Constrained Application Protocol (CoAP) over Bundle Protocol (BP)

draft-gomez-core-coap-bp-00

Carles Gomez
Anna Calveras
Universitat Politècnica de Catalunya

IETF 119 Brisbane, DTN WG, March 2024
1. Introduction

• DTN architecture:
 • Enables communication in challenged networks
 – Intermittent connectivity, high delays, high error rates...
 – Deep space, temporarily disconnected areas...
 • BP is the fundamental component of DTN
 – Store-carry-forward overlay
 – Application functionality runs atop BP

• CoAP:
 • Application-layer protocol designed for IoT environments
 • Typical IoT environment constraints:
 – Low energy (often leading to intermittent connectivity), high delays, low bandwidth, high error rates...
 • Features:
 – Lightweight operation, asynchronous message exchanges, flexibility, based on REST
Draft: main goal and status

- Main goal:
 - Specify how CoAP is carried over BP

- Initial draft version (-00)
 - Intended Status: Standards Track

- Explore interest, collect feedback

- Target WG?
 - CoRE WG
 - Specifies CoAP and related ecosystem
 - DTN WG
 - Specifies BP and related ecosystem
 - In any case, the aim is to keep both WGs in the loop
3. Architecture

- Protocol stack model:
 - Based on Fig. 1 of RFC 9171
4.1. Messaging model (I/III)

- Abstract layering for CoAP over BP:
 - CoAP was originally designed to operate over UDP
 - Same CoAP messaging model applies over BP:
 - UDP and BP are message-oriented protocols, no retransmission
 - CoAP over reliable transports: different model
4.1. Messaging model (II/III)

• Requests
 – Sent by clients

• Responses
 – Sent by servers

• Message types:
 – Confirmable (CON)
 » Must be acknowledged
 » Stop & wait
 • Default
 » Timer-based retransmission, exponential back-off
 – Non-confirmable (NON)
 – Acknowledgment (ACK)
 – Reset (RST)
4.1. Messaging model (III/III)

- CoAP over BP:
 - A source bundle node MAY set the "request reporting of bundle delivery" flag in a bundle that encapsulates a CoAP CON message
 - The receiver MAY opt to only send the corresponding bundle delivery status report
 - Instead of sending a bundle encapsulating a CoAP ACK message
 - If and only if the CoAP ACK does not carry a payload
 - The status report sent in response to a bundle-encapsulated CON message serves as CoAP ACK for the CON message

- Assumption: the status report size is shorter than the size of a bundle encapsulating a CoAP ACK message with no payload
4.2. Message format

• CoAP message over BP:
 • The CoAP message MUST be carried as the block-type-specific data field of the Bundle Payload Block (block type 1) of an encapsulating bundle

• CoAP message format over BP:
 • Extending the Message ID field size from 16 bits to 24 bits
 • Avoiding a severe limitation on the number of messages a sender can send per time unit:
 – RFC 7252: the same Message ID MUST NOT be reused within the EXCHANGE_LIFETIME (default: 247 s; deep space: \(~10^3\) s to \(~10^4\) s)
 – Maximum message rate (Appendix B):
 » Default settings, Earth’s Internet: \(~265\) message/s
 » Default settings, Jupiter to Earth: \(~3\) message/s (1 retry)
5. CoAP parameter settings...

- **NSTART**
 - Max number of outstanding interactions
 - Default value: 1
 - Greater values possible when some mechanism ensures congestion safety

- **ACK_TIMEOUT (AT), ACK_RANDOM_FACTOR (AF)**
 - Initial RTO, randomly chosen from [AT, AT*AF]
 - Default values (respectively): 2 s, 1.5
 - ACK_TIMEOUT needs to be set to at least the RTT
 - ACK_RANDOM_FACTOR intended to avoid synchronization effects

- **MAX_RETRANSMIT**
 - Default value: 4
 - Due to exponential back-off, lower than default may be suitable
 - Congestion control: needed in BP environments?
5. ... and related times

