Augmentations  . . . . . . . . . . . . . . . . .  12
   5.  Note and Restrictions . . . . . . . . . . . . . . . . . . . .  13
   6.  The "ietf-schedule" YANG Module . . . . . . . . . . . . . . .  13
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  28
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  28
     8.1.  The "IETF XML" Registry . . . . . . . . . . . . . . . . .  29
     8.2.  The "YANG Module Names" Registry  . . . . . . . . . . . .  29
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  29
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  29
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  30
   Appendix A.  Examples of Format Representation  . . . . . . . . .  32
     A.1.  The "period-of-time" Grouping . . . . . . . . . . . . . .  32
     A.2.  The "recurrence" Grouping . . . . . . . . . . . . . . . .  32
     A.3.  The "recurrence-with-date-times" Grouping . . . . . . . .  33
     A.4.  The "icalendar-recurrence" Grouping . . . . . . . . . . .  34
   Appendix B.  Examples of Using/Extending the "ietf-schedule"
           Module  . . . . . . . . . . . . . . . . . . . . . . . . .  35
     B.1.  Example: Schedule Tasks to Execute Based on a Recurrence
           Rule  . . . . . . . . . . . . . . . . . . . . . . . . . .  35
     B.2.  Example: Schedule Network Properties to Change Based on
           Date and Time . . . . . . . . . . . . . . . . . . . . . .  38
   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  41
   Authors’ Addresses  . . . . . . . . . . . . . . . . . . . . . . .  41

1.  Introduction

   Several specifications include a provision for scheduling.  Examples
   of such specifications are (but not limited to)
   [I-D.ietf-opsawg-ucl-acl],
   [I-D.contreras-opsawg-scheduling-oam-tests], and
   [I-D.united-tvr-schedule-yang].  Both [I-D.ietf-opsawg-ucl-acl] and
   [I-D.contreras-opsawg-scheduling-oam-tests] use the "ietf-schedule"

Ma, et al.              Expires 2 September 2024                [Page 2]



Internet-Draft            Common Schedule YANG                March 2024

   module initially specified in [I-D.ietf-opsawg-ucl-acl].

   Given that the applicability of the "ietf-schedule" module is more
   general than scheduled policy and OAM tests, this document defines
   "ietf-schedule" as a common schedule YANG module.  The module
   includes a set of reusable groupings which are designed to be
   applicable for scheduling information such as event, policy, services
   or resources based on date and time.

   Examples to illustrate the use of the common groupings are provided
   in Appendix A.  Also, sample modules to exemplify how future modules
   can use the extensibility provisions in "ietf-schedule" are provided
   in Appendix B.

1.1.  Editorial Note (To be removed by RFC Editor)

   Note to the RFC Editor: This section is to be removed prior to
   publication.

   This document contains placeholder values that need to be replaced
   with finalized values at the time of publication.  This note
   summarizes all of the substitutions that are needed.  No other RFC
   Editor instructions are specified elsewhere in this document.

   Please apply the following replacements:

   *  XXXX --> the assigned RFC number for this draft

   *  YYYY --> the assigned RFC number for [I-D.ietf-netmod-rfc6991-bis]

   *  2023-01-19 --> the actual date of the publication of this document

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The meanings of the symbols in tree diagrams are defined in
   [RFC8340].

   Also, this document uses the YANG terminology defined in Section 3 of
   [RFC7950].

Ma, et al.              Expires 2 September 2024                [Page 3]



Internet-Draft            Common Schedule YANG                March 2024

3.  Module Overview

   The "ietf-schedule" module (Section 6) defines the following
   groupings:

   *  "generic-schedule-params" (Section 3.1)

   *  "period-of-time" (Section 3.2)

   *  "recurrence" (Section 3.3)

   *  "recurrence-with-date-times" (Section 3.4)

   *  "icalendar-recurrence" (Section 3.5)

   *  "schedule-status" (Section 3.6)

   Figure 1 provides an overview of the tree structure [RFC8340] of the
   "ietf-schedule" module in terms of its groupings.

   module: ietf-schedule

     grouping generic-schedule-params:
       ...
     grouping period-of-time:
       ...
     grouping recurrence:
       ...
     grouping recurrence-with-date-times:
       ...
     grouping icalendar-recurrence:
       ...
     grouping schedule-status:
       ...

                 Figure 1: Overall Schedule Tree Structure

   Each of these groupings is presented in the following subsections.
   Examples are provided in Appendix A.

3.1.  The "generic-schedule-params" Grouping

   The "generic-schedule-params" grouping (Figure 2) specifies a set of
   configuration parameters that are used by a system for validating
   requested schedules.  These parameters apply to all schedules on a
   system and are meant to provide guards against stale configuration,
   too short schedule requests that would prevent validation by admins
   of some critical systems, etc.

Ma, et al.              Expires 2 September 2024                [Page 4]



Internet-Draft            Common Schedule YANG                March 2024

   module: ietf-schedule

     grouping generic-schedule-params:
       +-- time-zone-identifier?   sys:timezone-name
       +-- validity?               yang:date-and-time
       +-- max-allowed-start?      yang:date-and-time
       +-- min-allowed-start?      yang:date-and-time
       +-- max-allowed-end?        yang:date-and-time
       +-- discard-action?         enumeration
     grouping period-of-time:
       ...
     grouping recurrence:
       ...
     grouping recurrence-with-date-times:
       ...
     grouping icalendar-recurrence:
       ...
     grouping schedule-status:
       ...

          Figure 2: Generic Schedule Configuration Tree Structure

3.2.  The "period-of-time" Grouping

   The "period-of-time" grouping (Figure 3) represents a time period
   using either a start ("period-start") and end date and time ("period-
   end"), or a start ("period-start") and a positive time duration
   ("duration").  For the first format, the start of the period MUST be
   before the end of the period.

Ma, et al.              Expires 2 September 2024                [Page 5]



Internet-Draft            Common Schedule YANG                March 2024

   module: ietf-schedule

     grouping generic-schedule-params:
       ...
     grouping period-of-time:
       +-- period-start?           yang:date-and-time
       +-- time-zone-identifier?   sys:timezone-name
       +-- (period-type)?
          +--:(explicit)
          |  +-- period-end?       yang:date-and-time
          +--:(duration)
             +-- duration?         duration
     grouping recurrence:
       ...
     grouping recurrence-with-date-times:
       ...
     grouping icalendar-recurrence:
       ...
     grouping schedule-status:
       ...

              Figure 3: Period of Time Grouping Tree Structure

3.3.  The "recurrence" Grouping

   The "recurrence" grouping (Figure 4) specifies a simple recurrence
   rule, the definition conforms to part of the "recurrence rule"
   properties in Section 3.3.10 of [RFC5545].

Ma, et al.              Expires 2 September 2024                [Page 6]



Internet-Draft            Common Schedule YANG                March 2024

   module: ietf-schedule

     grouping generic-schedule-params:
       ...
     grouping period-of-time:
       ...
     grouping recurrence:
       +-- recurrence-first
       |  +-- date-time-start?        union
       |  +-- time-zone-identifier?   sys:timezone-name
       |  +-- duration?               duration
       +-- frequency?          identityref
       +-- interval?           uint32
       +-- (recurrence-bound)?
          +--:(until)
          |  +-- until?        union
          +--:(count)
             +-- count?        uint32
     grouping recurrence-with-date-times:
       ...
     grouping icalendar-recurrence:
       ...
     grouping schedule-status:
       ...

