OSCORE-capable Proxies

draft-ietf-core-oscore-capable-proxies-02

Marco Tiloca, RISE
Rikard Höglund, RISE

IETF 120 Meeting – Vancouver – July 24th, 2024
1. Define the use of OSCORE in a communication leg including a proxy
 › Between origin client/server and a proxy; or between two proxies in a chain
 › Not only an origin client/server, but also an intermediary can be an “OSCORE endpoint”

2. Define rules to escalate the protection of CoAP options
 › If possible, encrypt and integrity-protect an option originally defined as Class U or I for OSCORE

3. Explicitly admit nested OSCORE protection – “OSCORE-in-OSCORE”
 – For example, first protect end-to-end over C ↔ S, then further protect the result over C ↔ P
 – Typically, at most 2 OSCORE “layers” for the same message
 › 1 end-to-end + 1 between two adjacent hops
 – Possible to seamlessly apply 2 or more OSCORE layers to the same message

 › Focus on OSCORE, but the same applies “as is” to Group OSCORE
Updates in version -02

› Submitted before the cut-off for IETF 120

› Editorial
 – Nit fixing and readability improvements
 – Minor clarifications
 – Updated references

› Source application endpoint X: order of OSCORE protections for outgoing requests
 – Already said: X first uses the Security Context shared with the destination application endpoint Y
 – Now also explicitly said how X proceeds after that, in general terms
 › X applies one OSCORE layer for each proxy with which it shares an OSCORE Security Context
 › The OSCORE layers are applied in the same order as the proxies are deployed in the chain
 - Starting from the proxy closest to Y
 - Moving backwards towards the proxy closest to X
Updates in version -02

› Revised escalation of CoAP Option Protection
 – Same intended rationale: encrypt whenever possible

› The previous algorithm had a feature bug
 – Reported by Christian (thanks!) in issue #1, now addressed in version -02
 – The Uri-Host and Uri-Port Options were encrypted as a side-effect, apparently for the better
 – If a reverse-proxy is deployed:
 › The sender endpoint typically does not know about that
 › The proxy can’t decrypt those options, and thus can’t rely on them to forward the request

› Revised algorithm: Uri-Host and Uri-Port are encrypted only in one case
 – They come together with Proxy-Scheme or Proxy-Scheme-Number, and ...
 – ... The intended consumer is a forward-proxy, which the sender endpoint knows about

Issue #1: https://github.com/core-wg/oscore-capable-proxies/issues/1
Updates in version -02

› Section 3.1 – “Protection of CoAP Options” (now revised)
 – It was written as a set of abstract properties to check for each option
 – Now it is written as an actual sequence of steps, mirroring the state diagram in Appendix B
 – Steps are phrased to reflect the possible presence of reverse-proxies, which the sender endpoint is not expected to know about

› The algorithm description got further simplified, by merging different cases

› Appendix B – “State Diagram: Protection of CoAP Options”
 – Also updated according to the revised algorithm
I have an outgoing message M, which includes an option OPT.

I have to protect M for another OSCORE endpoint X

Send OSCORE endpoint

OPT is of class U or I. How do I process it with OSCORE?

Did I add OPT to M?

As far as I can tell, is X a consumer of OPT?

• As far as I can tell, X is my next hop;
• As far as I can tell, my next hop is not the immediately next consumer of OPT

As far as I can tell, is X the immediately next consumer of OPT?

Does X need to access OPT before decrypting M or In order to decrypt M?

Is OPT the Uri-Host or Uri-Port Option?

Does M include the Proxy-Scheme or Proxy-Scheme-Number Option?

Process OPT as Class E

Process OPT as per its original Class U or I
Updates in version -02

› **Section 7 – “CoAP Header Compression with SCHC”**
 – Improved presentation of the steps taken for the Outer or Inner SCHC Decompression
 – Still generalized to the use of (nested) OSCORE also at proxies

› **Appendix A – Added two new examples, specifically with a reverse-proxy**
 – Both examples are aligned with the recent fix about (not) encrypting the Uri-Host Option
 – Appendix A.6:
 › OSCORE between C-S and C-P
 › Typical reverse-proxy, taking forwarding decision based on the Uri-Host Option
 – Appendix A.7:
 › OSCORE between C-S, C-P, and P-S
 › The reverse-proxy operates similar to the LwM2M Gateway (see Section 2.4), and takes forwarding decisions based on the Uri-Path Option
Protection of the Hop-Limit Option

