Generic Metric extensions for AIGP attribute
draft-ssangli-idr-bgp-generic-metric-aigp-07

IETF 119

Srihari Sangli, Juniper Networks
Shraddha Hegde, Juniper Networks
Reshma Das, Juniper Networks
Bruno Decraene, Orange
Bin Wen, Comcast
Mozak Kozak, Comcast
Jie Dong, Huawei
Luay Jalil, Verizon
Ketan Talaulikar, Cisco
Agenda

- Recap of Problem statement
- Generic Metric Capability Proposal
- Deployment considerations
- Next Steps
Recap

- Operator may provision intent-based end-to-end path across multiple AS domains
 - Need metrics beyond IGP-default, e.g. delay, bandwidth, administratively assigned metric-types.
 - Alignment of metric type & value with IGP registry.

- AIGP attribute defined in RFC7311 specifies AIGP TLV to carry default IGP-Metric

- Different interpretations of RFC7311 deployed today

- AIGP attribute suffers from attribute scoping and metric discontinuity.
Generic Metric Encoding

- Generic Metric Capability encodes the following:
 - metric type as per IGP metric registry
 - metric flags indicates metric manipulation along the path
 - metric value is the accumulated cost of the path

<table>
<thead>
<tr>
<th>Metric type</th>
<th>Metric flags</th>
<th>Metric value...</th>
</tr>
</thead>
</table>
|Bit 0: D: if set, indicates discontinuous path
Bit 1: N: if set, indicates that metric-value has been normalized
Bit 2-7: R: Reserved for future use|
Generic Metric in NHC

- Generic Metric TLV as a new capability in NHC attribute

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
+-+-+-+-+-+-+-+----------+-+-+-+-+-+-+-+----------+-+-+-+-+-+-+-+
|   Generic Metric Cap. Code   |   Generic Metric Cap. Length   |
+-+-+-+-+-+-+-+----------+-+-+-+-+-+-+-+----------+-+-+-+-+-+-+-+
|   Generic Metric Capability data.. |
+-+-+-+-+-+-+-+----------+-+-+-+-+-+-+-+
```

Generic Metric Capability Code assigned as per draft-ietf-idr-entropy-label.

- Multiple metric types can be encoded in NHC attribute
Why NHC

- Why NHC? draft-ietf-idr-entropy-label
 - Provides next hop-based attribute scoping
- NHC an optional transitive attribute
 - Eases the deployment, operational benefits
- NHC Attribute scoping helps in determining discontinuity for e2e generic metric
 - 1st order discontinuity
 - Sending router does not support NHC, it fails to update next hop
 - Receiving router finds the discontinuity through next hop validation
 - 2nd order discontinuity
 - Sending router supports NHC, but not Generic Metric capability
 - It will drop the Generic Metric capability when NHC is reconstructed
 - 3rd order discontinuity
 - Sending router supports NHC and Generic Metric capability but does not support a specific generic metric type
 - It can reconstruct Generic Metric capability to carry additional information indicating discontinuity of that specific generic metric type
Leverage NHC

- **Next Hop Dependent Capabilities**
 - Intent expressed via one or more metric types.
 - The metric value is referenced during next hop reachability evaluation and cumulative cost computation.

- **NHC procedures**
 - Originator of the route encodes the advertised next-hop in NHC
 - Non-originator of the route that does not modify the next hop will propagate all NHC capabilities
 - Non-originator of the route that modifies the next hop, updates the next hop field and reconstructs the attribute refreshing the capabilities
 - Receiver accepts the route if the next hop field in NHC matches with next hop advertised, processes the capabilities
Generic Metric Capability Origination Procedures (1/2)

Originator of the route
- Add the next-hop as per NHC rules
- Add Generic Metric Capability to NHC attribute
 - Encode the intent as one or more metric types and metric value
 - Set D=0, N=0 in metric flags field

Non-originator of the route that does not modify next hop
- Will propagate NHC as is
- No change to Generic Metric Capability
Generic Metric Capability Origination Procedures (2/2)

Non-originator of the route that modifies the next hop
- Updates the next hop field
- Retains the Generic Metric Capability and all metric types

- For each unrecognized metric type
 - D=1 will be set in TLV’s metric flags field
 - Discontinuous path of 3rd order. Solution: Deal with this at ingress via policy

- For each recognized metric type
 - If local domain’s metric type matches with TLV’s metric type
 - Local cost to next hop is added to TLV’s metric value field
 - If local domain’s metric type doesn’t match with TLV’s metric type
 - Local cost to next hop is normalized before adding to TLV’s metric field
 - N=1 will be set in TLV’s metric flags field
Generic Metric Capability Receiver Procedures

Receiver of the route

- NHC’s Next hop field not equal to the advertised next hop
 - Entire NHC Attribute including Generic Metric Capability ignored
 - Discontinuous path of 1st order. Solution: Upgrade

- NHC’s next hop field equal to advertised next hop, use accumulated cost during best path computation
 - Local domain metric type matches with TLV? TLV’s metric value is added to next hop’s local cost
 - Local domain metric type does not match with TLV? TLV’s metric value is added to normalized non-zero local cost to next hop

- If the route is re-advertised, it will follow Non-Originator rules
Deployment considerations

- NHC deployment in domain is needed. Scoping check is a must.

- Generic Metric TLV carrying IGP default cost and AIGP carrying IGP default cost can co-exist.
 - Metric types are comparable and hence lowest cumulative cost wins

- A router that modifies next hop should carry forward the Generic Metric capability when it reconstructs NHC.
 - This enables intent propagation end-to-end
 - Indicate normalization and discontinuity for each metric type where it is applicable

- Ingress router can enforce policy to handle discontinuous paths
 - Discard them
 - Put low preference
 - Use as tie-breaker
Next Steps

- Comments welcome!
- Requesting for WG adoption
Thank you