                Figure 4: Recurrence Grouping Tree Structure

   The "recurrence-first" container defines the first instance in the
   recurrence set.  It also determines the start time and duration (if
   specified) of subsequent recurrence instances.  If the "date-time-
   start" node is specified as a date-no-zone value type with no
   duration specified, the recurrence’s duration is taken to be one day.

   The frequency ("frequency") identifies the type of recurrence rule.
   For example, a "daily" frequency value specifies repeating events
   based on an interval of a day or more.

   The interval represents at which intervals the recurrence rule
   repeats.  For example, within a daily recurrence rule, an interval
   value of "8" means every eight days.

   The repetition can be scoped by a specified end time or by a count of
   occurrences, indicated by the "recurrence-bound" choice.  The "date-
   time-start" value always counts as the first occurrence.

Ma, et al.              Expires 2 September 2024                [Page 7]



Internet-Draft            Common Schedule YANG                March 2024

3.4.  The "recurrence-with-date-times" Grouping

   The "recurrence-with-date-times" grouping (Figure 5) uses the
   "recurrence" grouping (Section 3.3) and adds a "date-times-choice"
   statement to define an aggregate set of repeating occurrences.

   module: ietf-schedule

     grouping generic-schedule-params:
       ...
     grouping period-of-time:
       ...
     grouping recurrence:
       ...
     grouping recurrence-with-date-times:
       +-- recurrence-first
       |  +-- date-time-start?        union
       |  +-- time-zone-identifier?   sys:timezone-name
       |  +-- duration?               duration
       +-- frequency?                identityref
       +-- interval?                 uint32
       +-- (recurrence-bound)?
       |  +--:(until)
       |  |  +-- until?              union
       |  +--:(count)
       |     +-- count?              uint32
       +-- (date-times-choice)?
          +--:(date-time)
          |  +-- date-times*         yang:date-and-time
          +--:(date)
          |  +-- dates*              yang:date-no-zone
          +--:(period-timeticks)
          |  +-- period-timeticks* [period-start]
          |     +-- period-start?   yang:timeticks
          |     +-- period-end?     yang:timeticks
          +--:(period)
             +-- period* [period-start]
                +-- period-start?           yang:date-and-time
                +-- time-zone-identifier?   sys:timezone-name
                +-- (period-type)?
                   +--:(explicit)
                   |  +-- period-end?       yang:date-and-time
                   +--:(duration)
                      +-- duration?         duration
     grouping icalendar-recurrence:
       ...
     grouping schedule-status:
       ...

Ma, et al.              Expires 2 September 2024                [Page 8]



Internet-Draft            Common Schedule YANG                March 2024

        Figure 5: Recurrence with Date Times Grouping Tree Structure

   The recurrence instances are defined by the union of occurrences
   defined by both date-times and recurrence rule.  When duplicate
   instances are generated, only one recurrence is considered.

   Date-times definition inside "recurrence-with-date-times" grouping
   refers to but does not fully comply with Section 3.8.5.2 of
   [RFC5545].  A timeticks type based period is added.

3.5.  The "icalendar-recurrence" Grouping

   The "icalendar-recurrence" grouping (Figure 6) uses the "recurrence-
   with-date-times" grouping (Section 3.4) and add more data nodes to
   enrich the definition of recurrence.  The structure of the
   "icalendar-recurrence" grouping conforms to the definition of
   recurrence component defined in Section 3.8.5 of [RFC5545].

   module: ietf-schedule

     grouping generic-schedule-params:
       ...
     grouping period-of-time:
       ...
     grouping recurrence:
       ...
     grouping recurrence-with-date-times:
       ...
     grouping icalendar-recurrence:
       +-- recurrence-first
       |  +-- date-time-start?        union
       |  +-- time-zone-identifier?   sys:timezone-name
       |  +-- duration?               duration
       +-- frequency?                identityref
       +-- interval?                 uint32
       +-- (recurrence-bound)?
       |  +--:(until)
       |  |  +-- until?              union
       |  +--:(count)
       |     +-- count?              uint32
       +-- (date-times-choice)?
       |  +--:(date-time)
       |  |  +-- date-times*         yang:date-and-time
       |  +--:(date)
       |  |  +-- dates*              yang:date-no-zone
       |  +--:(period-timeticks)
       |  |  +-- period-timeticks* [period-start]
       |  |     +-- period-start?   yang:timeticks

Ma, et al.              Expires 2 September 2024                [Page 9]



Internet-Draft            Common Schedule YANG                March 2024

       |  |     +-- period-end?     yang:timeticks
       |  +--:(period)
       |     +-- period* [period-start]
       |        +-- period-start?           yang:date-and-time
       |        +-- time-zone-identifier?   sys:timezone-name
       |        +-- (period-type)?
       |           +--:(explicit)
       |           |  +-- period-end?       yang:date-and-time
       |           +--:(duration)
       |              +-- duration?         duration
       +-- bysecond*                 uint32
       +-- byminute*                 uint32
       +-- byhour*                   uint32
       +-- byday* [weekday]
       |  +-- direction*   int32
       |  +-- weekday?     schedule:weekday
       +-- bymonthday*               int32
       +-- byyearday*                int32
       +-- byyearweek*               int32
       +-- byyearmonth*              uint32
       +-- bysetpos*                 int32
       +-- workweek-start?           schedule:weekday
       +-- exception-dates*          union
     grouping schedule-status:
       ...

           Figure 6: iCalendar Recurrence Grouping Tree Structure

   An array of the "bysecond" (or "byminut", "byhour") specifies a list
   of seconds within a minute (or minutes within an hour, hours of the
   day).

   The parameter "byday" specifies a list of days of the week, with an
   optional direction which indicates the nth occurrence of a specific
   day within the "monthly" or "yearly" frequency.  For example, within
   a "monthly" rule, the "weekday" with a value of "monday" and the
   "direction" with a value of "-1" represents the last Monday of the
   month.

   An array of the "bymonthday" (or byyearday", "byyearweek", or
   "byyearmonth") specifies a list of days of the month (or days of the
   year, weeks of the year, or months of the year).

Ma, et al.              Expires 2 September 2024               [Page 10]



Internet-Draft            Common Schedule YANG                March 2024

   The "bysetpos" conveys a list of values that corresponds to the nth
   occurrence within the set of recurrence instances to be specified.
   For example, in a "monthly" recurrence rule, the "byday" data node
   specifies every Monday of the week, the "bysetpos" with value of "-1"
   represents the last Monday of the month.  Not setting the "bysetpos"
   data node represents every Monday of the month.

   The "workweek-start" data node specifies the day on which the week
   starts.  This is significant when a "weekly" recurrence rule has an
   interval greater than 1, and a "byday" data node is specified.  This
   is also significant when in a "yearly" rule and a "byyearweek" is
   specified.  The default value is "monday".

   The "exception-dates" data node specifies a list of exceptions for
   recurrence.  The final recurrence set is generated by gathering all
   of the date and time values generated by any of the specified
   recurrence rule and date-times, and then excluding any start date and
   time values specified by "exception-dates" parameter.

