How Ghost ACKs Enable For Efficient IP-spoofed TCP Connections

Prof. Dr. Christian Rossow and Yepeng Pan
rossow@cispa.de, yepeng.pan@cispa.de

TCP Injection attack

- The TCP injection attack enables an off-path attacker to inject a payload into an established connection.

- An attacker has to guess an acceptable SEG.SEQ number and SEG.ACK number.

 - SEG.ACK: As per RFC 9293, segments with SEG.ACK ≤ SND.NXT are acceptable (though SEG.ACK ≤ SND.UNA are duplicate), while segments with SEG.ACK > SND.NXT acknowledge never sent data, and thus are not acceptable.

 - SEG.SEQ: As per RFC 9293, segments with RCV.NXT ≤ SEG.SEQ < RCV.NXT+RCV.WND or RCV.NXT ≤ SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND is judged to occupy a portion of valid receive sequence space.

1.1.1.1 4.4.4.4
FTP (TCP/21)

TCP 1.1.1.1:5000 → 4.4.4.4:21
SEQ=1 “DELE backup.tar”

TCP 1.1.1.1:5000 → 4.4.4.4:21
SEQ=2 “DELE backup.tar”

TCP 1.1.1.1:5000 → 4.4.4.4:21
SEQ=3 “DELE backup.tar”

TCP 1.1.1.1:5000 → 4.4.4.4:21
SEQ=...
RFC 5961 specification

- **RFC 5961** proposes to apply stricter checks over acceptable SEG.ACK numbers:

 The ACK value is considered acceptable only if it is in the range of
 \((\text{SND.} \text{UNA} - \text{MAX.} \text{SND.WND}) \leq \text{SEG.ACK} \leq \text{SND.NXT})\).

 All incoming segments whose SEG.ACK value doesn’t satisfy the above condition MUST be discarded and an SEG.ACK sent back.

 ![Diagram of byte sequence and acknowledgment states]

 - **First byte sent but unacknowledged (SND.UNA)**
 - **Next byte to send (SND.NXT)**
 - **SND.WND = 4**
 - **Acceptable ACK (SND. UNA - SND. WND, SND. NXT)**
 - **Sent and Acknowledged**
 - **Sent but not Acknowledged**
 - **Not Sent**
Ghost ACKs

- The current standards (incl. RFC 5961) do not explicitly treat duplicate ACKs that acknowledge data that was never sent ("Ghost ACKs")

- Standards implicitly interprets Ghost ACKs as “duplicate ACKs“, as they fulfil:
 - RFC 5961: $(\text{SND.Una} - \text{Max.Snd.Wnd}) \leq \text{Seg.Ack} \leq \text{Snd.Una}$, and
 - RFC 9293: $\text{Seg.Ack} \leq \text{Snd.Una}$

![Diagram of Acknowledgment Window and ISN]

- Acceptable ACK (SND.Una - SND.Wnd, SND.Nxt)
- Not Sent but Acceptable ("Ghost ACK")
Security Implications of Ghost ACKs #1: TCP Injection

- The loose SEG.ACK checks ease injection attacks against “new” connections
- Large send windows (e.g., 1 GB) = many acceptable SEG.ACK values (even if not a single byte has been sent yet in that connection)
- Unnecessarily allows attacker to bruteforce correct ACK in new connections → max. $2^{32} / \text{SND.WND}$ attempts (e.g., 4x for SND.WND = 1 GB)
Security Implications of Ghost ACKs #2: TCP Spoofing

• A TCP spoofing attack establishes an IP-spoofed TCP connection to a target via bruteforcing the server-chosen Initial Sequence Number (ISN)
 • Attack motivation: bypass host-based authentication (e.g., SPF, databases, …)
 • TCP spoofing always establishes a new connection → Ghost ACKs!
• Ghost ACKs reduce the complexity of injection from 2^{32} to $2^{32} / \text{SND.WND}$
Prevalence

• Affected TCP/IP stacks
 • We validated the behavior on Windows, Linux, and *BSD.
 • All of these operating systems would accept Ghost ACKs:
 • Packetdrills: https://github.com/ypando/packetdrill_examples

• Authenticated/encrypted connections (TLS, TCP-AO, etc.) are less affected.
Mitigation

- Linux now mitigates Ghost ACKs by checking the `bytes_acked` (tcpEStatsAPPHCThruOctetsAcked) statistics suggested by RFC 4898.
 - `bytes_acked` = number of bytes already acknowledged by sender
 - $\text{SND.UNA} - \min(\text{MAX.SND.WND}, \text{bytes_acked}) \leq \text{SEG.ACK} \leq \text{SND.NXT}$
- The above restriction can ensure that for a newly established connection, Linux first verifies if SEG.ACK is within the range of already sent bytes and thus mitigates Ghost ACKs

[2] https://lore.kernel.org/netdev/20231205161841.2702925-1-edumazet@google.com/T/#u
Summary

- Ghost ACKs = ACKs within send window that acknowledge unsent data
- Ease TCP payload injection, especially for IP-spoofed TCP connections
- Major OSes affected, Linux already patched

Do we need to address Ghost ACKs in the standards? (And if so, please help.)