Implementation Considerations for Ephemeral Diffie-Hellman Over COSE (EDHOC)

draft-ietf-lake-edhoc-impl-cons-01

Marco Tiloca, RISE

IETF 120 Meeting – Vancouver – July 23rd, 2024
Recap

› Adopted as a LAKE WG document in June 2024

› **Scope: considerations on side-topics related to the implementation of EDHOC [1]**
 – Those topics are out of scope for EDHOC itself, and [1] focuses on the actual protocol

› **Topics covered in version -00**
 – Handling of EDHOC sessions and derived applications keys, if become invalid
 – Trust models for learning peers’ public authentication credentials on-the-fly
 – Branched, side-processing of incoming EDHOC messages. This includes:
 › Fetching and validation of authentication credentials
 › Processing of EAD items, which may play a role in validating authentication credentials

Updates since version -00

› New Section 5 – “Using EDHOC over CoAP with Block-wise”

› Build on Appendix A.2 of RFC 9528
 – Transfer of EDHOC with CoAP (RFC 7252); forward or reverse message flow

› Build on draft-ietf-core-oscore-edhoc
 – More details on EDHOC over CoAP to key OSCORE (RFC 8613)
 – Optimized combination of EDHOC forward message flow and first protected data exchange
 › Only 2 RTTs, by using an “EDHOC + OSCORE” CoAP request

› Considerations on using EDHOC with CoAP and Block-wise transfer (RFC 7959)
 – The full data to send (body) is split into smaller chunks, each sent as a message payload
 – This topic was covered in draft-ietf-core-oscore-edhoc, but deemed too implementation-related
Updates since version -00

› Pre-requirements for using the optimized EDHOC workflow
 – When using Block-wise or not

› Number of RTTs to complete EDHOC and a first protected data exchange, based on:
 – Small or large bodies; using Block-wise or not; using the optimized EDHOC workflow or not

› Number of RTTs when using Block-wise:
 – If the use of Block-wise is not specifically due to using the optimized EDHOC workflow ...
 › Then the optimized EDHOC workflow always performs better than the original one
 – If the use of Block-wise is specifically due to using the optimized EDHOC workflow ...
 › Then the optimized EDHOC workflow never performs better than the original one
 - It might actually perform worse than the original EDHOC workflow
 › The client should resort to using the original EDHOC workflow instead
Updates since version -00

› Trust models for learning authentication credentials of other peers
 – Section 3.0 defines possible trust policies NO-LEARNING and LEARNING

› New Section 3.1 – “Enforcement in the EDHOC and OSCORE Profile of ACE”
 – Profile defined in draft-ietf-ace-edhoc-oscore-profile
 – An EDHOC peer acts as Resource Server (RS), another as ACE Client (C)
 – The Authorization Server issuing Access Tokens facilitates C and RS in running EDHOC

› The Access Token specifies the public authentication credential of C (AUTH_CRED_C)
 – C can optionally upload the Access Token to RS within an EDHOC EAD item
 – The first Access Token issued to C for RS likely includes AUTH_CRED_C by value ...
 – ... and RS does not store AUTH_CRED_C yet, but can learn it from the Access Token

› For supporting Access Tokens in EAD items, RS has to enforce the policy LEARNING
Updates since version -00

› Side processing of incoming EDHOC messages
 – Main content already in Sections 4.0-4.3

› New Section 4.4 – “Side Processing in Particular Situations”
 – Intended for special message handling, beyond the common case of Sections 4.0-4.3

› Section 4.4.1 – “EDHOC and OSCORE profile of ACE” (now mostly Editor’s notes)
 – How to consistently enforce NO-LEARNING if an EAD item conveys an Access Token?
 – When to perform a consistency check of ID_CRED_X with the credential in the Access Token?
 – Some of this might be better fitting in draft-ietf-ace-edhoc-oscore-profile

› Input is welcome on more “particular situations” to cover
 – draft-ietf-lake-authz?
 – draft-song-lake-ra?
Next steps

› **Content to include in the next versions**
 – More on side-processing of incoming EDHOC messages in special situations
 – Appendix with example certificates to plug-in for testing
 – Security considerations

› **Process comments and reviews as they come – Please do chime in!**
 – Feedback and input from authors/implementors of `-lake-authz` and `-lake-ra` are welcome
Thank you!

https://github.com/lake-wg/edhoc-impl-cons