Internet Draft Updates

PANRG - IETF 120
July 25th, 2024

Nicola Rustignoli (nic@scion.org)
Kevin Meynell (kme@scion.org)
Background: the SCION Internet Architecture

• Path-aware *inter-domain* Internet architecture, focusing on
 • Availability
 • Routing Security
 • Routing security (path authorization)

• In production use by *dozens ISPs*, serving the Swiss inter-banking network *SSFN* & an *education network*, being rolled out for a healthcare network and tested for a utility network.

• Core specification in 3 drafts (below)
Updates Since IETF 118

At IETF 118 PANRG we had a discussion about deployment experiences by early adopters.

We also discussed where the SCION work fits within IETF/IRTF:
- We’d like to document protocol specification of existing deployment (ISE)
- Research aspects / open questions of SCION should be kept in a RG (e.g. PANRG)
- In the long-term early adopter spec and RG work could be base for future IETF work

What happened since then:
- ISE submission
- IPR disclosure
- Updates to the drafts
- Open questions (later today)
Drafts Overview

<table>
<thead>
<tr>
<th>Component</th>
<th>Document status</th>
<th>Internet Draft</th>
<th>Next Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI</td>
<td></td>
<td>draft-dekater-scion-pki-06</td>
<td>Waiting further review feedback</td>
</tr>
<tr>
<td>Control Plane</td>
<td>Submitted to ISE</td>
<td>draft-dekater-scion-controlplane-05</td>
<td>Addressing reviews</td>
</tr>
<tr>
<td>Data Plane</td>
<td></td>
<td>draft-dekater-scion-dataplane-02</td>
<td>Addressing reviews</td>
</tr>
<tr>
<td>Overview</td>
<td>Parts Incorporated into specifications I-Ds</td>
<td>draft-dekater-panrg-scion-overview-06</td>
<td>Not intended for publication</td>
</tr>
<tr>
<td>Component analysis</td>
<td>Expired</td>
<td>draft-rustignoli-panrg-scion-components-03</td>
<td>Not intended for publication</td>
</tr>
<tr>
<td>Deployment</td>
<td></td>
<td>draft-meynell-panrg-scion-deployment-00</td>
<td>Looking for inputs and contributors</td>
</tr>
<tr>
<td>Considerations</td>
<td>Table of Contents produced</td>
<td>draft-meynell-panrg-scion-research-questions-01</td>
<td></td>
</tr>
<tr>
<td>Research questions</td>
<td>Table of Contents produced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRKey</td>
<td>Expired</td>
<td>draft-garcia-pardo-panrg-drkey</td>
<td>Submitted last update in 2022 by ETH. Pick draft again if there is interest?</td>
</tr>
</tbody>
</table>

Core SCION specification

- Open questions
 - Research, lessons learned from deployment, long-term protocol evolution (later today)

draft-dekater-scion-pki-06 & draft-dekater-scion-controlplane-05 & draft-dekater-scion-dataplane-02
IPR Disclosures

Anapaya Systems AG submitted 3 IPR disclosures regarding SCION, including licensing information. We are not aware of any other IPR.

<table>
<thead>
<tr>
<th>Patent</th>
<th>Control Plane</th>
<th>Data-plane</th>
<th>PKI</th>
<th>Component</th>
<th>Overview</th>
<th>IPR Disclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCION-IP Gateway: The patent describes a system to discover and select remote SCION-IP gateways (SIGs) and optimize SCION path selection based on a variety of metrics to a remote SIG. (No license required)</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>https://datatracker.ietf.org/ipr/6392/</td>
</tr>
<tr>
<td>Optimizing internet traffic over a source-selected path routing network: The patent describes a system to embed a SCION Internet in the BGP-based Internet as a single BGP AS. Furthermore, it describes how this embedding can be used to optimize network traffic based on source-based path selection. (RAND)</td>
<td></td>
<td></td>
<td>x</td>
<td>Section 3.1.</td>
<td></td>
<td>https://datatracker.ietf.org/ipr/6393/</td>
</tr>
<tr>
<td>Highly available autonomous systems: The patent describes an implementation of a highly available SCION AS control-plane relying on sharding, gossiping, and eventual consistency. (No License Required)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>https://datatracker.ietf.org/ipr/6391/</td>
</tr>
</tbody>
</table>
Draft Updates - Overview

• Introduction
• New sections and clarifications
• Editorial
 • References, removed forward references (e.g. SCMP)
 • BCP14 keywords
• Security considerations
• IANA section: no IANA actions, added reference to currently allocated SCION numbers (https://docs.anapaya.net/en/latest/resources/isd-as-assignments/)
Control & Data Plane Updates

<table>
<thead>
<tr>
<th>Section</th>
<th>draft-dekater-scion-controlplane</th>
<th>draft-dekater-scion-dataplane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration required to run an AS</td>
<td>2.2.4. Configuration</td>
<td>1.3.3. Configuration</td>
</tr>
<tr>
<td>• Clarify links, interfaces, neighbour adjacencies (incl. underlay addresses) must be configured out of band</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Clarify current implementation uses IP/UDP as lower layer protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependencies on time synchronization</td>
<td>2.3.3. Effects of Clock Inaccuracy</td>
<td>4.2.2.3. Effects of Clock Inaccuracy</td>
</tr>
<tr>
<td>• Clock skew of single digit minutes is generally tolerable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Relevant for PCBs/segment validation, as they are timestamped. Their validity is expressed in multiples of 337.5s, or 1/256 of a day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PCBs may be propagated at regular interval, with some delay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Control Plane Updates