3.6.  The "schedule-status" Grouping

   The "schedule-status" grouping (Figure 7) defines common parameters
   for scheduling management/status exposure.

   module: ietf-schedule

     grouping generic-schedule-params:
       ...
     grouping period-of-time:
       ...
     grouping recurrence:
       ...
     grouping recurrence-with-date-times:
       ...
     grouping icalendar-recurrence:
       ...
     grouping schedule-status:
       +-- schedule-id?           string
       +-- state?                 identityref
       +-- version?               uint16
       +--ro schedule-type?         identityref
       +--ro last-update?           yang:date-and-time
       +--ro counter?               uint32
       +--ro last-occurrence?       yang:date-and-time
       +--ro upcoming-occurrence?   yang:date-and-time

             Figure 7: Schedule Status Grouping Tree Structure

Ma, et al.              Expires 2 September 2024               [Page 11]



Internet-Draft            Common Schedule YANG                March 2024

   The "schedule-id" parameter is useful to uniquely identify a schedule
   in a network device or controller if multiple scheduling contexts
   exists.

   The "state" parameter is defined to configure/expose the scheduling
   state, depending on the use of the grouping.  The "identityref" type
   is used for this parameter to allow extensibility in future modules.
   For example, a "conflict" state is valid in scheduling contexts where
   multiple systems struggle for the scheduling of the same property.
   The conflict may be induced by, e.g., multiple entities managing the
   schedules for the same target component.

   The "version" parameter is used to track the current schedule version
   information.  The version can be bumped by the entity who create the
   schedule.  The "last-update" parameter identifies when the schedule
   was last modified.  In some contexts, this parameter can be used to
   track the configuration of a given schedule.  In such cases, the
   "version" may not be used.

   The "schedule-type" parameter identifies the type of the current
   schedule.  The "counter", "last-occurrence", and "upcoming-
   occurrence" data nodes are only avaliable when the "schedule-type" is
   "recurrence".

   The current grouping captures common parameters that is applicable to
   typical scheduling contexts known so far.  Future modules can define
   other useful parameters as needed.  For example, in a scheduling
   context with multiple system sources to feed the schedules, the
   "source" and "precedence" parameters may be needed to reflect how
   schedules from different sources should be prioritised.

4.  Features and Augmentations

   The "ietf-schedule" data model defines the recurrence related
   groupings using a modular approach.  Basic, intermediate, and
   advanced representation of recurrence groupings are defined, with
   each reusing the previous one and adding more parameters.  To allow
   for different options, two features are defined in the data model:

   *  ’basic-recurrence-supported’

   *  ’icalendar-recurrence-supported’

   Appendix B.1 provides an example about how that could be used.
   Implementations may support a basic recurrence rule or an advanced
   one as needed, by declaring different features.  Whether only one or
   both features are supported is implementation specific and depend on
   specific scheduling context.

Ma, et al.              Expires 2 September 2024               [Page 12]



Internet-Draft            Common Schedule YANG                March 2024

   These groupings can also be augmented to support specific needs.  As
   an example, Appendix B.2 demonstrates how additional parameters can
   be added to comply with specifc schedule needs.

5.  Note and Restrictions

   There are some restrictions that need to be followed when using
   groupings defined in "ietf-schedule" yang module:

   *  The instant in time represented by "period-start" MUST be before
      the "period-end" for "period-of-time" grouping

   *  The combination of the day, month, and year represented for date
      and time value MUST be valid.  See Section 5.7 of [RFC3339] for
      the maxinum day number based on the month and year.

   *  The second MUST have the value "60" at the end of months in which
      a leap second occurs for date and time value

   *  Care must be taken when defining recurrence occurring very often
      and frequent that can be an additional source of attacks by
      keeping the system permanently busy with the management of
      scheduling

   *  Schedules received with a starting time in the past with respect
      to current time SHOULD be ignored

6.  The "ietf-schedule" YANG Module

   This module imports types defined in [I-D.ietf-netmod-rfc6991-bis].

   <CODE BEGINS> file "ietf-schedule@2023-01-19.yang"
   module ietf-schedule {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-schedule";
     prefix schedule;

     import ietf-yang-types {
       prefix yang;
       revision-date 2023-01-23;
       reference
         "RFC YYYY: Common YANG Data Types";
     }

     import ietf-system {
       prefix sys;
       reference
         "RFC 7317: A YANG Data Model for System Management";

Ma, et al.              Expires 2 September 2024               [Page 13]



Internet-Draft            Common Schedule YANG                March 2024

     }

     organization
       "IETF OPSAWG Working Group";
     contact
       "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
        WG List: <mailto:opsawg@ietf.org>

        Editor:   Qiufang Ma
                  <mailto:maqiufang1@huawei.com
        Author:   Qin Wu
                  <mailto:bill.wu@huawei.com>
        Editor:   Mohamed Boucadair
                  <mailto:mohamed.boucadair@orange.com>
        Author:   Daniel King
                  <mailto:d.king@lancaster.ac.uk>";
     description
       "This YANG module defines two groupings for iCalendar (Internet
        Calendaring and Scheduling Core Object Specification) data
        types: period of time and recurrence rule, for representing and
        exchanging calendaring and scheduling information. The YANG
        module complies with Sections 3.3.9 and 3.3.10 of RFC 5545.

        Copyright (c) 2024 IETF Trust and the persons identified
        as authors of the code. All rights reserved.

        Redistribution and use in source and binary forms, with
        or without modification, is permitted pursuant to, and
        subject to the license terms contained in, the Revised
        BSD License set forth in Section 4.c of the IETF Trust’s
        Legal Provisions Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
        itself for full legal notices.

        The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
        NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
        ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
        described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
        they appear in all capitals, as shown here.";

     revision 2023-01-19 {
       description
         "Initial revision.";
       reference
         "RFC XXXX: A YANG Data Model for Scheduling";

Ma, et al.              Expires 2 September 2024               [Page 14]



Internet-Draft            Common Schedule YANG                March 2024

     }

     feature basic-recurrence-supported {
       description
         "Indicates that the server supports configuring a basic
          scheduled recurrence.";
     }

     feature icalendar-recurrence-supported {
       description
         "Indicates that the server supports configuring a comprehensive
          scheduled icalendar recurrence";
       reference
         "RFC 5545: Internet Calendaring and Scheduling Core Object
                    Specification (iCalendar),
                    Sections 3.3.10 and 3.8.5";
     }

     typedef weekday {
       type enumeration {
         enum sunday {
           value 0;
           description
             "Sunday of the week.";
         }
         enum monday {
           value 1;
           description
             "Monday of the week.";
         }
         enum tuesday {
           value 2;
           description
             "Tuesday of the week.";
         }
         enum wednesday {
           value 3;
           description
             "Wednesday of the week.";
         }
         enum thursday {
           value 4;
           description
             "Thursday of the week.";
         }
         enum friday {
           value 5;
           description

Ma, et al.              Expires 2 September 2024               [Page 15]



Internet-Draft            Common Schedule YANG                March 2024

             "Friday of the week.";
         }
         enum saturday {
           value 6;
           description
             "Saturday of the week.";
         }
       }
       description
         "Seven days of the week.";
     }

     typedef duration {
       type string {
         pattern ’((\+)?|\-)P((([0-9]+)D)?(T(0[0-9]|1[0-9]|2[0-3])’
               + ’:[0-5][0-9]:[0-5][0-9]))|P([0-9]+)W’;
       }
       description
         "Duration of the time. The format can represent nominal
          durations (weeks designated by ’W’ and days designated by ’D’)
          and accurate durations (hours:minutes:seconds follows the
          designator ’T’).

