Implementation and Performance Evaluation of PDM using eBPF

draft-elkins-ebpf-pdm-ebpf-00

Amogh Umesh
Chinmaya Sharma

IETF-119 maprg Meeting @ Brisbane, AU
Objective

- Exploration of use of eBPF in networking
- Implementation of IPv6 extension headers in eBPF
- Performance analysis of eBPF implementation over traditional kernel implementation
- Analyze performance overhead of eBPF implementation and optimize

Interested Working Groups,
- bpf WG
- v6ops WG

IETF 119 Agenda Slots,
- bpf wg
- v6ops wg
- map rg
- IEPG
Work Done

- Implementation of PDM extension header in eBPF (using tc bpf)
- Performance Analysis of eBPF program contrasted with kernel implementation of PDM
 - CPU Cycles
 - eBPF program: 8.60×10^{10} cyc.
 - Kernel program: 2.29×10^9 cyc.
 - Network Throughput
 - Without PDM: 18.80 Gbps
 - Kernel PDM Implementation: 18.52 Gbps
 - eBPF Implementation: 18.03 Gbps
 - Packet Processing Latency (per packet)
 - PDM Kernel Implementation - 0.707 µs
 - eBPF Implementation - $(5.808 - 4.528)$ µs = 1.28 µs