• Clarify requirement to validate Path Construction Beacons, especially regarding time (2.2.3. PCB Validity)
• Scalability next slides
• Specification of the Control Service gRPC API in protobuf (Appendix)
 • Updated to use HTTP/3 following this IETF118 hackathon project
• Service addresses, used for control plane communication (Appendix)
New section 2.4. Path Discovery Time and Scalability

• Explain trade-offs in terms of resource overhead (PCBs, validating signatures) and amount of paths discovered

• Clarify implication of best PCBs set size. To avoid exponential growth of PCBs, ASes limit the number of propagated PCBs per interface to 50 (intra-ISD) and 5 per destination AS (inter-ISD)
 • Intra-ISD beacons per AS grow linearly with # of neighbours
 • Inter-ISD beacons per AS grow linearly with # of core ASes

• In case of cold start, paths are discovered at worst after n propagation times (where n is the longest path)
 • Optional fast recovery mechanism can reduce this
Data Plane Updates

• Clarifications on MAC computation
 • Introduced AES-CMAC as a default algorithm to be supported by all vendors. Clarified requirements for alternatives. (4.1.1.3. Default Hop Field MAC Algorithm, 4.1.1.4. Alternative Hop Field MAC Algorithms)
 • 4.1.1.2. Layout of the Input Data for the MAC Calculation

• Introduced dedicated service addresses for discovery and control service (2.2.2. Address Header)
Security Considerations

• “Vanilla” SCION, with its core components, provides:
 • Path authorization
 • Hijack traffic prevention (e.g. path splicing, attract other AS traffic, inject malicious AS in beacons, spoof AS, ...)
• Experimental extensions can cover more threat scenarios (not part of current drafts)
• We clarify attacks, defenses in security considerations
Security Considerations – Control Plane

• Beaconing in an ISD depends on Core ASes
 • Path discovery stops if *all* core ASes are compromised
 • Data plane keeps forwarding until path segments expire

• Two colluding ASes might attempt to manipulate the path selection process (section 5.2.4):
 - Announcing a large number of path segments to attract traffic:
 - Only downstream ASes are affected
 - Can be detected counting paths
 - Wormhole attack: creating a “tunnel” shortcut (even across ISDs) to attract traffic:
 - Intrinsically difficult to prevent
 - Might be detected with latency measurements
Security Considerations – PKI

- ISD have a “self assigned” root of trust (TRC)
 - Voting and updates protects them from compromise (PKI section 5.1.2)
- Beaconing requires a valid AS certificate
 - Prevents AS spoofing (see control plane 5.2.2)
 - Short lived
 - Reliance on certificates (PKI section 5.1), especially on intermediate CAs (PKI section 5.2)
- A malicious ISD may be created if:
 - Other ASes to accept a new ISD root of trust
 - Open questions on the ISD creation process (deployment draft)
Security Considerations – Path Hijacking

In Control Plane: A malicious AS M cannot hijack traffic between neighbors A and B to divert traffic through itself

- On control plane: M cannot inject itself into path by altering path discovery (PCBs) – Next ISD-AS field is signed and hijacking is detected by B

In data plane

- An on-path attacker M may rewrite remaining part of path header with another authorized path. Could be detected by endpoints by adopting a data integrity protection system (like IPSEC).
Security Considerations – Data Plane

SCION’s Data plane provides path authorization via chained MACs.

- The forwarding key used for MACs is shared among routers within the AS.
 - If it gets compromised, path authorization may be violated (5.1.1 Forwarding key compromise)
- MAC forging unlikely (5.1.2 Forging MAC)
- Path segments cannot be spliced to craft an unauthorized path by a malicious endpoint.
 - Prevented by segment identifiers/accumulator and path segment timestamps.
 - However, collisions may briefly happen with current 16 bit field length.
Security Considerations – DoS

- Data Plane: use of path reversal limits possibility of reflected volumetric DoS
 - Endpoints might switch to alternate path if link BW exhausted due to volumetric DoS
 - Higher-layer DoS not covered by SCION
 - Path-awareness enables more fine-grained filtering

- Control plane:
 - Deployment requires filtering and replication of control services to avoid DoS
 - Recommended filtering of path lookup endpoints and rate limiting
NASR

- Similar use cases
- SCION has a strong inter-domain focus. It could use NASR intra-domain
- SCION PKI introduces a unique trust model
- Secure Path-awareness is specific to SCION
 - Multipath
 - Diminishes need for proof of transit (in terms of security properties). Proof of transit can be an additional “auditing” tool on top of path authorization
 - Proof of transit is not offered by core SCION components (experimental extension)
Thank You For Your Attention!

Questions & Remarks?

nic@scion.org