          Note that this value type doesn’t support the ’Y’ and ’M’
          designators to specify durations in terms of years and months.

          Negative durations are typically used to schedule an alarm to
          trigger before an associated time.";
       reference
         "RFC 5545: Internet Calendaring and Scheduling Core Object
                    Specification (iCalendar), Sections 3.3.6 and
                    3.8.6.3";
     }

     identity frequency-type {
       description
         "Base identity for frequency type.";
     }
     identity secondly {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of
          a second or more.";
     }
     identity minutely {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of

Ma, et al.              Expires 2 September 2024               [Page 16]



Internet-Draft            Common Schedule YANG                March 2024

          a minute or more.";
     }
     identity hourly {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of
          an hour or more.";
     }
     identity daily {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of
          a day or more.";
     }
     identity weekly {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of
          a week or more.";
     }
     identity monthly {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of
          a month or more.";
     }
     identity yearly {
       base frequency-type;
       description
         "Identity for a repeating event based on an interval of
          a year or more.";
     }
     identity schedule-type {
       description
         "Base identity for schedule type.";
     }
     identity period {
       base schedule-type;
       description
         "Identity for a period based schedule.";
     }

     identity recurrence {
       base schedule-type;
       description
         "Identity for a recurrence based schedule.";
     }
     identity schedule-state {

Ma, et al.              Expires 2 September 2024               [Page 17]



Internet-Draft            Common Schedule YANG                March 2024

       description
         "Base identity for schedule state.";
     }
     identity enabled {
       description
         "Identity for the recurrence with enabled state.";
     }
     identity disabled {
       description
         "Identity for the recurrence with disabled state.";
     }
     identity out-of-date {
       description
         "Identity for the recurrence with out-of-date state.";
     }

     grouping generic-schedule-params {
       description
         "Incldues a set of generic configuration parameters that are
          followed by the entity that supports schedules.

          These parameters apply to all schedules.

           Such parameters are used as guards to prevent, e.g., stale
           configuration.";
       leaf time-zone-identifier {
         type sys:timezone-name;
         description
           "Indicates the identifier for the time zone in a time zone
            database.";
       }
       leaf validity {
         type yang:date-and-time;
         description
           "Specifies the date and time after which a schedule will
            be considered as invalid. This paratemer takes precedence
            over similar attributes that are provided at the schedule
            instance itself.";
       }
       leaf max-allowed-start {
         type yang:date-and-time;
         description
           "Specifies the date and time after which a requested schedule
            instance cannot be accepted by the entity. Specifically,
            a requested schedule will be rejected if the first occurence
            of that new schedule exceeds ’max-allowed-start’.";
       }
       leaf min-allowed-start {

Ma, et al.              Expires 2 September 2024               [Page 18]



Internet-Draft            Common Schedule YANG                March 2024

         type yang:date-and-time;
         description
           "Specifies the date and time before which a requested
            schedule instance cannot be accepted by the entity.
            Specifically, a requested schedule will be rejected if the
            first occurence of that new schedule is to be scheduled
            before ’min-allowed-start’.";
       }
       leaf max-allowed-end {
         type yang:date-and-time;
         description
           "A requested schedule will be rejected if the last
            occurence of that schedule or its duratioon exceed
            ’max-allowed-end’.";
       }
       leaf discard-action {
         type enumeration {
           enum warning {
             description
               "A warning message is generated when a schedule is
                discarded when enforcing the guards in this grouping
                or it is received out-of-date.";
           }
           enum silently-discard {
             description
              "Discards silently a schedule when it is invalid because
               it is not consistent with the guards in this grouping or
               it is received out-of-date.";
           }
         }
         description
           "Specifies the behavior when a schedule is discarded.";
       }
     }

     grouping period-of-time {
       description
         "This grouping is defined for period of time property.";
       reference
         "RFC 5545: Internet Calendaring and Scheduling Core Object
                    Specification (iCalendar), Section 3.3.9";
       leaf period-start {
         type yang:date-and-time;
         description
           "Period start time.";
       }
       leaf time-zone-identifier {
         type sys:timezone-name;

Ma, et al.              Expires 2 September 2024               [Page 19]



Internet-Draft            Common Schedule YANG                March 2024

         description
           "Indicates the identifier for the time zone in a time zone
            database. This parameter MUST be specified if ’period-start’
            value is neither reported in the format of UTC nor time zone
            offset to UTC.";
       }
       choice period-type {
         description
           "Indicates the type of the time period. Two types are
             supported.";
         case explicit {
           description
             "A period of time is identified by its start and its end.
              ’period-start’ indicates the period start.";
           leaf period-end {
             type yang:date-and-time;
             description
               "Period end time. The start MUST be before the end. If a
                local time without time zone offset to UTC time is
                specified, it MUST use the same time zone reference as
                ’period-start’ parameter. If ’period-start’ also uses a
                local time without time zone offset to UTC, it MUST use
                the time zone as specified by the
                ’time-zone-identifier’ parameter.";
           }
         }
         case duration {
           description
             "A period of time is defined by a start and a
              positive duration of time.";
           leaf duration {
             type duration {
               pattern ’P((([0-9]+)D)?(T(0[0-9]|1[0-9]|2[0-3])’
                     + ’:[0-5][0-9]:[0-5][0-9]))|P([0-9]+)W’;
             }
             description
               "A positive duration of the time. This value is
                equivalent to the format of duration type except that
                the value cannot be negative.";
           }
         }
       }
     }

     grouping recurrence {
       description
         "A simple definition of recurrence.";
       container recurrence-first {

Ma, et al.              Expires 2 September 2024               [Page 20]



Internet-Draft            Common Schedule YANG                March 2024

         description
           "Specifies the first instance of the recurrence.";
         leaf date-time-start {
           type union {
             type yang:date-no-zone;
             type yang:date-and-time;
           }
           description
             "Defines the first instance in the recurrence set. If it is
              specified as a date-no-zone value type with no duration
              specified, the recurrence’s duration is taken to be one
              day.";
           reference
             "RFC 5545: Internet Calendaring and Scheduling Core Object
                        Specification (iCalendar), Section 3.3.10";
         }
         leaf time-zone-identifier {
           type sys:timezone-name;
           description
             "Indicates the identifier for the time zone in a time zone
              database. This parameter MUST be specified if ’start’
              value is neither reported in the format of UTC nor time
              zone offset to UTC.";
         }
         leaf duration {
           type duration;
           description
             "When specified, it refers to the duration of
              the first occurrence. The exact duration also applies to
              all the recurrence instance.";
         }
       }
       leaf frequency {
         type identityref {
           base frequency-type;
         }
         description
           "This parameter is defined to identify the frequency type of
            the recurrence rule.";
       }
       leaf interval {
         type uint32;
         description
           "A positive integer representing at which intervals the
            recurrence rule repeats. For example, within a ’daily’
            recurrence rule, a value of ’8’ means every eight days.";
       }
       choice recurrence-bound {

Ma, et al.              Expires 2 September 2024               [Page 21]



