Speech Coding Enhancement for Opus: Progress report

Presenter: Jan Buethe (AWS)
jbueethe@amazon.com

IETF 120
draft-buethe-opus-speech-coding-enhancement
Overview

I. Requirements for speech coding enhancement (test data)

II. Some examples regarding IETF119 questions about real-world / out-of-domain signals (farfield, music, double talk)

III. Next steps

Attachment sent to mlcodec@ietf.org on 07/26/2024
(opus_speech_coding_enhancement_ietf120_attachment.zip)
Part I: Requirements

- Aim of draft-buetho-opus-speech-coding-enhancement is to specify requirements for speech coding enhancement methods.
- Opus 1.5 released and includes two optional speech enhancement methods (LACE and NoLACE) => have integrated methods for testing requirements.
- So far: Evaluation of quality metrics at IETF 118 => modified opus compare (MOC) distance simple to use and correlates reasonably well with quality.
- Next question: What data to test on?
Test data

• Conventional approach: clean-speech dataset with controlled degradations (add noise, simulate reverb, etc.)

• Drawbacks:
 • Not much (free) multi-lingual high-quality data available
 • Not clear how well simulations reflect real use cases

• Alternative: Mozilla Common Voice dataset
 • User generated (quality ranges from clean to noisy to reverberant)
 • Recording scenarios are very relevant for communication over the internet
 • Data covering 100+ languages gathered from all over the world
 • Addresses concerns regarding real-world data
A multi-lingual test on Common Voice 18

• Testing done per language:
 • 10 samples per language
 • 5 female, 5 male sampled uniformly from different sources (client id)
• Languages that do not permit such sampling (due to size) are excluded => leaves 81 languages or dialects
• Items are converted from 32 kHz to 16 kHz and normalized to -6 dBFS
• Script for item selection can be found on opus main branch
Test Setup

- Test Clip
- Reference Encoder
- Reference Decoder
- Enhanced Decoder
- MOC Test
- Relative Delta-Distortion
Pass Criteria

- For reference output x_{ref} and test output x_{test} corresponding to input signal x_{orig} relative delta-distortion is defined as

$$d(x_{ref}, x_{test}) = \frac{\sqrt{MOC(x_{orig}, x_{ref})} - \sqrt{MOC(x_{orig}, x_{test})}}{\sqrt{MOC(x_{orig}, x_{ref})}}$$

- For a test set M, pass criteria are
 - Limited worst case relative delta-distortion: $\min_M d(x_{ref}, x_{test}) > \theta_{\text{min}}$
 - Limited average relative delta-distortion: $\avg_M d(x_{ref}, x_{test}) > \theta_{\text{avg}}$

- Test script on opus main branch
Test Conditions

• Reference encoder: opus 1.5.2
• Reference decoder: opus 1.5.2 with -dec_complexity 0
• LACE: opus decoder with -dec_complexity 6
• NoLACE: opus 1.5.2 with -dec_complexity 7
• BadLACE, BadNoLACE: same as LACE, NoLACE but with weight files from almost untrained models (same as IETF118)

Examples of BadLACE and BadNoLACE output in attachment (part1/badmodel_examples).
Results

- Thresholds: $\theta_{\text{min}} = -0.1, \theta_{\text{avg}} = -0.025$
- All good methods pass, all bad methods fail (at least partially)
- Worst case NoLACE samples included in attachment, no perceptual degradation found (part1/nolace_worst_case_items)

<table>
<thead>
<tr>
<th>Condition \ Bitrate</th>
<th>6 kb/s</th>
<th>9 kb/s</th>
<th>12 kb/s</th>
<th>15 kb/s</th>
<th>24 kb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACE</td>
<td>81\81</td>
<td>81\81</td>
<td>81\81</td>
<td>81\81</td>
<td>81\81</td>
</tr>
<tr>
<td>NoLACE</td>
<td>81\81</td>
<td>81\81</td>
<td>81\81</td>
<td>81\81</td>
<td>81\81</td>
</tr>
<tr>
<td>BadLACE</td>
<td>42\81</td>
<td>0\81</td>
<td>0\81</td>
<td>0\81</td>
<td>0\81</td>
</tr>
<tr>
<td>BadNoLACE</td>
<td>0\81</td>
<td>0\81</td>
<td>0\81</td>
<td>0\81</td>
<td>0\81</td>
</tr>
</tbody>
</table>

