Extended YANG Data Model for DOTS

Yong Cui, Linzhe Li
Techinghua University, Beijing Zhongguancun Laboratory

March 18, 2024
Outline

- DDoS Attack Trends and Problems
- Potential Solution and Implementation
- Questions
DDoS Attack Trends and Problems

- More frequent
 - 7.9 million DDoS attacks happened in the first half year of 2023, 31% increase year over year.
DDoS Attack Trends and Problems

- **Hyper-volumetric**
 - The largest attack in 2023 — 201M requests per second (rps), almost 8 times larger than 2022’s.

- **High defense costs**
 - To counter randomly occurring DDoS attacks, long-term procurement and operation of large-scale DDoS defense resources come at a very high cost.
DDoS Attack Trends and Problems

- **More Intelligent**
 - 50% of DDoS use more than two vectors.
 - “Fast Flooding” can suddenly spike to a high level for a short duration.

- **Hard to detect**
 - For ISP, Sampling-based attack detection usually takes more than 1 minute.
 - New types of attacks are emerging, and intelligent attacks occur more frequently, both are difficult to detect.
Problem 1

For operator:
- Detect attacks in minutes (sampling based)
- Have enough resources

For enterprise:
- Detect attacks in seconds
- Limited resources, can not mitigate Gbps-level attack traffic

1. Mitigation Request
2. Acknowledge the attack (in minutes) and develop mitigation strategies
3. Collaborative Mitigation
Problem 1

Visibility:
- Attack features: A SYN Flood, average packet length is 44
- Network telemetry message: pps, bps...
- Intelligence: A same attack happened a minute ago

Resources:
- Devices: Several scrubbing cluster
- Capacity: Can filter Tb attack traffic

What we need
- Structured attack feature data model

Original DOTS
"vendor-id": 32473,
"attack-id": 92,
"start-time": "1641172809",
"attack-severity": "high"
"attack-description": "DNS amplification Attack: This attack is a type of reflection attack in which attackers spoof a target's IP address. The attackers abuse vulnerabilities in DNS servers to turn small queries into larger payloads."
Client needs to know the mitigation capabilities that the server can provide in order to make the right decision.

What we need

- mitigation capacity data model, including strategy and capacity
Requirement: Data Model Extension

- DOTS Signaling Function
 - Issue and response mitigation requests
 - Need attack features for and mitigation recommendations
 - Exchange network telemetry information
 - Need more detailed baseline and intelligence
 - pre-configuration
 - Need mitigation capacity and baseline
 - Registration and certification
Implementation & Experiment

- Topology Diagram
 - We built a test bed to verify the mitigation effects of DDoS attacks.
 - We developed a simplified DOTS client and server.
 - We realized the extended data model for transportation using HTTP.
 - Experimental scene is same as Problem 1.

Type: SYN Flood
Feature:

```
  avg-packet-length: 33,
  duplicate-message": "xxxx"
```
Experiment

Results

- Using the attack features, the time to start mitigation was reduced by 43% (139s → 79s).
- The devices in the test bed have a data forwarding delay of 30s.
- By inference, in the network, the mitigation time can be reduced from minute level to second level.
Questions

• We were applying DOTS to our collaboration framework but found some important data models (e.g. attack features) that were not yet defined.

• Operators and security vendors are both care about the extended data model, it determines the capacity of co-mitigation.

• For DOTS has concluded, where can we advance this I-D?

Welcome to contact me: lilz@zgclab.edu.cn, Linzhe.
Thanks!