- **MAX_LATENCY**
 - Max time since a datagram is sent until it is received
 - Defined as 100 s

- **EXCHANGE_LIFETIME**
 - Max time since first transmission attempt of a CON until its ACK
 - Default value: 247 s

- **NON_LIFETIME**
 - Max time since a NON message is sent until it is received
 - Default value: MAX_LATENCY (i.e., 100 s)

- Note: CoAP implementations using 8-bit timers may need to be adapted to operate over BP

At least 2 orders of magnitude greater over BP
6. Observe

- Allows a server to send notifications carrying a representation of the current state of a resource to observers [RFC7641]
 - The latter need to initially register their interest
- The client does not have to send a request to receive each notification
 - Beneficial in high latency and/or low energy or bandwidth scenarios
- If time between the two last notifications received is > 128 seconds, the last one received is also the latest sent
 - 128 seconds: greater than the default MAX_LATENCY
 - When CoAP is used over BP, 128 seconds may be insufficient
 - The duration needs to be chosen as a value greater than the MAX_LATENCY of the scenario (see Appendix A)
7. Block-wise transfers

• CoAP supports functionality that allows carrying large payloads by means of block-wise transfers: RFC 7959, RFC 9177

• BP also supports fragmentation and reassembly functionality

• RFC 7959: "the fragmentation/reassembly process burdens the lower layers with conversation state that is better managed in the application layer"
 • Implicit assumption: details on the data unit sizes that can be carried over the different links of an end-to-end path are known in advance

• For CoAP over BP, CoAP block-wise transfers MAY be used if the source knows in advance the duration and type of expected contacts
 • This does not preclude the use of BP fragmentation and reassembly when deemed necessary
 • RFC 9177 is more suitable (RFC 7959 leads to stop & wait)
 • Many Block-specific parameters may need to be tuned
8. CoAP over BP URI

• Several CoAP URI schemes exist:
 • RFC 7252: "coap" and "coaps"
 • RFC 8323: "coap+tcp", "coaps+tcp", "coap+ws", "coaps+ws"

• For CoAP over BP:
 • New URI scheme: "coap+bp"
 • Syntax:
 - coap-bp-URI = "coap+bp:" "/" endpoint_ID path-abempty ["?" query]
 - Section 6.1 of RFC 7252 applies, except that a BP endpoint ID is used instead of the "host" and "port" authority subcomponents
9. IANA considerations

- IANA is requested to register the URI scheme "coap+bp"
 - Request structure conforms to RFC 7595
- Scheme name:
 - coap+bp
- Status:
 - Permanent
- Applications/protocols that use this scheme name:
 - CoAP endpoints to access CoAP resources using BP
- Contact:
 - IETF chair (chair@ietf.org)
- Change controller:
 - IESG (iesg@ietf.org)
- Reference:
 - Section 8.1 in [RFCthis]
Appendix A. Ref. parameter values for interplanetary communication

- Idealized scenarios: latency comprises propagation delay only

<p>| RTT, ACK_TIMEOUT (or EXCHANGE_LIFETIME, for MAX_RETRANSMIT=0) |</p>
<table>
<thead>
<tr>
<th>Sun</th>
<th>Mercury</th>
<th>Venus</th>
<th>Earth</th>
<th>Mars</th>
<th>Jupiter</th>
<th>Saturn</th>
<th>Uranus</th>
<th>Neptune</th>
</tr>
</thead>
<tbody>
<tr>
<td>466</td>
<td>727</td>
<td>1,014</td>
<td>1,661</td>
<td>5,444</td>
<td>10,007</td>
<td>20,214</td>
<td>30,288</td>
<td></td>
</tr>
<tr>
<td>1,181</td>
<td>1,448</td>
<td>1,968</td>
<td>5,751</td>
<td>10,340</td>
<td>20,548</td>
<td>30,554</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,735</td>
<td>2,382</td>
<td>6,158</td>
<td>10,741</td>
<td>20,948</td>
<td>30,955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,642</td>
<td>6,424</td>
<td>11,008</td>
<td>21,215</td>
<td>31,222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,805</td>
<td>11,408</td>
<td>21,615</td>
<td>31,622</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,944</td>
<td>25,151</td>
<td>35,425</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29,220</td>
<td>39,961</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50,168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B. Max CoAP message rate

