Private Inexpensive Norm Enforcement, a new VDAF

Junye Chen, Christopher Patton

IETF 119 – CFRG

[VDAF] Barnes, R., Cook, D., Patton, C., and P. Schoppmann, "Verifiable Distributed Aggregation Functions", Work in Progress, Internet-Draft, draft-irtf-cfrg-vdaf-08, 20 November 2023
Use Case: Federated Machine Learning

[Chen, J., Patton, C., "Private Inexpensive Norm Enforcement (PINE) VDAF", Work in Progress, Internet-Draft, draft-chen-cfrg-vdaf-pine-00, 04 March 2024]
Use Case: Federated Machine Learning

model updates (a.k.a. gradients)
Use Case: Federated Machine Learning
Use Case: Federated Machine Learning

Verifiable Distributed Aggregation Function [VDAF]

- Secure multi-party aggregation of client “measurements”.
- Prio3: Uses the idea of a Fully Linear Proof (FLP) [VDAF, Section 7], a distributed zero-knowledge proof system to verify properties of Client measurements.

[VDAF] Barnes, R., Cook, D., Patton, C., and P. Schoppmann, "Verifiable Distributed Aggregation Functions", Work in Progress, Internet-Draft, draft-irtf-cfrg-vdaf-08, 20 November 2023
PINE VDAF: draft-chen-cfrg-vdaf-pine-00

- The draft is based on a recent paper [ROCT’23].
- Goal: compute $\sum_{i} x_i$, where each $x_i \in \mathbb{R}^d$ is a Client gradient.
- Requires: the “L2 norm” $||x_i||_2 \leq l2_norm_bound$. Note $||x_i||_2 = (\sum_{j} x_{i,j}^2)^{0.5}$.
- Uses the idea of a Fully Linear Proof (FLP) like Prio3.
Use Case: Federated Machine Learning with PINE VDAF

[Chen, J., Patton, C., "Private Inexpensive Norm Enforcement (PINE) VDAF", Work in Progress, Internet-Draft, draft-chen-cfrg-vdaf-pine-00, 04 March 2024]
Use Case: Federated Machine Learning with PINE VDAF

[Chen, J., Patton, C., "Private Inexpensive Norm Enforcement (PINE) VDAF", Work in Progress, Internet-Draft, draft-chen-cfrg-vdaf-pine-00, 04 March 2024]
Use Case: Federated Machine Learning with PINE VDAF

Chen, J., Patton, C., "Private Inexpensive Norm Enforcement (PINE) VDAF", Work in Progress, Internet-Draft, draft-chen-cfrg-vdaf-pine-00, 04 March 2024
Use Case: Federated Machine Learning with PINE VDAF

[Chen, J., Patton, C., "Private Inexpensive Norm Enforcement (PINE) VDAF", Work in Progress, Internet-Draft, draft-chen-cfrg-vdaf-pine-00, 04 March 2024]
Why Not Prio3?

● Computing squared L2-norm (the sum of squares of all entries in the encoded gradient) can overflow the field modulus.
 ○ Example: Suppose L2 norm bound is 10, field modulus $q = 23$, client gradient = [99, 0, 7]. Taking the squared L2-norm of this gradient modulo q is only 6.

● Challenge: prevent “wraparound” effect.

● One could ensure each entry of the gradient is sufficiently small, but the communication cost would be too high, $\sim O(\text{dimension} \times \text{num_frac_bits}).$
PINE Wraparound Check

- A random vector is sampled, each entry is a -1, 1, or 0.
- Compute a dot product of the random vector with the encoded gradient.
- If the squared L2-norm of the gradient wraps around field modulus, this dot product is likely to be large. [ROCT’23] proves this check correctly detects wraparound with probability ½.
- Repeat this check to reach the desired soundness error.
- Incompatible with Prio3.
Performance Comparison

- \(l_2 \text{_norm_bound} = 1.0, \text{num_frac_bits} = 15, \text{dimension} = 10^5 \)
- PINE’s communication cost is 15x less compared to Prio3’s.
Next steps for draft-chen-cfrg-vdaf-pine-00

● Current status of the draft
 ○ Core design work is complete
 ■ Reference code and test vectors
 ■ Core component is supported by security proofs
 ○ Remaining work:
 ■ Complete the draft text
 ■ Finalize parameters (minimize communication cost)
 ■ Incorporate feedback from implementers

● Is CFRG interested in this adopting this work?
 ○ Enables federated learning in the VDAF framework ⇒ improves privacy for training machine learning models
 ○ Opens up new use cases for PPM

● Ready for an adoption call?
 ○ More security analysis would be helpful
 ○ Further optimization is possible