PRIVACY PASS, TRUST, AND THE WEB

Martin Thomson, Privacy Pass WG, IETF 119, March 2024
WEB USE CASE

Goal: Examine the uses of Privacy Pass on the Web
Specifically, Privacy Pass as built into Web Browsers
As seen in:
 Apple’s Private Access Tokens
 Google’s Private State Tokens
Not Cloudflare’s Privacy Pass Browser Extension
Authorization Modes

Signatures, Passkeys, etc...

- Strong, unique bindings to Identity, key, time, context, usage, etc...
- Highly linkable
 - Low privacy expectations
- Requires user intervention

Privacy Pass

- Loose bindings only to Issuer key and maybe some contextual information
- Tokens form anonymity set
 - Provides privacy and transfer of tokens
- Maybe operates without intervention
Cryptography provides a means to limit information transfer
This can reduce the need for some parties to trust others
... or rather, to reduce the ways in which other entities are trusted
INFORMATION FLOW (RECAP)

Issuer -> Attester -> Client -> Origin

Challenge

Attest (+ Challenge?)

Token Request

Token
Low Stakes Authorization

Premise: *if privacy is good, user intervention might not be needed*

Seems useful for a bunch of Web use cases

- Fraud mitigation in particular
- Trade fidelity for availability

Do you want to answer a question that has serious, but unknown implications for your privacy?

- Yeah
- Sure
The presence or absence of a token carries information.

Timing carries information.

Transport metadata (IP address) carries information.

This information might not always be useful,

... but designs need to account for leaks like these.
Loose Bindings

Privacy Pass tokens are only loosely bound
 To a specific Issuer key
 Maybe to the target Origin
 Maybe to some additional contextual information

Loose bindings mean tokens are transferrable within their scope
 Scope does not include Client identity
 This means that tokens can be transferred to Clients outside of the authorized set

Additional bindings narrow the anonymity set and create privacy issues
 Too many bindings → anonymity set is small → reduced/no privacy
Trust relationships depend on deployment model
Every token carries **at least one bit**

Clients need to decide whether to pass that bit from Issuer (/Attester) to Origin

What does the bit *mean*?
A token might mean “Person at computer”

That is probably OK

Note: Adding metadata doesn’t change this

The meaning of the bit is still unknowable, even if the metadata is known

Lots of other meanings that are NOT OK

Attesters get lots of information that they might pass to Issuers

Tokens could mean anything
No guarantees

No guarantee that the bit means anything in particular

No guarantee that the anonymity set is large
Privacy Pass deployments therefore rely on trust

Clients trust that the Issuer is not passings notes to the Origin

...and that the Attester is not helping with that

The Web is not kind on solutions that rely on trust
Options to Explore

Governance structures

- See Google's [attestation form](https://www.google.com) or Apple's [registration](https://www.apple.com)
- Strong desire to avoid introducing gatekeepers
- Challenging incentive structure

Sovereign identity providers
DISCUSS