Tests passed
Part II: Out-of-domain signals

• At IETF 119 the question about out-of-(training)-domain signals was raised.

• Specifically, farfield recordings, music and double talk were mentioned

• Prepared three samples as a case study
 1. Violin sample
 2. Double-talk item
 3. Farfield recording

• Reporting MOC scores, subjective impression, and full set of items in attachment (part2/examples)
Music

• Item: short violin clip within the frequency range of human speech

• Observations:
 • Item is classified as speech but output degraded due to pitch instabilities
 • Listening impression: NoLACE better than LACE better than Opus (but quality with NoLACE still poor)
 • Indicates that LACE and NoLACE are robust to pitch prediction errors

<table>
<thead>
<tr>
<th>Bitrate \ condition</th>
<th>Opus</th>
<th>LACE</th>
<th>NoLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 kb/s</td>
<td>0.769</td>
<td>0.659</td>
<td>0.663</td>
</tr>
<tr>
<td>12 kb/s</td>
<td>0.576</td>
<td>0.527</td>
<td>0.529</td>
</tr>
</tbody>
</table>
Farfield

• Item: Clean speech item from EBU SQAM CD* processed with real room impulse response

• Observations:
 • Listening impression: NoLACE better than LACE better than Opus

<table>
<thead>
<tr>
<th>Bitrate \ condition</th>
<th>Opus</th>
<th>LACE</th>
<th>NoLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 kb/s</td>
<td>0.767</td>
<td>0.619</td>
<td>0.638</td>
</tr>
<tr>
<td>12 kb/s</td>
<td>0.556</td>
<td>0.538</td>
<td>0.542</td>
</tr>
</tbody>
</table>

* https://tech.ebu.ch/publications/sqamcd
Double-talk

• Item: Downmix of stereo arrangement of two speech items from EBU SQAM with a bit of stereo reverb (simulates two talkers in a room)

• Observations:
 • Listening impression: NoLACE better than LACE better than Opus (though differences are small for 12 kb/s)

<table>
<thead>
<tr>
<th>Bitrate \ condition</th>
<th>Opus</th>
<th>LACE</th>
<th>NoLACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 kb/s</td>
<td>0.742</td>
<td>0.668</td>
<td>0.680</td>
</tr>
<tr>
<td>12 kb/s</td>
<td>0.587</td>
<td>0.577</td>
<td>0.578</td>
</tr>
</tbody>
</table>
Conclusion

• Test on Common Voice successfully distinguished good from bad enhancement methods (though the number of test methods is currently limited).

• In current setting, thresholds must allow a small MOC degradation. Listening impression is that enhanced signals still sound better (feedback welcome).

• Critical test items (music, farfield, double talk) also improved by Opus 1.5 enhancement methods (please also hear for yourself!).

• Modified Opus Compare (moderately) successfull in confirming quality improvement of enhancement methods.
Questions and next steps

• Add small clean-speech, farfield and music test sets to Common Voice sample and validate tests

• Collect feedback
 • Is test coverage good enough?
 • Is the test method acceptable?

• Define test points
 • Is having a reference encoder/decoder acceptable? => 120 MB for raw audio
 • Do we need per-test-point data? => ~ (num test points + 1) * 120 MB for raw audio
 • Where can we host data?
Other updates

• First attempt at using side-info for enhancement
 • Idea: feed extra info from clean signal to NoLACE
 • Improved quality but not enough to justify bitrate overhead
Thank you!