Internet-Draft            Common Schedule YANG                March 2024

         description
           "Modes to bound the recurrence rule. If no choice is
            indicated, the recurrence rule is considered to repeat
            forever.";
         case until {
           description
             "This case defines a way that bounds the recurrence
              rule in an inclusive manner.";
           leaf until {
             type union {
               type yang:date-no-zone;
               type yang:date-and-time;
             }
             description
               "This parameter specifies a date-no-zone or
                date-time value to bounds the recurrence. If the value
                specified by this parameter is synchronized with the
                specified recurrence, it becomes the last instance of
                the recurrence. The value MUST have the same value type
                as the value type of ’start’ parameter.";
           }
         }
         case count {
           description
             "This case defines the number of occurrences at which
              to range-bound the recurrence.";
           leaf count {
             type uint32;
             description
               "The positive number of occurrences at which to
                range-bound the recurrence.";
           }
         }
       }
     }

     grouping recurrence-with-date-times {
       description
         "This grouping defines an aggregate set of repeating
          occurrences. The recurrence instances are defined by
          the union of occurrences defined by both the
          ’recurrence’ and ’date-times’. Duplicate instances
          are ignored.";
       uses recurrence;
       choice date-times-choice {
         description
           "Specify a list of occurrences which complement the
            recurrence set defined by ’recurrence’ grouping. If

Ma, et al.              Expires 2 September 2024               [Page 22]



Internet-Draft            Common Schedule YANG                March 2024

            it is specified as a period value, the duration of
            the recurrence instance will be the one specified
            by it, and not the duration defined inside the
            recurrence-first parameter.";
         case date-time {
           description
             "Specify a list of occurrences with date-and-time
              values.";
             leaf-list date-times {
               type yang:date-and-time;
               description
                 "Specifies a set of date-and-time values of
                  occurrences.";
             }
         }
         case date {
           description
             "Specifies a list of occurrences with date-no-zone
              values.";
             leaf-list dates {
               type yang:date-no-zone;
               description
                 "Specifies a set of date-no-zone values of
                  occurrences.";
             }
         }
         case period-timeticks {
           description
             "Specifies a list of occurrences with period span of
              timeticks format.";
             list period-timeticks {
               key "period-start";
               description
                 "A list of period with timeticks formats.";
               leaf period-start {
                 type yang:timeticks;
                 must
                 "(not(derived-from(../../frequency,"
                +"’schedule:secondly’)) or (current() < 100)) and "
                +"(not(derived-from(../../frequency,"
                +"’schedule:minutely’)) or (current() < 6000)) and "
                +"(not(derived-from(../../frequency,’schedule:hourly’))"
                +" or (current() < 360000)) and "
                +"(not(derived-from(../../frequency,’schedule:daily’))"
                +" or (current() < 8640000)) and "
                +"(not(derived-from(../../frequency,’schedule:weekly’))"
                +" or (current() < 60480000)) and "
                +"(not(derived-from(../../frequency,"

Ma, et al.              Expires 2 September 2024               [Page 23]



Internet-Draft            Common Schedule YANG                March 2024

                +"’schedule:monthly’)) or (current() < 267840000)) and "
                +"(not(derived-from(../../frequency,’schedule:yearly’))"
                +" or (current() < 3162240000))" {
                   error-message
                     "The period-start must not exceed the frequency
                      interval.";
                 }
                 description
                   "Start time of the scheduled value within one
                    recurrence.";
               }
               leaf period-end {
                 type yang:timeticks;
                 description
                   "End time of the scheduled value within one
                    recurrence.";
               }
             }
         }
         case period {
           description
             "Specifies a list of occurrences with period span
              of date-and -time format.";
           list period {
             key "period-start";
             description
               "A list of period with date-and-time formats.";
             uses period-of-time;
           }
         }
       }
     }

     grouping icalendar-recurrence {
       description
         "This grouping is defined to identify properties
          that contain a recurrence rule.";
       reference
         "RFC 5545: Internet Calendaring and Scheduling
                    Core Object Specification (iCalendar),
                    Section 3.8.5";

       uses recurrence-with-date-times;
       leaf-list bysecond {
         type uint32 {
           range "0..60";
         }
         description

Ma, et al.              Expires 2 September 2024               [Page 24]



Internet-Draft            Common Schedule YANG                March 2024

           "A list of seconds within a minute.";
       }
       leaf-list byminute {
         type uint32 {
           range "0..59";
         }
         description
           "A list of minutes within an hour.";
       }
       leaf-list byhour {
         type uint32 {
           range "0..23";
         }
         description
           "Specifies a list of hours of the day.";
       }
       list byday {
         key "weekday";
         description
           "Specifies a list of days of the week.";
         leaf-list direction {
           when "derived-from(../../frequency, ’schedule:monthly’) or "
             +  "(derived-from(../../frequency, ’schedule:yearly’) "
             +  " and not(../../byyearweek))";
           type int32 {
             range "-53..-1|1..53";
           }
           description
             "When specified, it indicates the nth occurrence of a
              specific day within the monthly or yearly recurrence
              rule.
              For example, within a monthly rule, +1 monday represents
              the first monday within the month, whereas -1 monday
              represents the last monday of the month.";
         }
         leaf weekday {
           type schedule:weekday;
           description
             "Corredponds to seven days of the week.";
         }
       }

       leaf-list bymonthday {
         type int32 {
           range "-31..-1|1..31";
         }
         description
           "Specifies a list of days of the month.";

Ma, et al.              Expires 2 September 2024               [Page 25]



Internet-Draft            Common Schedule YANG                March 2024

       }
       leaf-list byyearday {
         type int32 {
           range "-366..-1|1..366";
         }
         description
           "Specifies a list of days of the year.";
       }
       leaf-list byyearweek {
         when "derived-from(../frequency, ’schedule:yearly’)";
         type int32 {
           range "-53..-1|1..53";
         }
         description
           "Specifies a list of weeks of the year.";
       }
       leaf-list byyearmonth {
         type uint32 {
           range "1..12";
         }
         description
           "Specifies a list of months of the year.";
       }
       leaf-list bysetpos {
         type int32 {
           range "-366..-1|1..366";
         }
         description
           "Specifies a list of values that corresponds to the nth
            occurrence within the set of recurrence instances
            specified by the rule. It must only be used in conjunction
            with another by the rule part.";
       }
       leaf workweek-start {
         type schedule:weekday;
         default "monday";
         description
           "Specifies the day on which the workweek starts.";
       }
       leaf-list exception-dates {
         type union {
           type yang:date-no-zone;
           type yang:date-and-time;
         }
         description
           "Defines a list of exceptions for recurrence.";
       }
     }

Ma, et al.              Expires 2 September 2024               [Page 26]



Internet-Draft            Common Schedule YANG                March 2024

     grouping schedule-status {
       description
         "This grouping is defined to identify common properties of
          scheduling status.";
       leaf schedule-id {
         type string;
         description
           "The schedule identifier that globally identifies a
            schedule in a device, controller, network, etc.
            The unicity scope depends on the implementation.";
       }
       leaf state {
         type identityref {
           base schedule-state;
         }
         description
           "The current state of the schedule.";
       }
       leaf version {
         type uint16;
         description
           "The version number of the schedule.";
       }
       leaf schedule-type {
         type identityref {
           base schedule-type;
         }
         config false;
         description
           "The schedule type.";
       }
       leaf last-update {
         type yang:date-and-time;
         config false;
         description
           "The timestamp that the schedule is last updated.";
       }
       leaf counter {
         when "derived-from-or-self(../schedule-type, "
            + "’schedule:recurrence’)";
         type uint32;
         config false;
         description
           "The counter of occurrences since the schedule was enabled.
            The count wraps around when it reaches the maximum value.";
       }
       leaf last-occurrence {
         when "derived-from-or-self(../schedule-type, "

