
How Ghost ACKs Enable 
For Efficient IP-spoofed 
TCP Connections[1]

Prof. Dr. Christian Rossow and Yepeng Pan
rossow@cispa.de, yepeng.pan@cispa.de
[1] based on our research paper "TCP Spoofing: Reliable Payload Transmission Past the Spoofed TCP Handshake", IEEE S&P 2024

mailto:%7brossow@cispa.de
mailto:yepeng.pan@cispa.de


TCP Injection attack

• The TCP injection attack enables an off-path attacker to inject a payload into an 
established connection.

• An attacker has to guess an acceptable SEG.SEQ number and SEG.ACK number.

o SEG.ACK: As per RFC 9293, segments with SEG.ACK ≤ SND.NXT are acceptable (though 
SEG.ACK ≤ SND.UNA are duplicate), while segments with SEG.ACK > SND.NXT 
acknowledge never sent data, and thus are not acceptable.

o SEG.SEQ: As per RFC 9293, segments with RCV.NXT ≤ SEG.SEQ < RCV.NXT+RCV.WND or 
RCV.NXT ≤ SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND is judged to occupy a portion of valid 
receive sequence space.

1.1.1.1

4.4.4.4
FTP (TCP/21)

…

TCP 1.1.1.1:5000→4.4.4.4:21
SEQ=3 “DELE backup.tar”

TCP 1.1.1.1:5000→4.4.4.4:21
SEQ=2 “DELE backup.tar”

TCP 1.1.1.1:5000→4.4.4.4:21
SEQ=1 “DELE backup.tar”

2



RFC 5961 specification

• RFC 5961 proposes to apply stricter checks over acceptable SEG.ACK numbers:

The ACK value is considered acceptable only if it is in the range of 

((SND.UNA – MAX.SND.WND) <= SEG.ACK <= SND.NXT).

All incoming segments whose SEG.ACK value doesn’t satisfy the above 

condition MUST be discarded and an SEG.ACK sent back.

First byte sent but
unacknowledged

(SND.UNA) Next byte to send
(SND.NXT)

SND.WND=4

Acceptable ACK
(SND.UNA-SND.WND, SND.NXT)

100 101 102 103

Sent and Acknowledged

Sent but not Acknowledged

Not Sent3 For simplicity, we assume

SND.WND = MAX.SND.WND

https://www.rfc-editor.org/rfc/rfc5961#section-5.1


Ghost ACKs

• The current standards (incl. RFC 5961) do not explicitly treat duplicate ACKs that 
acknowledge data that was never sent ("Ghost ACKs")

• Standards implicitly interprets Ghost ACKs as “duplicate ACKs“, as they fulfil:

• RFC 5961: (SND.UNA – MAX.SND.WND) ≤ SEG.ACK ≤ SND.UNA, and

• RFC 9293: SEG.ACK ≤ SND.UNA

SND.UNA==SND.NXT

SND.WND=4
Acceptable ACK

(SND.UNA-SND.WND, SND.NXT)

ISN
+1

Not Sent but Acceptable
("Ghost ACK")

4



5

Security Implications of Ghost ACKs #1: TCP Injection

• The loose SEG.ACK checks ease injection attacks against “new” connections

• Large send windows (e.g., 1 GB) = many acceptable SEG.ACK values
(even if not a single byte has been sent yet in that connection)

• Unnecessarily allows attacker to bruteforce correct ACK in new connections
→ max. 232 / SND.WND attempts (e.g., 4x for SND.WND = 1 GB)

SND.UNA==SND.NXT

SND.WND=4
Acceptable ACK

(SND.UNA-SND.WND, SND.NXT)

ISN
+1

Not Sent but Acceptable
("Ghost ACK")



6

Security Implications of Ghost ACKs #2: TCP Spoofing

• A TCP spoofing attack establishes an IP-spoofed TCP connection to a target 
via bruteforcing the server-chosen Initial Sequence Number (ISN)

• Attack motivation: bypass host-based authentication (e.g., SPF, databases, …)

• TCP spoofing always establishes a new connection → Ghost ACKs!

• Ghost ACKs reduce the complexity of injection from ~232 to 232 / SND.WND

1.1.1.1

4.4.4.4

1.1.1.1

4.4.4.4

Established

Stage 1): Bruteforce spoofed TCP connection Stage 2): Transmit payload into spoofed connection.



7

Prevalence

• Affected TCP/IP stacks

• We validated the behavior on Windows, Linux, and *BSD.

• All of these operating systems would accept Ghost ACKs:

• Packetdrills: https://github.com/ypando/packetdrill_examples

• Authenticated/encrypted connections (TLS, TCP-AO, etc.) are less affected.

https://github.com/ypando/packetdrill_examples


Mitigation

• Linux[3] now mitigates Ghost ACKs by checking the bytes_acked
(tcpEStatsAPPHCThruOctetsAcked) statistics suggested by RFC 4898.

• bytes_acked = number of bytes already acknowledged by sender

• SND.UNA – min(MAX.SND.WND, bytes_acked) ≤ SEG.ACK ≤ SND.NXT

• The above restriction can ensure that for a newly established connection, 
Linux first verifies if SEG.ACK is within the range of already sent bytes and 
thus mitigates Ghost ACKs

8 [2] https://lore.kernel.org/netdev/20231205161841.2702925-1-edumazet@google.com/T/#u

https://lore.kernel.org/netdev/20231205161841.2702925-1-edumazet@google.com/T/#u


9

Summary

• Ghost ACKs = ACKs within send window that acknowledge unsent data

• Ease TCP payload injection, especially for IP-spoofed TCP connections

• Major OSes affected, Linux already patched

• Do we need to address Ghost ACKs in the standards? (And if so, please help.)

SND.UNA==SND.NXT

SND.WND=4
Acceptable ACK

(SND.UNA-SND.WND, SND.NXT)

ISN
+1

Not Sent but Acceptable
("Ghost ACK")


	Folie 1: How Ghost ACKs Enable For Efficient IP-spoofed TCP Connections[1]
	Folie 2: TCP Injection attack
	Folie 3: RFC 5961 specification
	Folie 4: Ghost ACKs
	Folie 5: Security Implications of Ghost ACKs #1: TCP Injection
	Folie 6: Security Implications of Ghost ACKs #2: TCP Spoofing
	Folie 7: Prevalence
	Folie 8: Mitigation
	Folie 9: Summary

