Bundle Protocol Version 7
Administrative Record Types Registry

IETF 119 DTN WG

Brian Sipos
JHU/APL
Current Status

• Last draft of the document draft-ietf-dtn-bpv7-admin-iana-02 still in WG Last Call state
• The draft has expired in February 2024
• No comments have been received or edits are expected to be needed for this draft revision
• This document is required by draft-ietf-acme-dtnnodeid-12 to progress
Next Steps

• This would eventually be in a cluster with the ACME document registering the new code point
• The BIBE document would also eventually need code points
BPSeq COSE Context

IETF 119 DTN WG

Brian Sipos
JHU/APL
Background

• BPSec and its Default Security Context are usable but intentionally limited in scope:
 - A limited number of symmetric-keyed encryption and MAC algorithms
 - Defines a narrow-scoped additional authenticated data (AAD) binding to the block/bundle
 - No explicit key identifiers are available

• For internet-facing nodes, possibly as subnetwork gateways, there is a need for PKI-integrated security
 - This was indicated by IETF SECDIR review of BPSec draft and also discussed as a near-future need by NASA and IOAG DTN planning

• Don’t want to reinvent the wheel, and CBOR Object Signing and Encryption (COSE) already provides syntax and semantics for current and future PKI security
 - Even COSE (with a restricted profile as used here) still provides a lot of variability, in the same sense that TLS or S/MIME does, which must be managed out-of-band (e.g. don’t use ECC algorithms if security acceptors can’t support it)
Last Changes

• Changed AAD Scope parameter to allow use of indirect block references:
 - Uses -1 to refer to each target block identified in the ASB
 - Uses -2 to refer to the security block containing the ASB
 - These are necessary for BIB and BCB with multiple targets to have the same policy of “bind this security to the target metadata”
 - Simplifies the default AAD Scope value to \{0:0b1,-1:0b1,-2:0b1\}

• Added mention of existing “kid context” header parameter for identifying keys
 - Does not affect context or COSE requirements, just mentioning an existing mechanism
Open Issues

• There are currently open issues on the GitHub project
 - #23 No minimum interoperability for x5t algorithms
 - #24 No allowance for single-layer encryption with direct CEK
 - #25 No recommended algorithm for non-wrapped ECDH algorithms
 - #26 Recommend against using PartyU/PartyV

• For #24, #25, #26 these just represent recommendations in Section 3.2

• For #23 this represents a requirement for minimum support in Section 3.3

• None of these issues change the BPSec context definition or any COSE processing, just minimum interoperability
Implementation Experience

- Ongoing APL IRAD to explore secure messaging with BPSec/BPv7 in a PKIX environment
- Forked open source HDTN and COSE-C projects, added COSE Context and static policy
 - Created several new tickets in each upstream project for issues uncovered
- Forked open source dtn-demo-agent and pycose projects, modified COSE Context and policy
- So far no additional changes to the COSE Context definition have been identified

👍
Next Steps

• This is not intended to replace or supersede existing BPSec interoperability contexts in RFC 9173

• The point of this security context is to allow BPSec in a PKIX environment in the very near term

• This document doesn’t address what kinds of policy are required in a BPA/BPSec implementation
 - There is ongoing work funded by NASA AMMOS which addresses BPSec policy design and implementation

• Document has passed WG Last Call with no additional comments
Bundle Protocol
Endpoint ID Patterns

IETF 119 DTN WG

Brian Sipos, Emery Annis
JHU/APL
Background

- Use cases on the following slide motivate the need for a mechanism to define a set of EIDs in a structured way
 - Goal is to ensure the writer and the user have the same interpretation

- Simple globs or regular expressions could be used, but these are not ideal
 - Purely text-based
 - Do not take advantage of the structure for DTN or IPN schemes
 - Do not handle numeric intervals for IPN scheme
 - Do not have an efficient binary encoding

- Pattern matching syntax has a “network effect”
 - The more tools that use a common syntax the more value it has
 - If established, new tools do not need to reinvent a robust mechanism
 - Lessens the possibility of security vulnerabilities from misconfiguration “is this parameter an EID or some glob expression?”

- This proposal is compatible with IPN Scheme update draft-ietf-dtn-ipn-update
Use Cases

• Security identities
 - Allow a certificate holder to be authorized to sign for dtn://node/** or for ipn:3.*.* or even ipn:3.*.0
 - The same way as wildcard certificates, it is a CA obligation to ensure endpoint ownership of all matching EIDs

• Routed blocks and authorization
 - EID Patterns are meant for a more structured situation than “huge list of EIDs”
 - The same purpose as IP CIDR notation e.g. 192.168.30.0/24

• BP Agent configuration / policy
 - Allow BPA configuration to use consistent pattern syntax
 - Allow node ipn:3.5.0 to sign bundles from ipn:3.*.*
 - Provide the same kind of ubiquity as CIDR does for IP configuration
 - Avoids policy engines with over-restrictive or limited expressive syntax

• Colloquial use
 - Have an understandable way to convey technical comments like:
 I’m having trouble sending to ipn:3..*
 Please allocate your services within ipn:*.*.0[5-10]
Proposed Capabilities

• Draft in draft-sipos-dtn-eid-pattern-01 with pending issues in https://github.com/BrianSipos/dtn-eid-pattern/issues

• Any-scheme pattern: ***

• IPN Scheme Patterns
 - Allow a match-all syntax ipn:**
 - Separate the EID into single-integer parts, each part can be one of:
 ▪ Exact-match value (compared as integer)
 ▪ Match-all one-part wildcard
 ▪ Range expression (set of discrete intervals)
 - Compressed CBOR encoding using integers
 - Simple set logic (“Pattern A contains B” or “Pattern A overlaps with B”)

• DTN Scheme Patterns
 - Allow a match-all syntax dtn:**
 - Separate the EID into node-name and service-path segment
 - Each part can be one of:
 ▪ Exact-match literal
 ▪ Match-all one-part wildcard
 ▪ Match-any-parts wildcard
 ▪ Regular expression, percent-encoded
 - Complex or unavailable set logic (related to regular expressions)
Examples of EID Patterns

- Singleton pattern:
 dtn://node-name/serv ipn:3.10.5

- All services on a node
 dtn://node-name/** ipn:3.10.*

- One service on any node
 dtn://**/serv/name ipn:*.*.5

- Complex wildcard patterns
 dtn://**/prefix/* ipn:3.*.5 ipn:3.*.*

- Expressions and ranges
 dtn://[prefix.*]/serv ipn:3.[5-10,100-110].5

- Mixed patterns
 dtn://[node%5BA-Z%5D]/** ipn:3.[10,12,14].*

- Multiple combined patterns with pipe separator
 ipn:3.[10,12,14].*|ipn:[4-5].*.*

- Match-all pattern:

Considerations

• An EID Pattern *is not* an EID, they cannot be used interchangeably
 - This is a security risk *a la* the wildcard DNS names in early PKIX certificates
 - The syntax has been designed that a range (IPN) or expression (DTN) is specifically *not* a valid EID value per the ABNF syntax

• An EID Pattern is a superset of EIDs
 - It is a design goal that an EID *is* a singleton-matching pattern for itself

• Patterns are conceptually simple but can be complex in practice
 - A common specification can allow shared-use implementations

• IPN pattern special considerations
 - IPN scheme now has three logical parts, IPN patterns always have exactly three components
Next Steps

• Feedback on current proposals
 - What is valuable immediately?
 - What should be deferred?
 - Any issues with the current syntax or special cases to be avoided?

• Trial or example implementations
 - Existing BPAs that want to try out this syntax?
 - Potential hackathon topic?