
IETF 119 – Brisbane – 2024-03

 Robin Marx, Luca Niccolini, Marten Seemann, Lucas Pardue

The DUNE: PART TWO Update

QL G

Since IETF 118

● Published 3 new drafts
○ Removed QPACK
○ transport:datagrams_sent → transport:udp_datagrams_sent
○ Editorial updates
○ Lots of clarifications / RFC alignment
○ Groundwork for extensibility (today)

● Big thanks to Hugo Landau
○ OpenSSL QUIC/qlog implementer

2

Since IETF 118: Merged (Multi)path/Migration support!

Simple but extensible approach:

3

{time: 12456, path: “my_first_path”, name: “quic:packet_sent”, data: {...}}

PathAssigned = {
 path_id: text

 ? path_remote: PathEndpointInfo
 ? path_local: PathEndpointInfo
}

PathEndpointInfo = {
 ? ip: IPAddress
 ? port: uint16

 ? connection_ids: [+ ConnectionID]
}

Feedback/experience
still welcome!

Extensibility: which events are you using exactly #415

4

Taking inspiration from RFC8285:

QlogFile = {
 ...
 “additional_event_schemas”: [

“urn:ietf:params:qlog:http3”,
“urn:ietf:params:qlog:quic#transport”,
“urn:ietf:params:qlog:quic#connectivity”,

“https://atreides.com/~paul/032024/dune_name_system.html”
]
 ...
}
New documents register URNs with IANA with urn:ietf:params:qlog prefix

? Should absence of #category modifiers indicate all categories are used?

https://github.com/quicwg/qlog/pull/415

Extensibility: properly add new types #417

5

Without proper extensibility:
MaxDataFrame = {
 frame_type: "max_data"
 maximum: uint64
}

PacketSent = {
 frames: [* MaxDataFrame / StreamFrame / ...]
 ...
}

Too rigid: impossible to add new frame types

https://github.com/quicwg/qlog/pull/417

Extensibility: properly add new types #417

6

Using CDDL “type sockets”:
MaxDataFrame = {
 frame_type: "max_data"
 maximum: uint64
}

PacketSent = {
 frames: [* $QuicFrame]
 ...
}

$QuicFrame /= MaxDataFrame

Later extension, separate document:
$QuicFrame /= AckFrequencyFrame

https://github.com/quicwg/qlog/pull/417

Extensibility: extend existing things #417

7

What we had BEFORE:
QUICParametersSet = {
 ? ack_delay_exponent: uint16
 ? max_ack_delay: uint16
 ...

 ; to support later defined parameters
 * text => any
}

Too flexible: impossible to really type-check

https://github.com/quicwg/qlog/pull/417

Extensibility: extend existing things #417

8

Using CDDL “group sockets”:
QUICParametersSet = {
 ? ack_delay_exponent: uint16
 ? max_ack_delay: uint16
 ...

 ; to support later defined parameters
 * $$quic-parametersset-extension
}

Separate document for Ack Frequency Extension:
$$quic-parametersset-extension //= (

? min_ack_delay: uint64
)

https://github.com/quicwg/qlog/pull/417

Focus: Extensibility for main RFC extension points

9

Mostly IANA-registered extensions (with some additions):
- Packets

$$packetheader-extension, $PacketType
- Frames

$QuicFrame, $H3Frame, $H3Datagram
- Transport Parameters, Settings

$$quic-parametersset-extension, $$h3-parameters-extension
- Stream types

$H3StreamType
- Error codes

$TransportError, $ApplicationError
- Protocol identifiers

$ProtocolType

Good time to try and exercise these (Multipath + Media-over-QUIC: we’re looking at you ;)

How to communicate fin, stream_reset, stop_sending #396
Signals not always immediately communicated to application layer
E.g., only bubbled up when there’s a read from QUIC layer

10

QUICStreamDataMoved = {
 ? stream_id: uint64
 ? offset: uint64
 ? length: uint64

 ? from: Layer
 ? to: Layer

? additional_info: [+ text]
}

Examples: "fin_set", "stream_reset", "stop_sending"

Look at other events for more details

https://github.com/quicwg/qlog/pull/396

Moving towards WGLC by end of year

No open major design issues!

Should be below 30 issues and 10 PRs soon

How to help:

- Comprehensive document reviews
- Exercise extension points
- Create a qlog issue today!

11

https://github.com/quicwg/qlog/issues/

