Multipath extension for QUIC Draft-ietf-quic-multipath

Explicit Path ID Proposal

QUIC meeting @ IETF-119 Brisbane Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian Huitema, <u>Mirja Kühlewind</u>

Agenda

- Background: Key issue that Explicit Path ID want to solve
- How Explicit Path ID works
- Pros and Cons
- Interop reports
- Open issues

Key issue (ietf 118)

Problem: The implicit approach (-06) is using an Identifier which doesn't have the same life time as the network path

Proposal: separate Path IDs from Connection IDs: <u>#214</u> (see also <u>#179</u>)

- Introduce an explicit path ID that stays constant even if the CID on a "path" changes
- Needs new frames for CID management (NEW_CONNECTION_ID, RETIRE_CONNECTION_ID) and more per-path state

How Explicit Path ID works (PR <u>#292</u>)

 Explicit Path Identifier used to identify a path in the connection; idea proposed by Marten (issue <u>#214</u>)

	Explicit Path ID (PR#292)	Draft-06
Path Management	Explicit Path Identifier to identify a path in a connection	CID Sequence Number as Path Identifier
CID Management (Control Frames)	 MP_NEW_CID frame ties CID to Path ID and CID Sequence number per Path-ID MP_RETIRE_CONNECTION_ID frame specifies both Path ID and Sequence number 	RFC9000 CID management
Packet Number Space	Packet Number Space is bound to Path ID and remains stable when CID rotation happens	Packet Number Space changes with CID rotation

Pros and Cons

	Explicit Path ID (PR#292)	Draft-06
Path management	Pro: Link between incoming packet and path is unambiguous	Con: Need to treat situations when CID rotation / NAT rebinding happens
CID management	 Con: Increases complexity to: maintain CIDs per path manage CID/Path-ID lifetime 	Pro: Same as RFC 9000
PN state: loss recovery and congestion control	Pro: Loss recovery and congestion control can rely on single sequence number space for the duration of the path	Con: CID Renewal triggers use of a new number space which makes loss recovery potentially more complex

Hackathon Interop reports (PR <u>#292</u>)

server				
client ↓	xquic	picoquic	Rask	quiche
xquic	HVDCISUAR	HVDCUA	HVDCISUAR	HVDSA
picoquic	HVDCA	HVDCA	HVDCA	Н
Rask	HVDCSUA	HVDUA	HVDCSUA	HVDSUA
quiche	HVDCSA			HVDCISA

- Explicit Path ID management works well
- Clear logic reduces code

Core Features Tes	sted			
Feature	code	details		
Handshake	н	The handshake completes with successful negotiation of enable_multipath transport parameter		
Path Validation	v	Client sends PATH_CHALLENGE frame to open a new path and server replies with PATH_RESPONSE		
Send data	D	Stream data (of one of more streams) is send on all paths; ACK_MP frames are sent and processed		
Path Close	С	Client closes a path with PATH_ABANDON frame. Should include also a subsequent Retire Connection ID after an PTO.		
Optional Features	Tested			
Feature	code	details		
CID change	I	A server offers new CIDs to a client in advance. Upon some events, the client starts using a new server CID on one path		
Path status	S	Client sends PATH_AVAILABE and PATH_STANDBY frames		
Key Update	U	One endpoint updates keys and sends at least one packet with the new key on all active paths		
Multipath ACK	A	One endpoint sends data and the other endpoints sends ACK (randomly) on all path independent of where data is received		
CID retirement	R	One endpoint send an RETIRE_CONNECTION_ID for an active path		

Do we want to merge PR #292 (Explicit Path ID)?

Open Issue that have a proposed solution

<u>#297</u>. Path ID should not be reused.

- Path ID is generated monotonically increasing. It's limited by MAX_PATHS.
- Once a path is abandoned. The Path ID MUST NOT be reused in any other paths.

PR: <u>PR #315</u>

#317 Should server preferred address have its own path ID?

• Yes, use Path ID 1

<u>#294</u>. "Path ID" needs to be clarified. Do both endpoints use the same path ID, or independently choose which path ID to use?

- Yes, use the same Path ID for both sides
- Two options to coordinate use of numbers:
 - Only allow the client to initiate paths
 - Divide path ID space between client and server -> see next slides

Issue <u>#47</u>: Should servers be allowed to open new paths?

If we want to support server-oriented paths with explicit Path ID:

- Need to use even / odd Path IDs to distinguish between client-initiated / server-initiated (like bidi streams)
- Transport Parameters: Initial_max_paths
 - Client sends Initial_max_paths to indicate the initial max odd Path ID which is allowed to initialize by the server side
 - Server sends Initial_max_paths to indicate the initial max even Path ID which is allowed to initialize by the client side
- MAX_PATHS frames
 - Client sends MAX_PATHS frame to inform the max odd Path ID which is allowed to initialize by the server side
 - Server sends MAX_PATHS frame to inform the max even Path ID which is allowed to initialize by the client side
 - Need to add a type field("client-initiated / server-initiated") for MAX_PATHS frames

Open Issues: How do we retire CID of all paths?

Issue: <u>#295</u> / <u>#313</u>

How to retire a Path ID?

- Endpoint sends PATH_ABANDON frame to request the peer to stop sending packets with the specific Path ID
- The peer SHOULD also send PATH_ABANDON frame for that Path ID once it received the PATH_ABANDON frame

How do we retire all CIDs of the corresponding path?

- PATH_ABANDON also triggers the CID retirement of all the CIDs allocated for the corresponding Path ID
- Endpoints SHOULD send MP_RETIRE_CONN_ID after 3 PTOs

AEAD and Hardware offloading

AEAD Decrytion / Encryption

 The nonce of AEAD is calculated by combining the packet protection IV with the packet number and with the least significant 32 bits of the path identifier pre-allocated for the Destination Connection ID.

Hardware Offloads (Issue #25)

- In order to not change the hardware and still support multipath, the QUIC kernel module and/or driver must XOR in the destination connID sequence number to the IV.
- Explicit Path ID or Sequence of DCID? From a hardware perspective it doesn't matter. The nonce construction would be the same as I detailed above with the driver XOR'ing in the connid_seq_num or the path_id into the IV before offloading the flow. (comments by Eric)

Example in Multi-path Draft

IV: 0x6b26114b9cba2b63a9e8dd4f Connection ID Sequence Number: 0x3 Packet Number = 0xaead New IV passed in flow offload = (IV XOR (connid_seq_num << 64)) 0x6b26114b9cba2b63a9e8dd4f (IV) XOR 0x0000000000000000000 (connid_seq_num << 64)

0x6b2611489cba2b63a9e8dd4f Nonce (hardware): (IV XOR pkt_num) 0x6b2611489cba2b63a9e8dd4f (offloaded IV) XOR 0x00000000000000000aead (pkt_num)

0x6b2611489cba2b63a9e873e2