QUIC Resource Exhaustion Attacks

Marten Seemann, IETF 119

QUIC COnHeCtlon - active_connection_id_limit: 3
ID FIOW ContrOl NEW_CONNECTION_ID (0) _

NEW_CONNECTION_ID (1)

>

NEW_CONNECTION_ID (2)

>

NEW_CONNECTIONL_ID (3, Retire Before: 2)
-

RETIRE_CONNECTION_ID (0)

-

RETIRE_CONNECTION_ID (1)
-

e on packet loss: reduce the congestion window

Congestion o |
e onrepeated packet loss: minimum congestion
COHt]fOl window is 2 (full-size) packets

e RTT measurement can be inflated by the peer

Compare tO: initial_max_stream_data: 100

-«

STREAM data (up to 50)

QUIC Stream Flow >~
Control STREAM data (up to 100) _

STREAM_DATA_BLOCKED (at 100)

-

MAX_STREAM_DATA: 150

-

Get rid of the concurrent stream limit by advertising a maximum stream ID #419 = (9

[[]
S 1 I I l 1 | I I O marten-seemann opened this issue on Mar 29, 2017 - 8 comments
' o s marten-seemann commented on Mar 29, 2017 Member | -** Assignees
) . » No one assigned
We've already had a lot of discussions about the concurrent streams limit, which all brought us back to the problem that at

every given moment both peers have to agree about the number of open streams, which seems to require a non-trivial
amount of bookkeeping (of ACKs received for all STREAM frames sent on a given stream). Labels

1'd like to propose a different solution, which solves this problem, and has a couple of nice additional properties as well:
e S e l I I ‘ A receiver advertises the maximum Stream ID it is willing to accept. The sender is allowed to open all streams that have IDs Projects
not larger than this number. The receiver can advertise a higher maximum Stream ID whenever it likes to, by sending a

None yet
STREAM_LIMIT_UPDATE frame. STREAM_LIMIT_UPDATE is a retransmittable frame that contains a single value, the

maximum Stream ID.

Note that conceptually, this is similar to advertising a flow control offset (and the rules for STREAM_LIMIT_UPDATEs would Milestone

be similar to those for WINDOW_UPDATES). No milestone

An implementation is free to choose any algorithm to determine which maximum Stream ID it advertises. The number of open

streams may be used, but | can think of a couple of other ways to limit the state a peer can create. It would even be possible Development

to advertise different limits depending on the server load. No branches or pull requests

@ Notifications Customize

R Unsubscribe

You're receiving notifications because you're

lucas-clemente commented on Mar 29, 2017 Contributor | *** watching this repository.

Note that GOAWAY (at least with its current semantics) could then just be a special case of this STREAM_LIMIT_UPDATE
frame.

" 9@

9 participants

loldew

RyanTheOptimist commented on Mar 30, 2017 via email &8 Member | ***

Interesting proposal! | wonder if we could also augment the RST_STREAM
frame to include a new max_stream_id limit?

Should we have introduced a MAX_CONNECTION_ID
frame?

Better Flow
Control for
Connection IDs?

For now, limiting the number of
RETIRE_CONNECTION_ID frames mitigates the attack.

https://seemann.io/posts/2024-03-19-exploiting-quics-
connection-id-management/

https://seemann.io/posts/2024-03-19-exploiting-quics-connection-id-management/
https://seemann.io/posts/2024-03-19-exploiting-quics-connection-id-management/

Path Validation is
vulnerable, too

PATH_CHALLENGE

PATH_RESPONSE

https://seemann.io/posts/2023-12-18-exploiting-quics-
path-validation/

https://seemann.io/posts/2023-12-18-exploiting-quics-path-validation/
https://seemann.io/posts/2023-12-18-exploiting-quics-path-validation/