Ma, et al.              Expires 2 September 2024               [Page 27]



Internet-Draft            Common Schedule YANG                March 2024

            + "’schedule:recurrence’)";
         type yang:date-and-time;
         config false;
         description
           "The timestamp of last occurrence.";
       }
       leaf upcoming-occurrence {
         when "derived-from-or-self(../schedule-type, "
            + "’schedule:recurrence’)"
            + "and derived-from-or-self(../state, ’schedule:enabled’)";
         type yang:date-and-time;
         config false;
         description
           "The timestamp of next occurrence.";
       }
     }
   }
   <CODE ENDS>

7.  Security Considerations

   This section uses the template described in Section 3.7 of
   [I-D.ietf-netmod-rfc8407bis].

   The "ietf-schedule" YANG module specified in this document defines
   schema for data that is designed to be accessed via network
   management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040].
   The lowest NETCONF layer is the secure transport layer, and the
   mandatory-to-implement secure transport is Secure Shell (SSH)
   [RFC6242].  The lowest RESTCONF layer is HTTPS, and the mandatory-to-
   implement secure transport is TLS [RFC8446].

   The Network Configuration Access Control Model (NACM) [RFC8341]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

   The "ietf-schedule" module defines a set of types and groupings.
   These nodes are intended to be reused by other YANG modules.  The
   module by itself does not expose any data nodes that are writable,
   data nodes that contain read-only state, or RPCs.  As such, there are
   no additional security issues related to the "ietf- schedule" module
   that need to be considered.

8.  IANA Considerations

Ma, et al.              Expires 2 September 2024               [Page 28]



Internet-Draft            Common Schedule YANG                March 2024

8.1.  The "IETF XML" Registry

   This document registers the following URI in the "IETF XML Registry"
   [RFC3688].

           URI: urn:ietf:params:xml:ns:yang:ietf-schedule
           Registrant Contact: The IESG.
           XML: N/A, the requested URI is an XML namespace.

8.2.  The "YANG Module Names" Registry

   This document registers the following YANG module in the "YANG Module
   Names" registry [RFC6020].

           name:               ietf-schedule
           namespace:          urn:ietf:params:xml:ns:yang:ietf-schedule
           prefix:             schedule
           maintained by IANA: N
           reference:          RFC XXXX

9.  References

9.1.  Normative References

   [I-D.ietf-netmod-rfc6991-bis]
              Schönwälder, J., "Common YANG Data Types", Work in
              Progress, Internet-Draft, draft-ietf-netmod-rfc6991-bis-
              15, 23 January 2023,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              rfc6991-bis-15>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC5545]  Desruisseaux, B., Ed., "Internet Calendaring and
              Scheduling Core Object Specification (iCalendar)",
              RFC 5545, DOI 10.17487/RFC5545, September 2009,
              <https://www.rfc-editor.org/info/rfc5545>.

Ma, et al.              Expires 2 September 2024               [Page 29]



Internet-Draft            Common Schedule YANG                March 2024

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

9.2.  Informative References

   [I-D.contreras-opsawg-scheduling-oam-tests]
              Contreras, L. M. and V. Lopez, "A YANG Data Model for
              Network Diagnosis by scheduling sequences of OAM tests",
              Work in Progress, Internet-Draft, draft-contreras-opsawg-
              scheduling-oam-tests-01, 10 July 2023,
              <https://datatracker.ietf.org/doc/html/draft-contreras-
              opsawg-scheduling-oam-tests-01>.

   [I-D.ietf-netmod-eca-policy]
              Wu, Q., Bryskin, I., Birkholz, H., Liu, X., and B. Claise,
              "A YANG Data model for ECA Policy Management", Work in

Ma, et al.              Expires 2 September 2024               [Page 30]



Internet-Draft            Common Schedule YANG                March 2024

              Progress, Internet-Draft, draft-ietf-netmod-eca-policy-01,
              19 February 2021, <https://datatracker.ietf.org/doc/html/
              draft-ietf-netmod-eca-policy-01>.

   [I-D.ietf-netmod-rfc8407bis]
              Bierman, A., Boucadair, M., and Q. Wu, "Guidelines for
              Authors and Reviewers of Documents Containing YANG Data
              Models", Work in Progress, Internet-Draft, draft-ietf-
              netmod-rfc8407bis-09, 28 February 2024,
              <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
              rfc8407bis-09>.

   [I-D.ietf-opsawg-ucl-acl]
              Ma, Q., Wu, Q., Boucadair, M., and D. King, "A YANG Data
              Model and RADIUS Extension for Policy-based Network Access
              Control", Work in Progress, Internet-Draft, draft-ietf-
              opsawg-ucl-acl-03, 2 February 2024,
              <https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-
              ucl-acl-03>.

   [I-D.ietf-tvr-use-cases]
              Birrane, E. J., Kuhn, N., Qu, Y., Taylor, R., and L.
              Zhang, "TVR (Time-Variant Routing) Use Cases", Work in
              Progress, Internet-Draft, draft-ietf-tvr-use-cases-09, 29
              February 2024, <https://datatracker.ietf.org/doc/html/
              draft-ietf-tvr-use-cases-09>.

   [I-D.united-tvr-schedule-yang]
              Qu, Y., Lindem, A., Kinzie, E., Fedyk, D., and M.
              Blanchet, "YANG Data Model for Scheduled Attributes", Work
              in Progress, Internet-Draft, draft-united-tvr-schedule-
              yang-00, 11 October 2023,
              <https://datatracker.ietf.org/doc/html/draft-united-tvr-
              schedule-yang-00>.

   [RFC3339]  Klyne, G. and C. Newman, "Date and Time on the Internet:
              Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
              <https://www.rfc-editor.org/info/rfc3339>.

   [RFC7951]  Lhotka, L., "JSON Encoding of Data Modeled with YANG",
              RFC 7951, DOI 10.17487/RFC7951, August 2016,
              <https://www.rfc-editor.org/info/rfc7951>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

Ma, et al.              Expires 2 September 2024               [Page 31]



Internet-Draft            Common Schedule YANG                March 2024

Appendix A.  Examples of Format Representation

   This section provides some examples to illustrate the use of the
   period and recurrence formats defined as YANG groupings.  Note that
   "grouping" does not define any data nodes in the schema tree, the
   examples illustrated are just for the ease of understanding.  Only
   the message body is provided with JSON used for encoding [RFC7951].

A.1.  The "period-of-time" Grouping

   The example of a period that starts at 08:00:00 UTC, on January 1,
   2025 and ends at 18:00:00 UTC on December 31, 2027 is encoded as
   shown in Figure 8.

   {
     "period-start": "2025-01-01T08:00:00Z",
     "period-end": "2027-12-01T18:00:00Z"
   }

                    Figure 8: Simple Start/End Schedule

   An example of a period that starts at 08:00:00 UTC, on January 1,
   2025 and lasts 15 days and 5 hours and 20 minutes is encoded as shown
   in Figure 9.

