
Leveraging large language
model platforms to
understand standards

LLMS AND
RFCGPT

Nick Sullivan, RASPRG, IETF 120

What is a Large Language Model?1

Overview of training and RAGs2

Creating a custom GPT with OpenAI3

Publishing RFCGPT4

Outcomes and next steps5

Contents

A Large Language Model (LLM) is a
type of artificial intelligence
algorithm designed to understand,
generate, and interact with human
language at a vast scale. Examples
include models like GPT (Generative
Pretrained Transformer).

What is A Large
Language model?

Retrieval-Augmented
Generation

LLMS in action

Expert Systems

Applications

Smart Assistants

Text Classification

Text Generation

Underlying Tech

Training Data

Natural Language
Processing

Models & Platforms

Retrieval-augmented Generation

Objective

Provide a user-
friendly platform that
simplifies the process
of understanding and

navigating the
complexities of RFC

documents.

Base Model
Requirement

Enough information
and context to be able

to reason about
broader technical

topics and converse.

Domain-
Specific Data

Augment GPT model
on the RFC database

to understand and
interpret technical

specifications,
protocols, and

standards accurately.

Designing a RFC Expert Service

Interaction
Model

An intuitive interface
that allows users to

ask complex
questions and receive
precise, context-aware

explanations and
summaries of RFC

content.

The My GPT feature, allowing the
creation of custom versions of
ChatGPT for specific purposes,
was announced by OpenAI on
November 6, 2023. Engine: GPT4.

Creating a custom
GPT with OpenAI

Intructions

Custom context window.
Primes the chat with
directions on how to answer.

Examples include
Instructions on how to
recover by searching the
web.
Where to find key
information like author
names

Knowledge

Configuration of RAG-style
query enhancement. This is
where the RFC archive can
be uploaded.

Allows only
UTF-8 text
20 files
2 million tokens per file
50MB per file

Using the available features

Code Interpreter

Feature by OpenAI that
enables ChatGPT to write
and execute Python code
within a secure, sandboxed
environment, facilitating
tasks like solving math
problems, performing data
analysis, and more.

Enables large zip archives for
search.

Making the data fit

Intructions

Bias of underlying model
is hard to avoid
Additional instructions to
prevent hallucination are
ineffective

Knowledge

The RFC archive is full of text
files that do not conform
fully to UTF-8.

Errors are not
forthcoming.
Pre-processing results in
incomplete tokens.

50MB files failed upload. Split
RFCs into groups of 100
(approx 5MB): only 2000
RFCs

Code Interpreter

Awkward python code
created on the fly to parse
archive and retrieve
individual files. Frequent
failures.

ZIP feature disabled later
after deployment

Soft LAUNCH
November ‘23

ChatGPT+ only
400+ convos

https://cryptography.consulting/rfcgpt

Feedback:
“It was very useful. In fact we
discovered a decoding bug in native
ModSecurity and your tool helped us
defining the correct behavior.“

early Results

The limitations of the My GPT
platform default features limits its
current usefulness.

Success? Not yet

Using an
External RAG

Set up an external
vector database with

the tokenized RFC
archive. Automate

addition of new RFCs
when published.

Open Source
Models and
Fine-tuning

Leverage open source
models like LLaMa

(Meta) and fine-tuning
and run

independently of
OpenAI

Quality
Measurement

Set up automated
tests to measure

response quality and
debug errors.

Future directions

Add mailing list data
and datatracker

history to the archive.

Prompt engineering
to enable tool to

“think like a chair”

Expanded
Training Data

THANK YOU FOR
LISTENING!

