Integrity of In-situ OAM Data Fields

draft-ietf-ippm-ioam-data-integrity-07

Justin Iurman, Frank Brockners, Shwetha Bhandari, Tal Mizrahi

IETF 119, IPPM WG
March 19, 2024
Status -07

- Submitted before secdir review
- Working on next version…
- Challenge: different possibilities, lots of compromises
- Looking for WG feedback
Secdir review: DISCUSS points

Solved DISCUSS (editorial changes):
- Signature vs (G)MAC
- GCM Key usage limitations
- Nonce guidance
- “Signature” as nonce for transit nodes

Pending DISCUSS (depends on the chosen option, see next slides):
- Header fields selection for integrity protection
Reminder: IOAM Integrity Protection Header
Option 1a: Validation at the end (w/ header check)

- **Currently**: If a transit node processes a field/flag triggering actions from the node, then the node MUST check the header (e.g., DEX, Trace Loopback flag)
- A transit node checks the header by recomputing ICVs from nodes 0 to n-1 (and so for each transit node!!!)
- Each IOAM node requires the keys from all prior nodes
- Pending DISCUSS: unsolved
Option 1b: Validation at the end (w/ header check)

- Extra ICV, one-step header verification for each transit node (can now be applied all the time)
- Encapsulating node performs GMAC 2 times (i.e., one for the header and the other one for IOAM-Data-Fields)
- Each IOAM node requires the key from the encapsulating node
- Pending DISCUSS: unsolved
Option 1c: Validation at the end (w/ header check)

- Change ICV semantics: the encapsulating node performs only one GMAC, and it’s still a one-step header verification for each transit node
- Transit nodes need to fetch and include the encapsulating node’s IOAM-Data-Fields to check the header (worst case: when the Opaque State Snapshot is required → must parse the entire trace from top to bottom)
- Each IOAM node requires the key from the encapsulating node
- Pending DISCUSS: unsolved
Considerations on 1a, 1b, 1c

Common problem between 1a, 1b and 1c?
- header check = *IOAM nodes receive the key of the encapsulating node*
- we have to trust all IOAM nodes (i.e., no header check is required)

Alternative solution: no header check.

→ Focus on original objective of IOAM integrity protection:
- protection of *IOAM-Data-Fields* (rather than the header)
- distinguish between header fields required for processing and header fields required for the interpretation of IOAM-Data-Fields (only the integrity protection of the latter is needed, e.g., Namespace-ID)
- triggering fields/flags out of scope, i.e., processing rather than integrity related (e.g., Loopback flag)
Option 2: Validation at the end (no header check)

- Faster processing on transit nodes, i.e., no header check
- The encapsulating node can include immutable header fields which are required for the interpretation of IOAM-Data-Fields, like e.g., the Namespace-ID
- Each IOAM node only shares its key with the Validator (= “don’t trust any node”)
- Pending DISCUSS: solved
Option 3: Neighbor validation

- Hop by hop validation (in this case, the entire header and all IOAM-Data-Fields)
- Requires that IOAM nodes are trusted
- Requires key distribution between all IOAM nodes
- Pending DISCUSS: solved
Option 4: IPSec

- Quite similar to solution 3, but does not require any new protocol
- IPSec tunnels configured between all IOAM nodes that match the physical topology/connectivity (all traffic with IOAM runs across the IPSec tunnels)
- Requires that IOAM nodes are trusted
- Pending DISCUSS: solved
Best solution?

\[n = \text{number of nodes (from 1 to n)} \]
\[i = \text{node position (from 1 to n)} \]

<table>
<thead>
<tr>
<th>Option</th>
<th>ICV</th>
<th>I.C</th>
<th>Freeze</th>
<th>Full Protec.</th>
<th>Encap</th>
<th>Transit</th>
<th>Decap</th>
<th>GMAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1 ICV</td>
<td>~Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>i</td>
<td>n-1</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>2 ICVs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>2 ICVs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>n-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 ICV</td>
<td>~None</td>
<td>~No</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>n-1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 ICV</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AH/ESP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Protection of IOAM-Data-Fields as main objective

<table>
<thead>
<tr>
<th>Option</th>
<th>Integrity</th>
<th>Header Check</th>
<th>Header Freeze</th>
<th>Full Protec.</th>
<th>Encap GMAC</th>
<th>Transit GMAC</th>
<th>Decap GMAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1 ICV</td>
<td>~Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>i</td>
<td>n-1</td>
</tr>
<tr>
<td>1b</td>
<td>2 ICVs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>n</td>
</tr>
<tr>
<td>1c</td>
<td>2 ICVs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>n-1</td>
</tr>
<tr>
<td>2</td>
<td>1 ICV</td>
<td>~None</td>
<td>~No</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>n-1</td>
</tr>
<tr>
<td>3</td>
<td>1 ICV</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>AH/ESP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

n = number of nodes (from 1 to n)
i = node position (from 1 to n)
Protect against person-in-the-middle attacks

n = number of nodes (from 1 to n)
i = node position (from 1 to n)

<table>
<thead>
<tr>
<th>Option</th>
<th>ICV</th>
<th>Header Check</th>
<th>Header Freeze</th>
<th>Full Protec.</th>
<th>Encap GMAC</th>
<th>Transit GMAC</th>
<th>Decap GMAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1 ICV</td>
<td>~Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>i</td>
<td>n-1</td>
</tr>
<tr>
<td>1b</td>
<td>2 ICVs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>2</td>
<td>2</td>
<td>n</td>
</tr>
<tr>
<td>1c</td>
<td>2 ICVs</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>n-1</td>
</tr>
<tr>
<td>2</td>
<td>1 ICV</td>
<td>~None</td>
<td>~No</td>
<td>Yes</td>
<td>1</td>
<td>1</td>
<td>n-1</td>
</tr>
<tr>
<td>3</td>
<td>1 ICV</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>AH/ESP</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Proposal

• Focus the draft on integrity protection for IOAM-Data-Fields, i.e., “Option 2”
• Include a section in the draft that discusses the use of IPSec for deployments that are concerned about person-in-the-middle attacks, i.e., “Option 4”