Draft Update

Since draft madinas use cases 01:

- Draft 01 addressed all comments received since previous F2F
- Draft 02 starts examining possible existing solutions to the requirements
- Draft 03 adds more solutions, and fixes typos – procedural mishap that needs addressing
- Draft 04 implements more comments from previous F2F
- Draft 05 reduces the requirements section
- Draft 06 mitigates the IPv6 gap (and still finds typos!)
- Draft 07 implements the comments made in Nov F2F
- Draft 08 implements comments received in list (remove requirements)
- Draft 09 implements further comments (add annex, + next slides)

Document seems to be stable now and seems ready for adoption. Continued input and feedback are welcome

This was discussed in earlier versions, PII exposure might make some devices attack targets, thus ‘security’ was added.

User is the key target of PII exposure, needed.

It is a countable noun, and there are more than one possible state -> plural is required.

Changed to client and OS.

It is more than connectivity, and the overhead due to renewing elements like IP/802.1X etc.
Draft Update

This document lists various network environments and a set of functional network services that may be affected by such rotation. This document then examines settings where the user experience may be affected by in-network state disruption, and settings where other machine identifiers may help re-identify the user or recover the identity of the user, and locate the device and its associated user. Last, this document examines solutions to maintain user privacy while preserving user quality of experience and network operation efficiency.

Commenté [BM11]: Double check if user is meant here or device.

User indeed (target of PII exposure)
Changed to 802.11 (Wi-Fi), following the model of RFC 9119, to avoid the confusion that WLAN may cause with HiperLAN, HomeRF and others. We note that many RFCs just use Wi-Fi (RFC 7458, 9450, 8110, 9330...)

1. Introduction

Wi-Fi/WLAN technology has revolutionized communication and become the preferred technology and sometimes the only technology used by devices such as smartphones, tablets and Internet-of-Thing (IoT) devices. Wi-Fi/WLAN is an over-the-air technology, attackers who are equipped with surveillance equipment can "monitor" WiFi packets and track the activity of WiFi devices. Once the association between a

Commenté [BMI2]: This is trademarked.
Commenté [BMI3]: Add a pointer to the WLAN spec.
Commenté [BMI4]: Not sure I would maintain this.

Added

Edited
Without the user context:

To reduce the risks of correlation between a device activity and its owner, multiple vendors have started to implement Randomized and Changing MAC addresses (RCM). With this scheme, an end-user device implements a different RCM over time when exchanging traffic over a wireless network. By randomizing the MAC address, the persistent association between a given traffic flow and a single device is made more difficult, assuming no other visible unique identifiers or stable patterns are in use.

However, such address change may affect the user experience and the efficiency of legitimate network operations. For a long time, network designers and implementers relied upon the assumption that a given machine, in a network implementing IEEE 802 technologies, would be represented by a unique network MAC address that would not change in use.

Draft Update

Needed, otherwise the distinction between personal device and shared service device is lost, but clarified

Comment [BM15]: How the mac address is used for that?
Comment [BM16]: Not sure the causality effect is true here.
I would simply reward this to focus on “tracking device activity”

Comment [BM17]: I suggest to add a sentence that says that “device” is a device used by an end user to connect to a network.

Comment [BM18]: Not all wireless network uses MAC addresses

Added clarification text

Changed

Edited
The end device may be initiating, but it is not always the one establishing the session.

Services may be beyond the access.

Example, sessions established between the end device and the access network may be lost-disrupted and packets in translation may suddenly be without clear source or destination. If multiple clients implement fast-paced RCM rotations with or without any coordination to prepare the migration, network services may be over-solicited by a small number of stations that appear as many clients.

At the same time, some network services rely upon the client station providing an identifier, which can be the MAC address or another value. If the client implements MAC rotation but continues sending the same static identifier, then the association between a stable identifier and the station continues despite the RCM scheme. There may be environments where such continued association is desirable, but others where the user privacy has more value than any continuity.

Commenté [BMI10]: ??
Commenté [BMI11]: Oses?
Commenté [BMI12]: I would delete this part as the main argument here is overload.
Commenté [BMI13]: To be defined.

No, this may be an 802.11 stack function, not necessarily an OS function.
Needed, a network functional entity provides resources or services to the network, without necessarily being a network device (e.g. DHCP server)

3.1. Network Functional Entities

Network communications based on IEEE 802 Technologies commonly rely on station identifiers based on a MAC address. This MAC address is utilized by several types of network functional entities.

Wireless access network infrastructure devices (e.g., WLAN access points or controllers): these devices participate in IEEE 802 LAN operations. As such, they need to identify each machine as a source or destination so as to successfully continue exchanging frames. Part of the identification includes recording, and adapting to, devices communication capabilities (e.g., support for specific protocols). As a device changes its network attachment (roams) from one access point to another, the access points can exchange contextual information (e.g., device MAC, keying material) allowing the device session to continue seamlessly. These access points can
It is not an assumption, it is an explicit principle.

They are different entities.

Yes, they are crucial actors in that chain.
Draft Update

Wireless access network operators: some wireless access networks are only offered to users-provided to devices matching specific requirements, such as device type (e.g., IoT-only networks, factory operational).
The surface of PII exposures that can drive MAC address randomization depends on (1) the environment where the device operates, (2) the protocol and nature of other devices in the environment, and (3) the type of network the device is communicating through. Therefore, a device can express an identity identifier (such as a MAC address) that can persist over time if trust with the environment is established, or that can be temporal if an identity is required for a service in an environment where trust has not been established. Trust is not a binary currency. Thus it is useful to distinguish what trust a personal device may establish with the different entities at play in a Layer 2 domain.

