SRv6 for Inter-Layer Network Programming

draft-dong-spring-srv6-inter-layer-programming-07

Liuyan Han @China Mobile

Jie Dong @Huawei

Zongpeng Du, Minxue Wang @China Mobile

SPRING WG IETF 119 Meeting March 2024
Background Recap

• Operators usually have a multi-layered network, the layer-3 is normally IP, while different technologies can be used in layer-2 and below
 • Cross-layer network planning and optimization is expected for better efficiency and resiliency
• SRv6 enables network programming by encoding network instructions in IPv6 packet header
 • Currently only the network instructions related to IP packet layer are defined
 • The SRv6 network programming concept can be further extended for inter-layer network integration
• This document describes the typical use cases of inter-layer network integration, and proposes SRv6 based mechanisms for inter-layer network programming
 • A new SRv6 behavior is defined to instruct a node to send packet through an (non-IP) underlay link or connection
SRv6 End.XU Behavior

• Endpoint with Underlay cross-connect
 • A variant of End.X
 • SID instance of this behavior is associated with an underlay interface, which connects to one or more underlay links or connections
 • The line S15 from the End processing is replaced by the following

 S15. Send the packet through one of the underlay links associated with the underlay interface identified by S
Updates since Last Presentation

• Elaborates the reason of introducing End.XU as a variant of End.X
 • End.X is defined to “send packet via one of a group layer-3 adjacencies”, the behavior is similar
 • The underlay connections (e.g. MTN paths, ODUk or DWDM connections) can be unidirectional, which
does not meet the bidirectional check for a functional layer-3 adjacency
 • Operators may want these underlay connections being invisible in L3 topology, so that they can only
 be used by a controller for cross-layer traffic engineering for specific types of services
 • Endpoints of an underlay connection may reside in different areas or domains, which makes the
 establishment of layer-3 adjacency difficult
• Clarifies the possible mechanisms of obtaining layer-2 information required for packet
 encapsulation
 • mechanisms such as static Neighbor Discovery (ND) Cache can be used
• Some editorial changes to improve readability
Next Steps

• This document is now in a good shape, all the received comments are addressed

• Operators have interests to deploy it in SRv6 networks

• Request for WG adoption
Thank You