- Defined in RFC 8768, used for detecting loops in request forwarding
 - Value set by the first hop in the chain supporting the option
 - Each hop decrements the value; then forwards if value > 0, or returns an error response otherwise

- RFC 8768 does not define the OSCORE class for Hop-Limit
 - Thus, the option is by default of Class E for OSCORE, per Section 4.1 of RFC 8613

- Borderline case: the origin client adds Hop-Limit
 - The origin client uses OSCORE with the origin server and protects the option end-to-end

- The proxy chain relies on an outer Hop-Limit Option added by a proxy
 - Forwarding loops are still detectable, but …
 - … the original intention indicated by the origin Client will not play a role; and …
 - … an inner Hop-Limit Option is pointlessly conveyed throughout each hop, with additional overhead
Protection of the Hop-Limit Option

› Section 4 – Proposed update to RFC 8768
 – The Hop-Limit Option is defined as Class U for OSCORE
 – (This is what Section 1 should also say, sorry for the typo!)

› When using OSCORE as in RFC 8613
 – The origin client does not protect Hop-Limit end-to-end

› When using OSCORE as in this document, per the option protection rules:
 – The origin client does not protect Hop-Limit end-to-end
 – Any two adjacent hops sharing an OSCORE Security Context do protect Hop-Limit with OSCORE

› Related action for IANA
 – "CoAP Option Numbers" registry: add a reference to this document in the entry for Hop-Limit Option

Thoughts? Objections?
Next steps

› Closer look at:
 – Addition of an outer option, after producing the corresponding, encrypted inner option (e.g., Observe)

› Handling multiple responses to the same request, if also protected by a proxy
 – Same rationale and approach as in draft-ietf-core-oscore-groupcomm

› Extend the security considerations

› More examples of message exchanges, e.g., with a chain of proxies

› Comments and reviews are welcome!
Thank you!

Comments/questions?

https://github.com/core-wg/oscore-capable-proxies
Backup
Motivation

› A CoAP proxy (P) can be used between client (C) and server (S)
 – A security association might be required between C and P

› Good to use OSCORE between C and P
 – Especially, but not only, if C and S already use OSCORE end-to-end

› This is not defined and not admitted in OSCORE (RFC 8613)
 – C and S are the only considered “OSCORE endpoints”
 – It is forbidden to double-protect a message, i.e., both over C ↔ S and over C ↔ P
Use cases

› Section 2.1, CoAP group communication through a proxy [4]
 – The proxy identifies the client before forwarding

› Section 2.2, Observe multicast notifications with Group OSCORE [5]
 – The client securely provides the Ticket Request to the proxy

› Sections 2.3 and 2.4, OMA Lightweight Machine-to-Machine (LwM2M)
 – The LwM2M Client uses the LwM2M Server as a proxy towards External Application Servers
 – The LwM2M Server uses the LwM2M Gateway as a reverse-proxy towards External End Devices

› Further use cases are listed in Section 2.5
 – Transport indication through trusted proxies – draft-ietf-core-transport-indication
 – CoAP performance measurements involving on-path probes – draft-ietf-core-coap-pm
 – EST over OSCORE through a CoAP-to-HTTP proxy – draft-ietf-ace-coap-est-oscore
 – OSCORE-protected “onion forwarding”, a la TOR – draft-amsuess-t2trg-onion-coap
 – Proxies as entry point to a firewalled network

Use cases

1. **CoAP Group Communication with Proxies**
 - *draft-ietf-core-groupcomm-proxy*
 - CoAP group communication through a proxy
 - P must identify C through a security association

2. **CoAP Observe Notifications over Multicast**
 - *draft-ietf-core-observe-multicast-notifications*
 - If Group OSCORE is used for end-to-end security ...
 - … C provides P with a Ticket Request obtained from S
 - That provisioning should be protected over C ↔ P
3. LwM2M Client and external Application Server
 – From the *L2wM2M Transport Binding* specification:
 › OSCORE can be used between a LwM2M endpoint and a non-LwM2M endpoint, via the LwM2M Server
 – The LwM2M Client may use OSCORE to interact:
 › With the LwM2M Server (LS), as usual; and
 › With an external Application Server, via LS acting as proxy

4. Use of the LwM2M Gateway
 – It provides the LwM2M Server with access to:
 a) Resources at the LwM2M Gateway
 b) Resources at external End Devices, through the LwM2M Gateway, via dedicated URI paths
 – In case (b), the LwM2M Gateway acts, at its core, as a reverse-proxy
Use case 3 – LwM2M

› OMA LwM2M Client and External Application Server

OSCORE MAY also be used between LwM2M endpoint and non-LwM2M endpoint, e.g., between an Application Server and a LwM2M Client via a LwM2M server. Both the LwM2M endpoint and non-LwM2M endpoint MUST implement OSCORE and be provisioned with an OSCORE Security Context.

