Challenges of the SRv6 Deployments and Operations

Tianji Jiang / Yisong Liu

China Mobile

IETF-119 SRv6 Operations BoF, March 2024
Agenda

• China Mobile: A gigantic SRv6 network with C-SID Deployment
• The ‘horizontal’ challenge: Multi-vendor interoperability
• The ‘vertical’ challenge:
 • Day-0: The planning of Compressed SRv6 SID
 • Day-1: The deployment of the Inter-AS E2E network
 • Day-2: Achieving the operational excellence with protection & failure detection
China Mobile: SRv6 C-SID Deployment

- China Mobile deployed SRv6 C-SID in Cloud Private Network
- Beyond 800+ nodes in Cloud Backbone Network
- Single AS and Single layer SDN Controller to distribute SRv6 C-SID

- China Mobile deployed SRv6 C-SID in CMNet
- Beyond 10k+ nodes in CMNet backbone and metros
- Multi-AS and unified SDN Controller to distribute E2E SRv6 C-SID path
The ‘Horizontal’ Challenge: Multi-vendor Interoperability

The challenge:
• Each vendor uses its proprietary controller to deploy the brand-name devices
• An operator has to deploy a super controller to manage the versatile device controllers of all the vendors
• increasing deployment complexity and might result in high failure probability

To remedy:
• The deployment of a fully decoupled single-layer controller for various vendors devices
• unified southbound interface and unified control protocol for greatly simplified deployment
The ‘vertical’ challenge: Day-0: Planning of Compressed SRv6 SID

Compressed SID

- Allocate separate prefix for SRv6 SID in IPv6 address space, due to the high aggregation of SIDs, boundary devices have simple ACL policy configuration to prevent SID information leakage.

Uncompressed SID

- Coexistence of uncompressed and compressed SID in the same locator (C-SID and 128 bits uncompressed SID in the figure as example).

- Allocate network layer IDs in Node ID field based on administrative regions like cities, counties etc., and then continue to assign specific Node IDs in every administrative region.

The ’vertical’ challenge: **Day-1: Deployment of Inter-AS E2E Network**

- SDN controller collects the topology and SID information of the entire network by BGP-LS, calculate the inter-AS compressed SRv6 Policy that meets the SLA, and distribute the policy to the headend node.
- SDN Controller distributes VPN configuration by netconf, and inject VPN traffic into the corresponding compressed SRv6 Policy based on color or routing policies.
- Full path compressed SID list better than assigning BSID to every AS, fully utilize compression to improve packet transmission efficiency.
The ‘vertical’ challenge: Day-2: Achieving operational excellence via Protection and Failure Detection

<table>
<thead>
<tr>
<th>Protection</th>
<th>failure point</th>
<th>protection deployment</th>
<th>failure detection deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot-standby</td>
<td>1&2</td>
<td>• Establish the primary and backup paths (both use C-SID)</td>
<td>• Echo BFD or pathsegment to ensure BFD detection bidirectional paths consistency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Detect failure in the primary path and the head node finish a quick switch</td>
<td>• Adjust the detection time according to the actual situation of the network to prevent network instability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Deploy the SRv6 BE escape mechanism, Used for both primary and backup paths to fail</td>
</tr>
<tr>
<td>VPN FRR</td>
<td>3</td>
<td>• Ingress PE establish C-SID path to both primary and backup egress PEs in advance</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Detect failure in the primary egress PE, ingress PE finish a quick switch to backup egress PE by VPN FRR</td>
<td></td>
</tr>
<tr>
<td>TI-LFA</td>
<td>2</td>
<td>• A fast rerouting protection mechanism based on IGP</td>
<td>• BFD detection time is related to transmission distance delay, adjust the detection time according to the actual situation of the network to prevent network instability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Establish a backup path in advance</td>
<td>• If deploying hot standby at the same time, trigger local protection first, set the detection time path BFD is greater than local BFD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Switch quickly from adjacent upstream nodes to the backup path when detect failure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Repair list should use C-SID list</td>
<td></td>
</tr>
</tbody>
</table>

In summary, we have to tackle both the ‘horizontal’ challenge (i.e., multi-vendor interoperability) and the ‘vertical’ challenge (i.e., the holistic considerations of day-0 (planning), day-1 (deployment) and day-2 (operations)).

The whole practice involves inevitably different technologies: SRv6 + SDN controller + BGP + IGP + VPN + v6Ops...

There is currently no suitable place in IETF to handle this type of interoperable & managerial challenges in a holistic way...

So, let’s form a WG, i.e., the SRv6-OPs, to get it under control & also share any best practice.
Thanks