Transaction Manifests

Marc Mosko
marc.mosko@sri.com
ICNRG, IETF 119, Brisbane
Wednesday 20, 2024



mailto:marc.mosko@sri.com

Can ICN be transactional

* Typically, ICN is considered in pub/sub or pre-pub
* Distributed transactions do exist, especially in DLTs.

* Consider a permissioned DLT with size N and K << N bookkeepers
* In a DLT, they base their decision on the block hash history
* In ICN, what would that be?

* We discuss a data object, the Transaction Manifest, as a concept.

* There needs to be a client-to-bookkeeper and bookkeeper-to-
bookkeeper protocol to realize transactions.



TM vs FLIC

* FLIC describes a single object that is re-constructed by traversing the
manifest in-order.

* ATM describes a set of names that must be considered together.
 The TM names likely point to FLIC root manifests.
* In the subsequent examples, | show TM entries pointing directly to objects.



Transaction Manifest

* In a database, a transaction typically
locks the input records and then
writes the output records.

e A transaction manifest emulates this
by specifying the input state and
output state.

 An unconditional write has no
preconditions.

* A transactional write with a null
precondition uses a special name.

Name

Preconditions

Pre_name_00

Pre_name_m

Postconditions

Post name_00

Post_ name_n




Not all input is part of a transaction

* Preconditions only name “latest
version” required inputs.

* Example:

An employee database for producing
ioad%es needs a photo and door access
evel.

The door access level “latest version.”
The photo may be any that matches the
employee.

The badge TM would name the door
access input object and the badge output
object.

The badge output object would reference
the photo name.

/bigco/bob/badge/ tm/1

Preconditions

/bigco/bob/access/7/0x...

Postconditions

/bigco/bob/badge/1/0x...

/bigco/bob/badge/1

Access = employee

Embedded Photo

Source = /bigco/bob/photo/9/0x...




TMs do not stand on their own

* A set of bookkeepers

» Systems like Hyperledger offer global ordering via Orderer nodes and
SmartBFT (v3.0) or earlier CRT.

* TMs are partial orders that maintain consistency without global order.
* Partial order transactions exist in DB literature, need to review.

* Bookkeeper Job

* Bookkeepers must ensure that a transaction has current pre-conditions,
current post-conditions, and no conflicts in post-conditions.

* TMs are a form of write-ahead log (WAL), as used in DBs like PostgreSql.
* Nested transactions require more features (see later slide).



TMs and Repos and Caches, Oh My!

* A repository ...

* Should not respond with a post-condition unless it also has all the pre-
conditions. (use a NAK?)

e Should be able to return the TM that wrote (post-conditioned) an object.

* A cache ...
* Should respond with whatever it is asked for.

* Applications should use non-cacheable discovery and full names from
manifests.



Naming TMs

e User-specific naming
 /bigco/alice/partsdb/tm/5

* DB (collection)-specific naming
 /bigco/partsdb/users/alice/tm/8

* One cannot use post-condition naming unless each TM only writes
one post-condition, which is likely not sufficient.



Distributed TMs

* What happens if a TM uses names that belong to different
bookkeepers?

* For example, an order database needs to reserve certain parts from the parts
database.

* Hierarchical bookkeepers (nested transactions)!
* Alice submits order to order BKs
Order BK provisionally approve order, submit to parts BKs.
Parts BKs provisionally approve part reservations.
Order BK commits Parts and local transactions.
It can get complicated with multiple child DBs and nested transactions.



Nest Steps

* Sketch out a client-to-bookkeeper protocol

» Sketch out a bookkeeper-to-bookkeeper protocol
* Within a consensus group
* Between consensus groups

* Analyze
* Prototype!