- The LwM2M Client may register to and communicate with the LwM2M Server using OSCORE
- The LwM2M Client may communicate with an External Application Server, also using OSCORE
- The LwM2M Server would act as CoAP proxy, forwarding traffic outside the LwM2M domain
Processing an incoming request

1. **Incoming Request**
2. **Are there proxy-related options?**
 - If **Yes**
 - **Is there the Proxy-Uri or Proxy-Cri Option?**
 - If **Yes**
 - **Am I a forward-proxy?**
 - If **Yes**
 - Consume the proxy-related options and forward
 - If **No**
 - **Is forwarding this request an acceptable operation?**
 - If **Yes**
 - Return 4.01
 - If **No**
 - Return 5.00
 - **Is the authority (host and port) of the request URI identifying me?**
 - If **Yes**
 - **Is there an OSCORE Option?**
 - If **Yes**
 - **Are there URI-Path Options?**
 - If **Yes**
 - Is decrypting this request an acceptable operation?
 - If **Yes**
 - Decrypt
 - If **No**
 - Return 4.00
 - If **No**
 - Return 4.01
 - If **No**
 - Return 4.01
 - If **No**
 - **Is there an application?**
 - If **Yes**
 - Deliberate to the application
 - If **No**
 - Forward
 - **Is there the Proxy-Scheme or Proxy-Scheme-Number Option, together with the Uri-Host/Uri-Port Options?**
 - If **Yes**
 - **Is forwarding this request an acceptable operation?**
 - If **Yes**
 - Return 4.01
 - If **No**
 - Return 4.01
 - If **No**
 - **Is there the Proxy-Scheme or Proxy-Scheme-Number Option, together with the Uri-Host/Uri-Port Options?**
 - If **Yes**
 - **Is forwarding this request an acceptable operation?**
 - If **Yes**
 - Return 4.01
 - If **No**
 - Return 4.01
 - **Are there URI-Path Options?**
 - If **Yes**
 - Is decrypting this request an acceptable operation?
 - If **Yes**
 - Decrypt
 - If **No**
 - Return 4.00
 - If **No**
 - Return 4.01
 - **Is there the Proxy-Scheme or Proxy-Scheme-Number Option, together with the Uri-Host/Uri-Port Options?**
 - If **Yes**
 - **Is forwarding this request an acceptable operation?**
 - If **Yes**
 - Return 4.01
 - If **No**
 - Return 4.01
 - **Am I a reverse-proxy using the indicated virtual addressing information for proxying?**
 - If **Yes**
 - Consume the proxy-related options and forward
 - If **No**
 - **Is decrypting this request an acceptable operation?**
 - If **Yes**
 - Decrypt
 - If **No**
 - Return 4.00
 - **There is no Proxy-Scheme or Proxy-Scheme-Number Option, but there are Uri-Path and/or Uri-Host and/or Uri-Port Options**
 - **If decrypting this request an acceptable operation?**
 - If **Yes**
 - Decrypt
 - If **No**
 - Return 4.00
 - **Determine if proxying or not**
 - **Proxying**
 - **Consume; OR decrypt and repeat**
 - **Non-proxying**
 - **Success?**
 - If **Yes**
 - Return 4.00
 - If **No**
 - Return 4.01
 - **Is the authority (host and port) of the request URI identifying me?**
 - If **Yes**
 - **Is there an OSCORE Option?**
 - If **Yes**
 - **Are there URI-Path Options?**
 - If **Yes**
 - Is decrypting this request an acceptable operation?
 - If **Yes**
 - Decrypt
 - If **No**
 - Return 4.00
 - If **No**
 - Return 4.01
 - If **No**
 - Return 4.01
 - If **No**
 - **Is there an application?**
 - If **Yes**
 - Deliberate to the application
 - If **No**
 - Forward