%

ICISPA

EEEEEEEEEEEEEEEEEE

How Ghost ACKs Enable
For Efficient IP-spoofed
TCP Connections.

Prof. Dr. Christian Rossow and Yepeng Pan
rossow@cispa.de, yepeng.pan@cispa.de

[1] based on our research paper "TCP Spoofing: Reliable Payload Transmission Past the Spoofed TCP Handshake", IEEE S&P 2024

mailto:%7brossow@cispa.de
mailto:yepeng.pan@cispa.de

\"I
~

. TCP Injection attack

%11

« The TCP injection attack enables an off-path attacker to inject a payload into an
established connection.

« An attacker has to guess an acceptable SEG.SEQ number and SEG.ACK number.

o SEG.ACK: As per RFC 9293, segments with SEG.ACK < SND.NXT are acceptable (though
SEG.ACK < SND.UNA are duplicate), while segments with SEG.ACK > SND.NXT
acknowledge never sent data, and thus are not acceptable.

o SEG.SEQ: As per RFC 9293, segments with RCV.NXT < SEG.SEQ < RCV.NXT+RCV.WND or
RCV.NXT < SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND is judged to occupy a portion of valid
receive sequence space.

TCP 1.1.1.1:5000~>4.4.4.4:21
SEQ=1 “DELE backup.tar” }

@ SEQ=2 “DELE backup.tar’
SEQ=3 “DELE backup.tar” _‘

=y bbb

1111 FTP (TCP/21)

N/ Y

RFC 5961 specification

\“I I '/'

%>

« RFEC 5961 proposes to apply stricter checks over acceptable SEG.ACK numbers:

The ACK value 1is considered acceptable only if it is in the range of
((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT) .

All incoming segments whose SEG.ACK value doesn’t satisfy the above
condition MUST be discarded and an SEG.ACK sent back.

First byte sent but

unacknowledged
(SND.UNA) Next byte to send

(SND.NXT)

i \
SND.WND=4 . Sent and Acknowledged
| |
I . Sent but not Acknowledged
Acceptable ACK 9
3 Eodmelywcassume (SND.UNA-SND.WND, SND.NXT) . Not Sent

https://www.rfc-editor.org/rfc/rfc5961#section-5.1

\"1

. Ghost ACKs

%/,1\N

* The current standards (incl. RFC 5961) do not explicitly treat duplicate ACKs that
acknowledge data that was never sent ("Ghost ACKs")

« Standards implicitly interprets Ghost ACKs as “duplicate ACKs*, as they fulfil:
« RFC 5961: (SND.UNA - MAX.SND.WND) < SEG.ACK < SND.UNA, and

« RFC 9293: SEG.ACK < SND.UNA

SND.UNA==SND.NXT

|] 1
| SND.WND=4

Acceptable ACK
(SND.UNA-SND.WND, SND.NXT)

Not Sent but Acceptable
("Ghost ACK")

\"1

%>

Security Implications of Ghost ACKs #1: TCP Injection

* The loose SEG.ACK checks ease injection attacks against “hew” connections

« Large send windows (e.g., 1 GB) = many acceptable SEG.ACK values
(even if not a single byte has been sent yet in that connection)

« Unnecessarily allows attacker to bruteforce correct ACK in new connections
- max. 232 / SND.WND attempts (e.g., 4x for SND.WND =1 GB)

SND.UNA==SND.NXT

& & &

\] |
| SND.WND=4
Acceptable ACK
(SND.UNA-SND.WND, SND.NXT)

Not Sent but Acceptable
("Ghost ACK")

\"1

. Security Implications of Ghost ACKs #2: TCP Spoofing

%\

« A TCP spoofing attack establishes an IP-spoofed TCP connection to a target
via bruteforcing the server-chosen Initial Sequence Number (ISN)

« Attack motivation: bypass host-based authentication (e.g., SPF, databases, ...)

« TCP spoofing always establishes a new connection > Ghost ACKs!
« Ghost ACKs reduce the complexity of injection from ~232 to 232 / SND.WND

LLL1ss

€g=0 ack=0 w; =1 ack=
w ck=0
e9=1 ackeg /N 65535 11T A seqe1 aceoecdata>
€q=1 ack=1 1TA 1313375 <data>
. coe = o <
Established data>

) 1-\ @ m

SN aCk’
bbby

bbb i

1.1.1.1

Stage 1): Bruteforce spoofed TCP connection Stage 2): Transmit payload into spoofed connection.

\"1

. Prevalence

%/,1\N

- Affected TCP/IP stacks
« We validated the behavior on Windows, Linux, and *BSD.

 All of these operating systems would accept Ghost ACKs:

« Packetdrills: https://github.com/ypando/packetdrill _examples

- Authenticated/encrypted connections (TLS, TCP-AO, etc.) are less affected.

https://github.com/ypando/packetdrill_examples

. Mitigation

%/,1N

* Linuxs now mitigates Ghost ACKs by checking the bytes acked
(tcpEStatsAPPHCThruOctetsAcked) statistics suggested by RFC 4898.

* bytes acked = number of bytes already acknowledged by sender
« SND.UNA - min(MAX.SND.WND, bytes_acked) £ SEG.ACK < SND.NXT

 The above restriction can ensure that for a newly established connection,
Linux first verifies if SEG.ACK is within the range of already sent bytes and
thus mitigates Ghost ACKs

8 [2] https://lore.kernel.org/netdev/20231205161841.2702925-1-edumazet@google.com/T/#u

https://lore.kernel.org/netdev/20231205161841.2702925-1-edumazet@google.com/T/#u

*ie,,

- Summary

A\

* Ghost ACKs = ACKs within send window that acknowledge unsent data
- Ease TCP payload injection, especially for IP-spoofed TCP connections

* Major OSes affected, Linux already patched

Do we need to address Ghost ACKs in the standards? (And if so, please help.)

SND.UNA==SND.NXT

& & &

\ J !
| SND.WND=4 Not Sent but Acceptable
Acceptable ACK ("Ghost ACK")
(SND.UNA-SND.WND, SND.NXT)

	Folie 1: How Ghost ACKs Enable For Efficient IP-spoofed TCP Connections[1]
	Folie 2: TCP Injection attack
	Folie 3: RFC 5961 specification
	Folie 4: Ghost ACKs
	Folie 5: Security Implications of Ghost ACKs #1: TCP Injection
	Folie 6: Security Implications of Ghost ACKs #2: TCP Spoofing
	Folie 7: Prevalence
	Folie 8: Mitigation
	Folie 9: Summary

