ACME-Based Provisioning of IoT Devices

Michael Sweet
Lakeside Robotics Corporation
March 21, 2024
ACME-Based Provisioning of IoT Devices

• Current I-D:
 • https://datatracker.ietf.org/doc/draft-sweet-iot-acme/

• Abstract:
 • This document extends the Automatic Certificate Management Environment (ACME) [RFC8555] to provision X.509 certificates for local Internet of Things (IoT) devices that are accepted by existing web browsers and other software running on End User client devices.

• Primary goal is to eliminate scary browser security warnings when accessing embedded web servers on IoT devices

• Secondary goal is to enable a more scalable and trustable local CA infrastructure
Typical Scary Browser Security Warnings

Your connection is not private

Attackers might be trying to steal your information from localhost (for example, passwords, messages, or credit cards). Learn more

NET::ERR_CERT_AUTHORITY_INVALID

To get Chrome’s highest level of security, turn on enhanced protection

Advanced

Back to safety

This Connection Is Not Private

This website may be impersonating “localhost” to steal your personal or financial information. You should close this page.

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to localhost. If you visit this site, attackers could try to steal information like your passwords, emails, or credit card details.

Learn more...

Go Back (Recommended)

Advanced...
How to Eliminate Scary Security Warnings

• Browser developers do not want to allow self-signed certificates, even for ".local" (mDNS) hostnames

• Only solutions at present are:
 • Obtain (buy) CA-issued X.509 certificates with a trusted root
 • Install a local X.509 root certificate and issue/generate X.509 certificates using it
 • (Manually) use a third-party solution such as Microsoft Active Directory Certificate Services or smallstep's step-ca to generate and install X.509 certificates

• These don't scale to home users and add to the workload of enterprise IT departments
Typical Home Network

- Wi-Fi router/modem provided by ISP
 - Router implements DHCP and DNS (passthrough) services along with NAT and firewall functionality
 - Little to no outbound traffic filtering, may provide inbound port mapping and/or DMZ functionality for a single host
 - Embedded web interface for configuration/status monitoring, speed testing, etc.
- Network clients connect to network and obtain IP address(es), default gateway/route, DNS server, and local domain (usually the ISP's domain name) via DHCP
- Printers, cameras, appliances, etc. provisioned/connected by end users using WPS, captive portal AP web interface, vendor mobile apps, and/or device control panel
Typical Enterprise Network

• Managed routers, modems, etc.
 • Multiple subnets/VLANs
 • DHCP service for each subnet
 • DNS service for each site/organization
 • Outbound traffic is filtered/monitored, inbound traffic may be completely blocked or limited to isolated subsets/VLANs, interior traffic is often filtered/monitored
• Dedicated authorization, certificate, etc. services
• Network clients may need to be explicitly provisioned
• Printers, cameras, appliances, etc. are managed by IT department and/or third-party service
ACME

- ACME and Let's Encrypt have enabled the widespread use of HTTPS for public Internet web sites, but:
 - Certificates for ".local" domain names cannot be issued
 - No way to do HTTP or DNS verification of local devices
- A local ACME server can be configured to issue certificates for ".local" domain names (as well as site domains) and can do HTTP and DNS verification with local devices
- Key issues:
 - ACME server discovery
 - Root certificate (trust anchor) for issued certificates
 - Security considerations for local ACME server, clients, and IoT devices
ACME Server Discovery

- Use DHCP option and/or DNS-SD with local DNS service
 - DHCP is both commonly used and trusted for local device access/connection
 - DHCP option provides simpler way for home networks
 - DNS-SD easily integrates with enterprise infrastructure
 - *Cannot use mDNS for security reasons*
- Nominally one ACME server per network
 - Failover/load-balancing is possible via DNS but from the network device perspective there is a single service
Network Root Certificate ("Trust Anchor")

- CA-signed root certificate will work with existing CA infrastructure/support
- Self-signed root certificate requires some special handling
 - Trust On First Use (TOFU) when connecting to network
 - Only valid while connected to that network
 - Only valid for ".local" and local/site-specific domain
Security Considerations

• Local ACME server:
 • Only issue certificates for approved domains - "local" and site-specific domain ("examplecorp.com")
 • Protect root certificate and private key
 • Support revocation/re-issue as needed
 • Long-duration self-signed root cert or CA-signed root cert to minimize time-of-use/MITM attacks
 • Short-duration issued certs to minimize exposure of compromised credentials
 • **One proposed addition**: provide a way for the network owner to manually approve issuance of new certificates
Security Considerations

• Client devices:
 • Limit trust of local root certificate to current network/domains
 • Challenge is network identification - SSID isn't unique, MAC address should be but isn't authenticated, TLS negotiation establishes ownership of private key but anybody can make a self-signed certificate
 • **One proposed solution:** use the local root certificate as the network identity
 • TOFU for "self-signed" root certificates, possibly with UI to confirm on network connection

• IoT devices:
 • Protect ACME-issued certificate and generated private key
 • Do not reuse private keys
 • Must have ability to wipe/"factory reset" the device
Level of Trust

• With self-signed root certificates, the level of trust is necessarily reduced
 • Browsers could choose to indicate this somehow, but based on prior research with "EV" certs that might not be useful/effective
 • Might also simply change the wording of the scary error message to something more like the SSH TOFU prompt

• Need to be comfortable with "less than perfect" security
 • Encrypting potentially sensitive communications is always a good thing
 • Providing a network-specific trust anchor provides better control and local validation of certificates and protects against MITM attacks
 • Using a common protocol such as ACME allows the same certificate infrastructure to be used in both enterprise and home networks, which is especially important as more people have hybrid work scenarios
Q&A