   {
     "period-start": "2025-01-01T08:00:00Z",
     "duration": "P15DT05:20:00"
   }

                  Figure 9: Simple Schedule with Duration

   An example of a period that starts at 2:00 A.M. in Los Angeles on
   November 19, 2025 and lasts 20 weeks is depicted in Figure 10.

   {
     "period-start": "2025-11-19T02:00:00",
     "time-zone-identifier": "America/Los_Angeles",
     "duration": "P20W"
   }

            Figure 10: Simple Schedule with Time Zone Indication

A.2.  The "recurrence" Grouping

   Figure 11 indicates a recurrence of every 2 days for 10 occurrences,
   starting at 3 p.m. on December 1, 2025 in the Eastern United States
   time zone:

Ma, et al.              Expires 2 September 2024               [Page 32]



Internet-Draft            Common Schedule YANG                March 2024

   {
     "recurrence-first": {
       "date-time-start": "2025-11-01T15:00:00",
       "time-zone-identifier": "America/New_York"
     },
     "frequency": "ietf-schedule:daily",
     "interval": 2,
     "count": 10
   }

                 Figure 11: Simple Schedule with Recurrence

   Figure 12 illustrates an example of an anniversary that will occur
   annually, from 1997-11-25, until 2050-11-25:

   {
     "recurrence-first": {
       "date-time-start": "1979-11-25"
     },
     "frequency": "ietf-schedule:yearly",
     "until": "2050-11-25"
   }

          Figure 12: Simple Schedule with Recurrence and End Date

A.3.  The "recurrence-with-date-times" Grouping

   Figure 13 indicates a recurrence that occurs every 2 hours from 9:00
   AM to 5:00 PM, and 6PM UTC time on 2025-12-01:

   {
     "recurrence-first": {
       "date-time-start": "2025-12-01T09:00:00Z"
     },
     "frequency": "ietf-schedule:hourly",
     "interval": 2,
     "until": "2025-12-01T17:00:00Z",
     "date-times": ["2025-12-01T18:00:00Z"]
   }

              Figure 13: Example of Recurrence With Date Times

   Figure 14 indicates a recurrence that occurs every 30 minutes and
   last for 15 minutes from 9:00 AM to 5:00 PM, and extra two
   occurrences at 6:00 PM and 6:30 PM with each lasting for 20 minutes
   on 2025-12-01:

Ma, et al.              Expires 2 September 2024               [Page 33]



Internet-Draft            Common Schedule YANG                March 2024

   {
     "recurrence-first": {
       "date-time-start": "2025-12-01T09:00:00Z",
       "duration": "PT00:15:00"
     },
     "frequency": "ietf-schedule:minutely",
     "interval": 30,
     "until": "2025-12-01T17:00:00Z",
     "period": [
       {
         "period-start": "2025-12-01T18:00:00Z",
         "duration": "PT00:20:00"
       },
       {
         "period-start": "2025-12-01T18:30:00Z",
         "duration": "PT00:20:00"
       }
      ]
   }

             Figure 14: Example of Advanced Recurrence Schedule

A.4.  The "icalendar-recurrence" Grouping

   Figure 15 indicates 10 occurrences that occur at 8:00 AM (EST), every
   last Saturday of the month starting in January 2024:

   {
     "recurrence-first": {
       "date-time-start": "2024-01-27T08:00:00",
       "time-zone-identifier": "America/New_York"
     },
     "frequency": "ietf-schedule:monthly",
     "count": 10,
     "byday": [
       {
         "direction": [-1],
         "weekday": "saturday"
       }
     ]
   }

                   Figure 15: Simple iCalendar Recurrence

   Figure 16 is an example of a recurrence that occurs on the last
   workday of the month until December 25, 2024, from January 1, 2024:

Ma, et al.              Expires 2 September 2024               [Page 34]



Internet-Draft            Common Schedule YANG                March 2024

   {
     "recurrence-first": {
     "date-time-start": "2024-01-01"
     },
     "frequency": "ietf-schedule:monthly",
     "until": "2024-12-25",
     "byday": [
       { "weekday": "monday"},
       { "weekday": "tuesday"},
       { "weekday": "wednesday"},
       { "weekday": "thursday"},
       { "weekday": "friday"}
     ],
     "bysetpos": [-1]
   }

            Figure 16: Example of Advanced iCalendar Recurrence

   Figure 17 indicates a recurrence that occur every 20 minutes from
   9:00 AM to 4:40 PM (UTC), with the occurrence starting at 10:20 AM
   being excluded on 2025-12-01:

   {
     "recurrence-first": {
       "date-time-start": "2025-12-01T09:00:00Z"
     },
     "until": "2025-12-01T16:40:00Z",
     "frequency": "ietf-schedule:minutely",
     "byminute": [0, 20, 40],
     "byhour": [9, 10, 11, 12, 13, 14, 15, 16],
     "exception-dates": ["2025-12-01T10:20:00Z"]
   }

    Figure 17: Example of Advanced iCalendar Recurrence with Exceptions

Appendix B.  Examples of Using/Extending the "ietf-schedule" Module

   This non-normative section shows two examples for how the "ietf-
   schedule" module can be used or extended for scheduled events or
   attributes based on date and time.

B.1.  Example: Schedule Tasks to Execute Based on a Recurrence Rule

   Scheduled tasks can be used to execute specific actions based on
   certain recurrence rules (e.g., every Friday at 8:00 AM).  The
   following example module which "uses" the "icalendar-recurrence"
   grouping from "ietf-schedule" module shows how a scheduled task could
   be defined with different features used for options.

Ma, et al.              Expires 2 September 2024               [Page 35]



Internet-Draft            Common Schedule YANG                March 2024

   module example-scheduled-backup {
     yang-version 1.1;
     namespace "http://example.com/example-scheduled-backup";
     prefix "ex-scback";

     import ietf-inet-types {
       prefix "inet";
     }

     import ietf-schedule {
       prefix "schedule";
     }

     organization
       "Example, Inc.";

     contact
       "Support at example.com";

     description
       "Example of a module defining an scheduled based backup
        operation.";

     revision "2023-01-19" {
       description
         "Initial Version.";
       reference
         "RFC XXXX: A YANG Data Model for Scheduling.";
       }

     container scheduled-backup-tasks {
       description
         "A container for backing up all current running configuration
          on the device.";
       list tasks {
         key "task-id";
         description
           "The list of backing up tasks on this device.";
         leaf task-id {
           type string;
           description
             "The task identifier that uniquely identifies a scheduled
              backup task.";
         }
         choice local-or-remote {
           description
             "Specifies whether the configuration to be backed up is
              local or remote.";

Ma, et al.              Expires 2 September 2024               [Page 36]