1. full trust: there are environments where a personal device establishes a trust relationship and can share a persistent device identity with the access network devices (e.g., access point and Wi-Fi), the services beyond the access point in the Layer 2 broadcast domain (e.g., UnICP, AAA), without fear that observers or network actors may access PII that would not be shared.
3. Zero trust: in other environments, the device may not be willing to share any persistent identity with any local entity reachable through the AP, and may express a temporal identity to each of them. That temporal identity may or not be the same for different services.

5. Environments

The trust relationship depends on the relationship between the user of the personal device and the operator of the service. Thus, it is useful to observe the following lists - typical trust environments:

A. Residential settings under the control of the user: this is typical of a home network with Wi-Fi in the LAN and Internet connection connectivity. In this environment, traffic over the Internet does not expose the MAC addresses of internal devices if it is not copied to another field.

Commenté [BMI22]: Why naturally?
This may be beyond the control of the user. It does not overtly know/control what is leaked/revealed when a device attaches to a network.

Commenté [BMI23]: Which service? Does this include the infrastructure?

Commenté [BMI24]: Still, even in this case, some devices may not be trusted. Think about guest SSIDs out there to isolate them.
e. Network Services

Different network environments provide different levels of network services, from simple to complex. At its simplest level, a network can provide a wireless connecting device basic address allocation service (DHCP) and an ability to connect to the Internet (e.g., DNS service or relay, and routing-forwarding in and out through a local gateway). The network can also offer more advanced services, such as file storage, printing or local web service. Larger and more complex networks can also incorporate a multiplicity of more advanced services, from authentication (AAA), to quality of experience (QoE) monitoring and management. These services are often accompanied with network performance management services. Different levels of services may call for different relationships with the device, or its user, identity. For example, there is usually no need to identify the device or its user for a public network to provide a DHCP-sourced IP address to a connecting station, or accept a station using its self-generated IP address (e.g., using KNICKERBOCKER). However, these

Draft Update
6.1. The Purpose of Device Identification and Associated Problems

Many network functional devices offering a service to a personal device use the device’s MAC address to maintain service continuity. Wireless access points and controllers use the MAC address to validate the device connection context, including protocol capabilities, confirmation that authentication was completed, QoS or security profiles, encryption key material. Some advanced access points and controllers also include upper layer functions which purpose is covered below. A device changing its MAC address, without another recorded device identity, would cause the access point and the controller to lose these parameters. As such, the Layer 2
address is released.

Network devices using self-assigned IPv6 addresses (e.g., with SLAAC defined in [RFC4068]) use mechanisms like DAD to and ND to establish the association between a target IP address and a MAC address, and may cache this association in memory. Changing the MAC address, even through a disconnection-reconnection phase, without changing the IP address, may disrupt the stability of these mappings, if the change occurs within the caching period.

Routers keep track of which MAC address is on which interface. MAC rotation can cause MAC address cache exhaustion, but also the need for frequent ARP and inverse ARP exchanges.

In residential settings (environments type A in Section 5), policies can be in place to control the traffic of some devices (e.g., parental control or block-list devices). These policies are often based on the device
This section describes the requirements for Randomized and Changing MAC-addresses:

REQ1 The network must not make any assumption about client MAC address persistence. MAC address change must happen while allowing for service continuity. If a service is interrupted during the RCM process, there must be a formal mechanism for the client and the network to exchange about the interruption.

REQ2 During duration of the services, the device should not change its identity. Any change of identity may result in re-authentication and interruption of the current network services.

REQ3 Different use cases may result in different constraints, and therefore different solutions.

7. Considerations

7.1. IANA Considerations

Commenté [B126]: Can be injected into the use case discussion

Commenté [B127]: ?

Commenté [B128]: This depends on the service implement. For example, migration can be coordinated with some services/OPNs/APS/etc.

Commenté [B129]: I don't think this is useful as a requirement.
8. Normative References

Commenté [BM30]: No need to have this as the normative language is not used.

Commenté [BM31]: Not used.

[RFC3220] Narten, T. and R. Alvestrand, "Guidelines for Writing an
<table>
<thead>
<tr>
<th>Use cases</th>
<th>Trust Degree</th>
<th>Network Admin</th>
<th>Network Services</th>
<th>Network Support Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Medium</td>
<td>User</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Managed residential</td>
<td>Medium</td>
<td>IT</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Campus (BYOD)</td>
<td>Medium</td>
<td>IT</td>
<td>Complex</td>
<td>Medium</td>
</tr>
<tr>
<td>Enterprise (MDM)</td>
<td>High</td>
<td>IT</td>
<td>Complex</td>
<td>High</td>
</tr>
<tr>
<td>Hospitality</td>
<td>Low</td>
<td>IT</td>
<td>Simple</td>
<td>Medium</td>
</tr>
<tr>
<td>Public Wi-Fi</td>
<td>Low</td>
<td>ISP</td>
<td>Simple</td>
<td>Low</td>
</tr>
</tbody>
</table>
6.3. Use Cases and Requirements

This section describes the requirements for Randomized and Changing MAC-addresses:

- REQ1 The network must not make any assumption about client MAC address persistence. MAC address change must happen while allowing for service continuity. If a service is interrupted during the RCM process, there must be a formal mechanism for the client and the network to exchange about the interruption.

- REQ2 During duration of the services, the device should not change its identity. Any change of identity may result in re-authentication and interruption of the current network services.

- REQ3 Different use cases may result in different identity requirements.

Section 7, Existing solutions, was removed. Needs to be re-added as annex.

Should we go for WGLC?