

How Ghost ACKs Enable For Efficient IP-spoofed TCP Connections^[1]

Prof. Dr. Christian Rossow and Yepeng Pan

rossow@cispa.de, yepeng.pan@cispa.de

[1] based on our research paper "TCP Spoofing: Reliable Payload Transmission Past the Spoofed TCP Handshake", IEEE S&P 2024

TCP Injection attack

- The TCP injection attack enables an off-path attacker to inject a payload into an established connection.
- An attacker has to guess an acceptable SEG.SEQ number and SEG.ACK number.
 - SEG.ACK: As per RFC 9293, segments with $\text{SEG.ACK} \leq \text{SND.NXT}$ are acceptable (though $\text{SEG.ACK} \leq \text{SND.UNA}$ are duplicate), while segments with $\text{SEG.ACK} > \text{SND.NXT}$ acknowledge never sent data, and thus are not acceptable.
 - SEG.SEQ: As per RFC 9293, segments with $\text{RCV.NXT} \leq \text{SEG.SEQ} < \text{RCV.NXT+RCV.WND}$ or $\text{RCV.NXT} \leq \text{SEG.SEQ+SEG.LEN-1} < \text{RCV.NXT+RCV.WND}$ is judged to occupy a portion of valid receive sequence space.

TCP 1.1.1.1:5000 → 4.4.4.4:21
SEQ=1 “DELE backup.tar”

SEQ=2 “DELE backup.tar”

SEQ=3 “DELE backup.tar”

...

RFC 5961 specification

- [RFC 5961](#) proposes to apply stricter checks over acceptable SEG.ACK numbers:

The ACK value is considered acceptable only if it is in the range of $((\text{SND.UNA} - \text{MAX.SND.WND}) \leq \text{SEG.ACK} \leq \text{SND.NXT})$.

All incoming segments whose SEG.ACK value doesn't satisfy the above condition MUST be discarded and an SEG.ACK sent back.

Ghost ACKs

- The current standards (incl. RFC 5961) do not explicitly treat duplicate ACKs that acknowledge data that was never sent ("Ghost ACKs")
- Standards implicitly interprets Ghost ACKs as "duplicate ACKs", as they fulfil:
 - **RFC 5961:** $(\text{SND.UNA} - \text{MAX.SND.WND}) \leq \text{SEG.ACK} \leq \text{SND.UNA}$, and
 - **RFC 9293:** $\text{SEG.ACK} \leq \text{SND.UNA}$

Security Implications of Ghost ACKs #1: TCP Injection

- The loose SEG.ACK checks ease injection attacks against “new” connections
- Large send windows (e.g., 1 GB) = many acceptable SEG.ACK values (even if not a single byte has been sent yet in that connection)
- Unnecessarily allows attacker to bruteforce correct ACK in new connections
→ max. $2^{32} / \text{SND.WND}$ attempts (e.g., 4x for SND.WND = 1 GB)

Security Implications of Ghost ACKs #2: TCP Spoofing

- A TCP spoofing attack establishes an IP-spoofed TCP connection to a target via bruteforcing the server-chosen Initial Sequence Number (ISN)
 - Attack motivation: bypass host-based authentication (e.g., SPF, databases, ...)
 - TCP spoofing **always** establishes a new connection → Ghost ACKs!
- Ghost ACKs reduce the complexity of injection from $\sim 2^{32}$ to $2^{32} / \text{SND.WND}$

Prevalence

- Affected TCP/IP stacks
 - We validated the behavior on Windows, Linux, and *BSD.
 - All of these operating systems would accept Ghost ACKs:
 - Packetdrills: https://github.com/ypando/packetdrill_examples
- Authenticated/encrypted connections (TLS, TCP-AO, etc.) are less affected.

Mitigation

- Linux^[3] now mitigates Ghost ACKs by checking the `bytes_acked` (`tcpEStatsAPPHCThruOctetsAcked`) statistics suggested by RFC 4898.
 - `bytes_acked` = number of bytes already acknowledged by sender
 - **SND.UNA - $\min(\text{MAX.SND.WND}, \text{bytes_acked}) \leq \text{SEG.ACK} \leq \text{SND.NXT}$**
- The above restriction can ensure that for a newly established connection, Linux first verifies if `SEG.ACK` is within the range of already sent bytes and thus mitigates Ghost ACKs

Summary

- Ghost ACKs = ACKs within send window that acknowledge unsent data
- Ease TCP payload injection, especially for IP-spoofed TCP connections
- Major OSes affected, Linux already patched

- Do we need to address Ghost ACKs in the standards? (And if so, please help.)

