Agenda

- Rev 00 (Presented in IETF 118)
 - Overall solution

- Rev 01
 - L3-Optimized IRB Option B – ARP Packet Optimization
 - L3-Optimized IRB Flag proposal

- Rev 02
 - New Caveats
 - MAC-Only and MAC-IP Route
 - IPv6 ND Message Handling
EVPN L3-Optimized IRB (Rev 00)

- H1 & H2 are in one subnet, and H3 in a different subnet
- H1 & H2 is bridged, H1/H2 and H3 is routed
- With L3-Optimized IRB, communication between H1 & H2 is also routed

PE devices only need to maintain MAC addresses for locally-connected IP hosts, thus improving MAC scalability of customer bridges and PE devices significantly.

L3-Optimized IRB Option A is proposed with Unconditional ARP response and host discovery via data packet gleaning. Interoperability with traditional IRB is covered as well.
L3-Optimized IRB Option B (Rev 01)

- Conditional ARP response and host discovery via ARP Request Optimization
 - An L3-Optimized PE replies to an ARP Request Message from a locally connected host ONLY IF the target host is known to the PE
 - If the target host is unknown, the PE will NOT respond to the ARP Request immediately, instead, the PE re-originates the ARP Request to discover the target host

```
H1          PE1          RR          PE2          PE3          H2
| ARP REQ(BC) | | | | |
|----------| | | | |
| H2 unknown, ARP REQ (BC) | | | | |
|--------------------------| | | | |
| ARP REQ(BC) | | | | |
| <----------| | | | |
ARP REQ (BC): Broadcast ARP REQUEST
ARP REP (UC): Unicast ARP REPLY
```

Figure 5: Host discovery via ARP Request Optimization (Option B)
L3-Optimized IRB Option B (Rev 01)

- Once the target host is learned via EVPN RT-2 route, it then becomes known to the PE and the PE can respond the original or subsequent ARP Request

![Diagram](image)

Figure 6: ARP Response from an IP host
Advantages of Option B

- Solves the first data packet loss issue, which might be critical to some applications
- Won’t create unnecessary ARP cache entries on CE side or attract traffic from the CE if the target host is unknown
- Choosing Option A or Option B won’t introduce any interoperability problem, ultimately the target host is discovered by the ARP Request from the PE, either being originated (A) or re-originated (B)
- Option B is the recommended approach despite that it’s relatively more complicated to implement
L3-Optimized IRB Flag proposal (Rev 01)

This "L3-Optimized IRB flag" can be carried in an extended flag field in "EVPN ARP/ND Extended Community" (RFC 9047):

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| Type=0x06 | Sub-Type=0x08 | Flags (1 octet) | Reserved=0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
| Reserved=0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Flags field:

```
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+
|L| I| O|R|
+-+-+-+-+-+-+-+
```

R: Router flag (corresponds to Bit 23 of the EC)
O: Override flag (corresponds to Bit 22 of the EC)
I: Immutable ARP/ND Binding flag (corresponds to Bit 20 of the Extended Community)

Proposed New flag (TBD)
L: L3-Optimized IRB flag (corresponds to Bit 16 of the EC)

Figure 2: EVPN ARP/ND Extended Community
New Caveats (Rev 02)

- On top of the existing Caveats to Consider, like TTL, Source MAC Rewrite, Subnet Broadcast, IPv6 LL and DAD, MAC Duplication Detection, Static ARP/ND, two new caveats are added:
 - IPv4 Address Conflict Detection (ARP Probe in RFC5227)
 - Neighbor Unreachability Detection (RFC4861) received from a traditional IRB PE

The above messages are not allowed to reach target host to avoid polluting CE MAC Table.
MAC-Only and MAC-IP Route (Rev 02)

- EVPN Allows advertising RT-2s with MAC address only and with MAC and IP address. For L3-Optimized IRB mode:
 - PE SHOULD NOT advertise MAC-Only routes
 - PE MUST advertise MAC-IP routes with L3-Optimized IRB Flag
 - If a PE chooses to advertise both MAC-Only and MAC-IP routes, then both MAC-Only and MAC-IP routes MUST carry L3-Optimized IRB Flag
IPv6 ND Message Handling (Rev 02)

- As described in section 2.2, IPv6 (or dual stack) ND behaviors are generally the same as ARP behaviors, with some specifics:
 - NS messages use multicast address, while ARP Requests are broadcast messages
 - NA generated on PE1 in response to NS from H1 to resolve a remote H2, always set to 1 the flags R (Router), O (Override) and S (Solicited)
 - Egress PE MUST set R (Router) and O (Override) flags to zero or one as per RFC9047 when it generates a RT-2 with L3-Optimized IRB set
 - Unsolicited NA from hosts will be handled the same way as Gratuitous ARP, and the PE will modify the R (Router) and O (Override) flags as per RFC9047 when it generates a RT-2 with L3-Optimized IRB set
Next Steps

- Solicit more input on the mailing list
- Asking for WG call
THANK YOU!
L3-Optimized IRB Option A (Rev 00)

- Unconditional ARP Reply and host discovery via data packet gleaning
 - An L3-Optimized PE replies to an ARP Request Message from a locally connected host unconditionally.

```
<table>
<thead>
<tr>
<th></th>
<th>H1</th>
<th>PE1</th>
<th>RR</th>
<th>PE2</th>
<th>PE3</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ARP</td>
<td>REQ(BC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td></td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td>---------</td>
<td></td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td></td>
<td></td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td></td>
<td></td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td></td>
<td></td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>------</td>
<td></td>
<td></td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
</tr>
</tbody>
</table>
```

ARP REQ (BC): Broadcast ARP REQUEST
ARP REP (UC): Unicast ARP REPLY

Figure 2: ARP Request from an IP Host
L3-Optimized IRB Option A (Rev 00)

- First data packet gets routed if the target host is known, otherwise the PE originates a new ARP Request to discover the target host.

- Due to the data gleaning process, the data packet may get lost in control plane.

Figure 3: First data packet from an IP host
L3-Optimized IRB Option A (Rev 00)

- Once the target host is learned via EVPN RT-2 route, the target route is installed, and further data packets are getting routed.

Figure 6: ARP Response from an IP host