Internet-Draft            Common Schedule YANG                March 2024

           case local {
             description
               "Configuration parameters for backing up of local
                devices.";
             leaf local {
               type empty;
               description
                 "The parameter specifies the configuration to be
                  backed up is on the local device.";
             }
           }
           case remote {
             description
               "Configuration parameters for backing up of remote
                devices.";
             leaf remote {
               type inet:domain-name;
               description
                 "The parameter specifies the remote device domain
                  name.";
             }
           }
         }

         container basic-recurrence-schedules {
           if-feature schedule:basic-recurrence-supported;
           description
             "Basic recurrence schedule specification, only applies when
              schedule:basic-recurrence-supported feaure is supported.";
           leaf schedule-id {
             type string;
             description
               "The schedule identifier for this recurrence rule.";
           }
           uses schedule:recurrence;
          }

         container icalendar-recurrence-schedules {
           if-feature schedule:icalendar-recurrence-supported;
           description
             "Basic recurrence schedule specification, only applies when
              schedule:icalendar-recurrence-supported feaure is
              supported.";
           leaf schedule-id {
             type string;
             description
               "The schedule identifier for this recurrence rule.";
           }

Ma, et al.              Expires 2 September 2024               [Page 37]



Internet-Draft            Common Schedule YANG                March 2024

           uses schedule:icalendar-recurrence;
         }
       }

       list schedule-set {
         key "schedule-id";
         description
           "The list of schedule status for the backup tasks.";
         uses schedule:schedule-status;
       }
     }
   }

B.2.  Example: Schedule Network Properties to Change Based on Date and
      Time

   Network properties may change over a specific period of time or based
   on a recurrence rule, e.g., [I-D.ietf-tvr-use-cases].  The following
   example module which augments the "recurrence-with-date-times"
   grouping from "ietf-schedule" module shows how a scheduled based
   attribute could be defined.

   module example-scheduled-link-bandwidth {
     yang-version 1.1;
     namespace "http://example.com/example-scheduled-link-bandwidth";
     prefix "ex-scattr";

     import ietf-network {
       prefix "nw";
       reference
         "RFC 8345: A YANG Data Model for Network Topologies";
     }

     import ietf-schedule {
       prefix "schedule";
       reference
         "RFC XXXX: A YANG Data Model for Scheduling";
     }

     organization
       "Example, Inc.";

     contact
       "Support at example.com";

     description
       "Example of a module defining a scheduled link bandwidth.";

Ma, et al.              Expires 2 September 2024               [Page 38]



Internet-Draft            Common Schedule YANG                March 2024

     revision "2023-01-19" {
       description
         "Initial Version.";
       reference
         "RFC XXXX: A YANG Data Model for Scheduling.";
       }

     grouping link-bandwidth-grouping {
       description
         "Grouping of the link bandwidth definition.";
       leaf scheduled-bandwidth {
         type uint64;
         units "Kbps";
         description
           "Bandwidth values, expressed in kilobits per second.";
       }
     }

     container link-attributes {
       description
         "Definition of link attributes.";
       list link {
         key "source-node destination-node";
         description
           "Definition of link attributes.";
         leaf source-node {
           type nw:node-id;
           description
             "Indicates the source node identifier.";
         }
         leaf destination-node {
           type nw:node-id;
           description
             "Indicates the source node identifier.";
         }

         leaf default-bandwidth {
           type uint64;
           units "Kbps";
           description
             "Default bandwidth values when unspecified.";
         }

         choice time-variant-type {
           description
             "Controls the schedule type.";
           case period {
             uses schedule:period-of-time;

Ma, et al.              Expires 2 September 2024               [Page 39]



Internet-Draft            Common Schedule YANG                March 2024

           }
           case recurrence {
             uses schedule:recurrence-with-date-times {
               augment "date-times-choice/period-timeticks"
                     + "/period-timeticks" {
                 description
                   "Specifies the attributes inside each
                    period-timeticks entry.";
                 uses link-bandwidth-grouping;
               }
               augment "date-times-choice/period/period" {
                 description
                   "Specifies the attributes within each period entry.";
                 uses link-bandwidth-grouping;
               }
             }
           }
         }
       }
     }
   }

   Figure 18 shows a configuration example of a link’s bandwidth that is
   scheduled between 2023/12/01 0:00 UTC to the end of 2023/12/31 with a
   daily schedule.  In each day, the bandwidth value is scheduled to be
   500 Kbps between 1:00 AM to 6:00 AM and 800 Kbps between 10:00 PM to
   11:00 PM.  The bandwidth value that’s not covered by the period above
   is 1000 Kbps by default.

Ma, et al.              Expires 2 September 2024               [Page 40]



Internet-Draft            Common Schedule YANG                March 2024

   <?xml version="1.0" encoding="utf-8"?>
   <link-attributes
     xmlns="http://example.com/example-scheduled-link-bandwidth"
     xmlns:schedule="urn:ietf:params:xml:ns:yang:ietf-schedule">
     <link>
       <source-node>ne1</source-node>
       <destination-node>ne2</destination-node>
       <default-bandwidth>1000</default-bandwidth>
       <recurrence-first>
         <date-time-start>2023-12-01T01:00:00Z</date-time-start>
       </recurrence-first>
       <frequency>schedule:daily</frequency>
       <until>2023-12-31T23:59:59Z</until>
       <period-timeticks>
         <period-start>360000</period-start>
         <period-end>2160000</period-end>
         <scheduled-bandwidth>500</scheduled-bandwidth>
       </period-timeticks>
       <period-timeticks>
         <period-start>7920000</period-start>
         <period-end>8280000</period-end>
         <scheduled-bandwidth>800</scheduled-bandwidth>
       </period-timeticks>
     </link>
   </link-attributes>

              Figure 18: Example of Scheduled Link’s Bandwidth

Acknowledgments

   This work is derived from the [I-D.ietf-opsawg-ucl-acl].  There is a
   desire from the OPSAWG to see this model be separately defined for
   wide use in scheduling context.

   Thanks to Adrian Farrel, Wei Pan, Tianran Zhou, and Joe Clarke for
   their valuable comments and inputs to this work.

   Many thanks to the authors of [I-D.united-tvr-schedule-yang],
   [I-D.contreras-opsawg-scheduling-oam-tests], and
   [I-D.ietf-netmod-eca-policy] for the constructive discussion during
   IETF#118.

Authors’ Addresses

Ma, et al.              Expires 2 September 2024               [Page 41]



Internet-Draft            Common Schedule YANG                March 2024

   Qiufang Ma (editor)
   Huawei
   101 Software Avenue, Yuhua District
   Jiangsu
   210012
   China
   Email: maqiufang1@huawei.com

   Qin Wu
   Huawei
   101 Software Avenue, Yuhua District
   Jiangsu
   210012
   China
   Email: bill.wu@huawei.com

   Mohamed Boucadair (editor)
   Orange
   35000 Rennes
   France
   Email: mohamed.boucadair@orange.com

   Daniel King
   Lancaster University
   United Kingdom
   Email: d.king@lancaster.ac.uk

Ma, et al.              Expires 2 September 2024               [Page 42]


	draft-aelhassany-anydata-validation-00
	draft-ietf-dtn-dtnma-12
	draft-ietf-netmod-intf-ext-yang-13
	draft-ietf-netmod-sub-intf-vlan-model-10
	draft-ietf-netmod-yang-module-versioning-11
	draft-ietf-netmod-yang-semver-14
	draft-jouqui-netmod-yang-full-include-01
	draft-kll-yang-label-tsdb-00
	draft-li-ivy-power-01
	draft-lindblad-tlm-philatelist-00
	draft-lopez-opsawg-yang-provenance-02
	draft-ma-opsawg-schedule-yang-04

