Post-Quantum Cryptography in OpenPGP with NIST and Brainpool EC Domain Parameters
draft-ehlen-openpgp-nist-bp-comp

Quynh DangNIST, Stephan EhlenBSI, Johannes RothMTG, Falko StrenzkeMTG,

\textbf{BSI:} Federal Office for Information Security, Germany
\textbf{MTG:} MTG AG, Germany
\textbf{NIST:} National Institute of Standards and Technology, USA
draft-ehlen-openpgp-nist-bp-comp

- public repository
New code points for NIST and Brainpool EC Domain Parameters with ML-*

all code points are “MAY”

<table>
<thead>
<tr>
<th>NIST</th>
<th>Brainpool</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML-KEM-512+NIST-P-256</td>
<td></td>
</tr>
<tr>
<td>ML-KEM-768+NIST-P-384</td>
<td>ML-KEM-768+brainpoolP256r1</td>
</tr>
<tr>
<td>ML-KEM-1024+NIST-P-384</td>
<td>ML-KEM-1024+brainpoolP384r1</td>
</tr>
<tr>
<td>ML-DSA-44+NIST-P-256</td>
<td></td>
</tr>
<tr>
<td>ML-DSA-65+NIST-P-384</td>
<td>ML-DSA-65+brainpoolP256r1</td>
</tr>
<tr>
<td>ML-DSA-87+NIST-P-384</td>
<td>ML-DSA-87+brainpoolP384r1</td>
</tr>
</tbody>
</table>

Rationales:
Pair equivalent levels. NIST-P-384 is CNSA approved for all classification levels.¹ 521 bit curve not widely used.

Security margin for module-lattice schemes. 512 bit curve not widely used.

¹CNSA 2.0 specification by NSA.
Further remarks

- PQC protocol aspects are implicitly adopted from \textit{draft-ietf-openpgpg-pqc}
- KEM combiner is equal to \textit{draft-ietf-openpgpg-pqc}, but repeated verbatim
Questions

- Approval of proposed code points?
- Should we have “MUST” code points?
- Somewhat editorial: Should the KEM combiner only be referenced? (and not be repeated verbatim)
Upcoming changes

- **KEM combiner: NIST compliance**
 - upcoming change: KDF input order will change as in draft-ietf-openpgpg-pqc
 - still in discussion\(^2\): compliance problem due to KDF based on SHA3 only being qualified to receive the raw ECDH coordinate – no prior hashing allowed as in the current construction

- final version of draft-ehlen and draft-ietf-openpgpg-pqc will use ML-DSA and SLH-DSA pre-hash variants
 - crypto-refresh errs when using PureEdDSA, should have used HashEdDSA (no security implication, though)
 - error seems to be founded on misinterpretation of \(H(m)\) in the algorithm description: \(H(m)\) is the input to the signature function. Reinterpretation of the hash as the message is not allowed.