- Depending on
 - EXCHANGE_LIFETIME
 - Message ID
 - 16 bits (default)
 - 24 bits (suggested)

<table>
<thead>
<tr>
<th>EXCHANGE_LIFETIME (s)</th>
<th>Message ID_16 bits</th>
<th>Message_ID 24 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>247 (default)</td>
<td>265.3 (default)</td>
<td>67,924</td>
</tr>
<tr>
<td>500</td>
<td>131.1</td>
<td>33,554</td>
</tr>
<tr>
<td>1,000</td>
<td>65.5</td>
<td>16,777</td>
</tr>
<tr>
<td>1,500</td>
<td>43.7</td>
<td>11,184</td>
</tr>
<tr>
<td>2,000</td>
<td>32.8</td>
<td>8,388</td>
</tr>
<tr>
<td>2,500</td>
<td>26.2</td>
<td>6,710</td>
</tr>
<tr>
<td>3,000</td>
<td>21.8</td>
<td>5,592</td>
</tr>
<tr>
<td>3,500</td>
<td>18.7</td>
<td>4,793</td>
</tr>
<tr>
<td>4,000</td>
<td>16.4</td>
<td>4,194</td>
</tr>
<tr>
<td>4,500</td>
<td>14.6</td>
<td>3,728</td>
</tr>
<tr>
<td>5,000</td>
<td>13.1</td>
<td>3,355</td>
</tr>
<tr>
<td>5,500</td>
<td>11.9</td>
<td>3,050</td>
</tr>
<tr>
<td>6,000</td>
<td>10.9</td>
<td>2,796</td>
</tr>
<tr>
<td>6,500</td>
<td>10.1</td>
<td>2,581</td>
</tr>
<tr>
<td>7,000</td>
<td>9.4</td>
<td>2,396</td>
</tr>
<tr>
<td>7,500</td>
<td>8.7</td>
<td>2,237</td>
</tr>
<tr>
<td>10,000</td>
<td>6.6</td>
<td>1,677</td>
</tr>
<tr>
<td>20,000</td>
<td>3.3</td>
<td>838</td>
</tr>
<tr>
<td>30,000</td>
<td>2.2</td>
<td>559</td>
</tr>
<tr>
<td>40,000</td>
<td>1.6</td>
<td>419</td>
</tr>
<tr>
<td>50,000</td>
<td>1.3</td>
<td>335</td>
</tr>
<tr>
<td>60,000</td>
<td>1.1</td>
<td>279</td>
</tr>
<tr>
<td>70,000</td>
<td>0.9</td>
<td>239</td>
</tr>
<tr>
<td>80,000</td>
<td>0.8</td>
<td>209</td>
</tr>
<tr>
<td>90,000</td>
<td>0.7</td>
<td>186</td>
</tr>
<tr>
<td>100,000</td>
<td>0.7</td>
<td>167</td>
</tr>
<tr>
<td>110,000</td>
<td>0.6</td>
<td>152</td>
</tr>
<tr>
<td>120,000</td>
<td>0.5</td>
<td>139</td>
</tr>
<tr>
<td>130,000</td>
<td>0.5</td>
<td>129</td>
</tr>
<tr>
<td>140,000</td>
<td>0.5</td>
<td>119</td>
</tr>
<tr>
<td>150,000</td>
<td>0.4</td>
<td>111</td>
</tr>
</tbody>
</table>
Thanks!

Questions? Comments?

Carles Gomez
Anna Calveras
Universitat Politècnica de Catalunya

IETF 119 Brisbane, DTN WG, March 2024