A Multiplane Architecture Proposal for the Quantum Internet

draft-lopez-qirg-qi-multiplane-arch

D. López, L.M. Contreras (Telefónica),
V. Martín (UPM),
B. López (IMDEA Networks)

IETF#119, Brisbane (AU), March 2024
A First Reminder: Why an Architecture Framework

- Provide a reference for further protocol and interface definition
- Application of architecture principles and operational experience
- Support convergence: Applications and technologies at scale
- Address three essential Quantum Internet goals
 - Universality, accommodating any application
 - Transparency, sharing physical media with classical networks
 - Scalability, supporting the growth of the network
- Acknowledging an exclusively Quantum Internet is neither feasible nor desirable
 - Working in the direction of an Internet with quantum capabilities
- Not a set of protocols or interfaces per se
 - But a way to describe and evaluate them in a consistent manner
A Second Reminder: The Foundations

• Three essential properties of the framework architecture
 • Agility, with general enough abstractions
 • Avoiding a tight coupling with specific (physical) technologies
 • Sustainability, at all levels and in full scale
 • Open availability in technological and economical terms
 • Pliability, seamless integration with classical
 • (Adapted) best practices in use by the Internet community

• Apply the operational experience with (reasonably large) QKD infrastructures
 • Interfacing applications, service semantics, and the interaction with classical networks

• Leverage SDN concepts: the CLAS architecture (RFC 8597),
 • Structured around strata, with a regular set of planes
 • Integration of control mechanisms, and the interplay with (shared) infrastructure
 • General trends: Cloud-nativeness, zero-touch management, intent…
How the Draft Is Evolving

• Addressing received comments
 • We eagerly expect more to come
• Restructure
 • Clear differentiation of base technologies and the framework proposal
 • A more thorough discussion of strata and their functions
• Initial discussion on synthetic environments
 • As an essential means to validate the proposal
 • And more
• TBP so far
 • A better term for “quantum forwarding”?
 • Mapping existing interface/protocol proposals onto the framework
 • Security considerations
New (Current) Structure

- Technology foundations
 - QKD experience
 - Interfacing with classical networks
 - Introducing the CLAS architecture
- Framework architecture proposal
 - CLAS strata for quantum networks
 - Principles for the dentification of interfaces and protocols
 - An introduction to synthetic environments
- Closing matters
 - Security considerations
 - . . .
The Role of Synthetic Environments

• The essential means
 • Given the issues with devices, scale…
 • Not strictly an NDT

• Validate the framework
 • Roles of strata and planes
 • Evidence on interfaces

• Assess its applicability
 • Using current proposals on architecture and protocols as touchstone

• Assess the integration with
 • Classical networks
 • Meshes of synthetic and real elements

• First experiments
 • Collaboration welcome
And What Comes Next

• Keep working on interfaces and protocols
 • Current proposals as touchstone
 • Identify potential gaps
 • Aligned with describing the role of planes within the different strata

• Report initial experiments with synthetic environments
 • Experiment descriptors and environment components
 • Applicability of OAM practices (automation, cloud-nativeness…)
 • Integration with similar approaches for classical networks

• Provide a supporting framework for further experimentation
And a Back-Up Slide on CLAS Itself
CLAS Strata for Quantum Networks

• A Service Stratum, dealing with the functionality related to the purpose of the quantum network
 • Generation of management of keys in QKD
 • Others: time synchronization, identity assurance, sensing…
 • Entanglement distribution in a general quantum network

• A Quantum Forwarding Stratum, in charge of the direct application of quantum protocols and algorithms
 • Between any two endpoints of a quantum link
 • Even when it is a multi-hop one, whatever the nature of *repeaters*

• A Connectivity Stratum, taking care of providing the paths to support the quantum links
 • Supported by OTN infrastructure, via fiber and/or open-space links
 • Follow a common connectivity paradigm
 • From current circuit-based approaches to any other potential *classical encapsulation*