Bundle Protocol
Endpoint ID Patterns
IETF 120 DTN WG

Brian Sipos
JHU/APL
Background

- Use cases on the following slide motivate the need for a mechanism to define a set of EIDs in a structured way
 - Goal is to ensure the writer and the user have the same interpretation

- Simple globs or regular expressions could be used, but these are not ideal
 - Purely text-based
 - Do not take advantage of the structure for DTN or IPN schemes
 - Do not handle numeric intervals for IPN scheme
 - Do not have an efficient binary encoding

- Pattern matching syntax has a “network effect”
 - The more tools that use a common syntax the more value it has
 - If established, new tools do not need to reinvent a robust mechanism
 - Lessens the possibility of security vulnerabilities from misconfiguration

- This proposal is compatible with IPN Scheme update draft-ietf-dtn-ipn-update
Use Cases

• Security identities
 - Allow a certificate holder to be authorized to sign for dtn://node/** or for ipn:3.*.* or even ipn:3.*.0
 - The same way as wildcard certificates, it is a CA obligation to ensure endpoint ownership of all matching EIDs

• Routed blocks and authorization
 - EID Patterns are meant for a more structured situation than “huge list of EIDs”
 - The same purpose as IP CIDR notation e.g. 192.168.30.0/24

• BP Agent configuration / policy
 - Allow BPA configuration to use consistent pattern syntax
 - Allow node ipn:3.5.0 to sign bundles from ipn:3.*.*
 - Provide the same kind of ubiquity as CIDR does for IP configuration
 - Avoids policy engines with over-restrictive or limited expressive syntax

• Colloquial use
 - Have an understandable way to convey technical comments like:
 I’m having trouble sending to ipn:3.*.*
 Please allocate your services within ipn:.*.[5-10]
Current State

• Draft in draft-sipos-dtn-eid-pattern-02 with pending issues in https://github.com/BrianSipos/dtn-eid-pattern/issues

• Any-scheme pattern *:*:

• Any-SSP pattern ipn:*:* or 2:*:

• IPN Scheme Patterns
 - Allow a match-all syntax ipn:*:
 - Separate the EID into single-integer parts, each part can be one of:
 ▪ Exact-match value (compared as integer)
 ▪ Match-all one-part wildcard
 ▪ Range expression (set of discrete intervals)
 - Compressed CBOR encoding using integers
 - Simple set logic ("Pattern A contains B" or "Pattern A overlaps with B")

• DTN Scheme Patterns
 - Allow a match-all syntax dtn:*:
 - Separate the EID into node-name and service-path segment
 - Each part can be one of:
 ▪ Exact-match literal
 ▪ Match-all one-part wildcard
 ▪ Match-any-parts wildcard
 ▪ Regular expression, percent-encoded
 - Complex or unavailable set logic (related to regular expressions)
Last Changes

- Added a section to explain “Goals” of this work
- Made the any-scheme pattern text consistent with the rest
- Added an any-SSP pattern to allow configuration for unhandled but known schemes (“my BPA doesn’t know but I know”)
- Added a use for EID Patterns within PKIX Name Constraints extension to delegate specific naming authority to specific CAs
Feedback on Current Proposals

• Recommendation to switch to using "An Interoperable Regexp Format" from RFC 9485

• Recommendation to disallow empty regexp in DTN-scheme pattern

• DTN-scheme “authority” structure is still undefined and unknown
 - This causes design and usability problems because we don’t have a “typical” or “expected” case of what is being matched and how it is organized
Examples of EID Patterns

• Singleton pattern:

dtn://node-name/serv ipn:3.10.5

• All services on a node

dtn://node-name/** ipn:3.10.*

• One service on any node

dtn://**/serv/name ipn:*.*.5

• Complex wildcard patterns

dtn://**/prefix/* ipn:3.*.5 ipn:3.*.*

• Expressions and ranges

dtn://[prefix.*/serv ipn:3.[5-10,100-110].5

• Mixed patterns

dtn://[node%5BA-Z%5D]** ipn:3.[10,12,14].*

• Multiple combined patterns with pipe separator

| ipn:3.[10,12,14].* | ipn:[4-5].*** |

• Match-all pattern:

*:**
Considerations

• An EID Pattern is *not* an EID, they cannot be used interchangeably
 - This is a security risk *a la* the wildcard DNS names in early PKIX certificates
 - The syntax has been designed that a range (IPN) or expression (DTN) is specifically *not* a valid EID value per the ABNF syntax

• An EID Pattern is a superset of EIDs
 - It is a design goal that an EID *is* a singleton-matching pattern for itself

• Patterns are conceptually simple but can be complex in practice
 - A common specification can allow shared-use implementations

• IPN pattern special considerations
 - IPN scheme now has three logical parts, IPN patterns always have exactly three components
Next Steps

• Incorporate feedback where possible
• Proposed to separate DTN-scheme EID Pattern to separate doc to not hold up the main capability
• Trial or example implementations
 - Existing BPAs that want to try out this syntax?
 - Potential hackathon topic?