
QUIC on Streams
draft-kazuho-quic-quic-on-streams

Kazuho Oku, Lucas Pardue



QUIC is (becoming) a huge success

● better than TCP / TLS:
○ faster handshake
○ path migration
○ no head-of-line blocking
○ better loss recovery
○ better preservation of privacy
○ future proof (prevents ossification by middleboxes)

● broad adoption:
○ support from major web browsers
○ supported by 29.2% of all websites as of Mar 2024 (source: 

w3techs)



QUIC is (becoming) a huge success

● but TCP continues to be used (at least) as a fallback



Sad state of application protocols

UDP + QUIC

Q
PA

CK new 
proto
col X

We now have to develop and maintain two different set of stacks.

IPv4          IPv6

pr
io

ri
ti

es
m

as
qu

e
we

bt
ra

ns
 

fo
r 

H
3

TCP + TLS
IPv4          IPv6

HTTP/3

H
PA

CK new 
proto
col Xpr

io
ri

ti
es

m
as

qu
e

we
bt

ra
ns

 
fo

r 
H

2

HTTP/2



Sad state of application protocols

TCP (UDP) supports both IPv4 and IPv6.
Can QUIC support both UDP and TCP?

UDP + QUIC

Q
PA

CK new 
proto
col X

IPv4          IPv6

pr
io

ri
ti

es
m

as
qu

e
we

bt
ra

ns
 

fo
r 

H
3

TCP + TLS
IPv4          IPv6

HTTP/3

H
PA

CK new 
proto
col Xpr

io
ri

ti
es

m
as

qu
e

we
bt

ra
ns

 
fo

r 
H

2

HTTP/2



QUIC on Streams

Backport the QUIC API contract (i.e., QUIC streams) to TCP. Then, it is 
possible to run applications written for QUIC everywhere.

UDP + QUIC          TCP + TLS + QUIC on Streams
IPv4                                       IPv6

Q
PA

CK new 
proto
col Xpr

io
ri

ti
es

m
as

qu
e

we
bt

ra
ns

 
fo

r 
H

3

HTTP/3



Our goals and non-goals

● Goals
○ eliminate the need to develop new things on top of two protocols
○ eliminate the need to deploy two different protocol stacks, when you 

control both sides
● Non-goals

○ do not spend time optimizing TCP (e.g., solve HoL blocking) or QUIC 
frames. QUIC works in most cases and performs better. QUIC on 
Streams is a fallback.



Design of draft -00

● send QUICv1 frames on top of TCP / TLS
● no ACK frames - all frames are implicitly ACKed
● use of frames unrelated to stream operation are prohibited

○ with datagram extension for message-oriented applications
● Transport Parameters are exchanged using the 1st frame called 

QS_TRANSPORT_PARAMETERS
● minimum of maximum frame size is 16KB (matches max. TLS record size)

※working PoC for quicly created in 1/2 day. Took another 1/2 day to 
integrate that into H2O to run H3 client / server over QUIC on Streams.



HTTP datagrams and MASQUE

● HTTP datagrams and capsule protocol - RFC 9297
○ Started as HTTP/3 only - draft-ietf-masque-h3-datagram-00
○ Changed due to non-trivial demand for datagrams over all HTTP versions

■ Despite downsides, unreliable messages over reliable transport
○ Datagrams over reliable streams using capsules

● UDP over HTTP - RFC 9298
● IP over HTTP - RFC 9484
● MASQUE applications can improve reachability by having a TCP fallback

○ QUIC on Streams supports optional datagrams
○ Cloudflare Internal customers have HTTP/3 MASQUE client and server already

■ Asking for QUIC on Streams to:
● Improve time-to-market
● Lower development and maintenance costs (by reducing cross-HTTP-version 

duplication)
● Avoid runtime capsule encapsulation overhead


