Replacement Keys for OpenPGP
IETF 120
Vancouver
2024-07-22
draft-gallagher-openpgp-replacement-keys

- Discussed in 2024 OpenPGP e-mail summit
- Use case: automated “transition statements”
- New algorithms, new versions, other reasons?
- Safety / Complexity?
Automated Use by Relying Party

- Certificates are *equivalent* to each other
- One certificate is “Preferred”, other(s) are “Fallback”
- Updating known certificate should be enough to be able to look up its related “Preferred” certificate
- Avoid computational DoS
- Avoid network privacy leak ("web bug")
Goals

- “Fallback” certificate can be expired, soft revoked, or still active
- Relationship is directional, but...
- ...Assertion of relationship should be made in both directions
- Minimize size of wire format
Observations

- Relates primary key to primary key
- Lives in Direct Key Signature or Soft Revocation
- Similar to signing-capable subkey (cross-sig required)
Basic model

Cert X

P:Y
X: "Y is Preferred"

Cert Y

F:X
Y: "X is Fallback"
Loops!

 риск в контексте OpenPGP.
One Preferred or Many Fallbacks

- Cert X
 - P:Y
 - F:X
 - F:Z

- Cert Y
 - P:Y

- Cert Z
 - P:Y
How to point to a certificate?

• Primary Key Fingerprint
 - Fixed digest algorithm per version
 - Possibly weaker than signature hash
 - Network lookup

• Primary Key “Imprint” via Signature Hash
 - Same strength as signature
 - No network lookup

• Current answer: use both?
Wrinkles

• Web of Trust calculations should not double-count certifications from an equivalence group
• Equivalence groups might change over time (is historical evaluation OK?)
• Transitivity across > 2 certs depends on Relying Party understanding Preferred primary key
Give Feedback!

- Andrew will post draft-ietf- soon
- Review and give feedback!
- Do we need a SOP interface to make equivalence group?
 - To test for equivalence?
- Try to implement!