Arm’s Confidential Compute Architecture Reference Attestation Token

Simon Frost (Arm), Thomas Fossati (Linaro) and Giri Mandyam (Mediatek)
Introduction

• “Confidential Computing is the protection of data in use by performing computation in a hardware-based, attested Trusted Execution Environment.”

• Focus of confidential computing (CC) is the protection of data at rest, in transit and in use

• For data in use executing in the context of a TEE, attestation takes on added importance
 • Allows for remote verification of computational workloads

• Arm’s Confidential Computing Architecture (CCA) provides a reference design for CC implementation systems-on-chip (SoC’s) with embedded TEE’s
 • https://developer.arm.com/documentation/den0125/0300
Attestation for ARM CCA

- CCA requires the following primary subsystems in a CC implementation
 - RoT, that provides HW Enforced Services (HES) for securing the CCA environment
 - Realm – an execution environment for specific CC workloads/processes
 - Realm World – provides isolation and a security state for realms

- Realm World is separate from the existing Arm-defined security domains
 - Non-secure (user space) and Secure (Trustzone)

- HES Rot forms Platform Token
- Realm mgmt. monitor (RMM) forms Realm Token
- RMM retrieves Platform Token from HES RoT and forward it along with Realm Token
 - Collective message is CCA Token
- Both tokens follow EAT format
Attestation Models Supported in CCA

Delegated Model
• Completion of signing is delegated from HES RoT to RMM
• RMM obtains Realm Attestation Keypair (RAK) from RoT and uses it to sign the Realm Token
• Realm code obtains CCA Platform and Realm token from RMM and sends both to Verifier
 • Hash of RAK Public Key used as eat-nonce for Platform Token
 • Realm Token uses challenge data provided by verifier

Direct Model
• RMM creates claim set and hashes it
• Hash provided to RoT as eat-nonce to create Platform Token
• Platform Attestation Keypair (PAK) is the only attestation signing keypair
Attestation Messaging

- Platform and Realm Tokens are presented in a CBOR Message Wrapper (CMW) collection (delegated model)

 \[
 \begin{align*}
 \text{cca-platform-token} &= \text{bstr .cbor COSE_Sign1_Tagged} \\
 \text{cca-realm-delegated-token} &= \text{bstr .cbor COSE_Sign1_Tagged} \\
 \text{cca-token-collection} &= \{ \\
 44234 &= \text{cca-platform-token} \quad ; \quad 44234 = 0x\text{ACCA} \\
 44241 &= \text{cca-realm-delegated-token} \\
 \} \\
 \\
 \text{Direct model presents Realm claim set along with Platform Token in CMW}
 \end{align*}
 \]
Next Steps

• Will continue to refine contribution and register new claims as defined in current draft in CWT claims registry
 • Please see “IANA Considerations” in draft for listing of new claims

• Invite Rats Working Group members to provide input for future versions of draft

• Also looking for case studies and any gap analysis related to CC attestation
 • Additional claims that would be required for verifiers/relying parties