Source Prefix Advertisement for Intra-domain SAVNET

Dan Li, Nan Geng, Lancheng Qin

July 23, 2024
Introduction

- **draft-ietf-savnet-intra-domain-problem-statement** summarizes the problems of existing intra-domain SAV solutions [BCP38, BCP84]
 - Ingress filtering [BCP38, RFC2827] has the problem of **high operational overhead**
 - uRPF-based SAV [BCP84, RFC3704] has the problem of **inaccurate validation**
 - Strict uRPF improperly blocks legitimate traffic in multi-homing and asymmetric routing scenario
 - Loose uRPF improperly permits spoofing traffic

- **draft-ietf-savnet-intra-domain-architecture** proposes the architecture of intra-domain SAVNET
 - SAV on customer-facing routers, host-facing routers, and AS border routers
 - Generate SAV rules by using SAV-specific information exchanged among routers

- Following the above two documents, this document proposes the Source Prefix Advertisement (SPA) solution for Intra-domain SAVNET, named SPA-based SAVNET
 - Allow routers communicate SAV-specific information through SPA messages
The goal of SPA-based SAVNET

The protocol-independent design of SPA-based SAVNET
- The content of SPA message
- The process of SAV rule generation by using SPA messages

How to transmit SPA messages is not in the scope
- SPA messages can be transmitted by a new protocol or an extension to an existing protocol (e.g., IS-IS, OSPF, BGP)
- Protocol designs or extensions are not in the scope
Two New Terminologies

- **Subnet**
 - An intra-domain customer network or an intra-domain host network

- **Edge router**
 - An intra-domain customer-facing router or an intra-domain host-facing router

Diagram:
- **AS**
 - Other ASes
- **Subnets**
 - Other intra-domain routers
 - Router A
 - Router B
 - Router C
 - Router D
 - Router E
 - Customer/Host Network 1
 - P1
 - Customer/Host Network 2
 - P2
 - P3
 - Edge routers
Four Types of Interface

- **Single-homing interface**
 - The interface of an edge router that faces to a single-homed subnet (e.g., Intf.3)

- **Complete multi-homing interface**
 - If all routers facing a multi-homed subnet are in the local AS, the interfaces facing this subnet are complete multi-homing interfaces (e.g., Intf.1 and Intf.2)

- **Incomplete multi-homing interface**
 - If some routers facing a multi-homed subnet are in other ASes, the interfaces facing this subnet are incomplete multi-homing interfaces (e.g., Intf.4)

- **Internet interface**
 - The interface of an AS border router that faces to another AS (e.g., Intf.5 and Intf.6)
Validation Mode for Single-homing Interface

- For single-homing interface Intf.3

 - Generate a **prefix allowlist** containing all source prefixes (i.e., P3) of the facing single-homed subnet (i.e., Subnet 2)

 - Only allow data packets from that subnet using source addresses in the prefix allowlist

* Mode 1 in draft-huang-savnet-sav-table
For complete multi-homing interfaces Intf.1 and Intf.2

- Generate a prefix allowlist containing all source prefixes (i.e., P1 and P2) of the facing multi-homed subnet (i.e., Subnet 1)
- Only allow data packets from that subnet using source addresses in the prefix allowlist

* Mode 1 in draft-huang-savnet-sav-table
Validation Mode for Incomplete Multi-homing Interface

For incomplete multi-homing interface Intf.4

- Generate a prefix blocklist* containing source prefixes (i.e., P1, P2, and P3) of single-homed subnet (i.e., Subnet 1) and complete multi-homed subnet (i.e., Subnet 2)

 - Router C may not identify all source prefixes of Subnet 3 without communication between AS4 in routing asymmetry scenario

 - Block data packets from the facing subnet using source addresses in the prefix blocklist

* Mode 2 in draft-huang-savnet-sav-table
Validation Mode for Internet Interface

For Internet interfaces Intf.5 and Intf.6

- Generate a prefix blocklist* containing source prefixes (i.e., P1, P2, and P3) of single-homed subnet (i.e., Subnet 1) and complete multi-homed subnet (i.e., Subnet 2)
- Block data packets from the facing subnet using source addresses in the prefix blocklist

* Mode 2 in draft-huang-savnet-sav-table
Source Prefix Advertisement Procedure

Source prefix advertisement procedure includes three main steps

- SPA message generation
 - Edge routers generate SPA messages containing SAV-specific information

- SPA message communication
 - Edge routers send their SPA messages to other routers

- SAV rule generation
 - Edge routers and AS border routers generate SAV rules by using SPA messages
Edge routers generate a SPA message containing four types of information:

- **Source Prefix**: The source prefix learned through its local routes to the facing subnet.
- **Interface Type**: The type of the interface facing the subnet:
 - Single-homing Interface (SI), Complete Multi-homing Interface (CMI), or Incomplete Multi-homing Interface (IMI).
- **Subnet Tag**: A unique tag value that identifies the subnet that owns the source prefix:
 - Prefixes belonging to the same subnet MUST have the same subnet tag value.
 - Different subnets MUST have different tag values.
- **Only Source Flag**: This flag indicates whether the source prefix is only used by the subnet:
 - By default, the flag is set.
 - But for multi-source prefixes (e.g., anycast prefixes or direct server return (DSR) prefixes), the flag should be unset (possibly manually).
SPA Message Communication

- After generating SPA messages, the edge router will send its SPA messages to other routers.
- SPA messages can be transmitted through either a new protocol or an extension to an existing protocol.
 - Not in the scope of this document.
For Single-homing Interface

- The router generates a prefix allowlist by using its own SPA messages without SPA messages from other routers
 - The prefix allowlist contains source prefixes learned through its local routes to the facing subnet.
Example #1

Scenario
- Intf.3 is a Single-homing Interface (SI)
- Router C learns prefix P3 through its local routes to Subnet 2

SPA Procedure
- SPA message generation
 - SPA message of Router C: \([\text{source prefix: } P3, \text{ Interface Type: SI}, \text{ Subnet Tag: 2, Only Source}]\)
- SAV rule generation
 - Prefix allowlist at Intf.3: \([P3]\)
For Complete Multi-homing Interface

The router generates a prefix allowlist by using its own SPA messages and SPA messages from other routers facing the same subnet.

- Prefixes in SPA messages with the same Subnet Tag of the facing subnet will be added into the prefix allowlist.
Example #2

- SPA message of Router A: [P1, CMI, 1, Only Source]
- SPA message of Router B: [P2, CMI, 1, Only Source]

Scenario

- Intf.1 and Intf.2 are Complete Multi-homing Interfaces (CMI)
- Due to traffic engineering and asymmetric routing
 - Router A only learns prefix P1 through its local route to Subnet 1
 - Router B only learns prefix P2 through its local route to Subnet 1

SPA Procedure

- SPA message generation
 - SPA message of Router A
 - [source prefix: P1, Interface Type: CMI, Subnet Tag: 1, Only Source]
 - SPA message of Router B
 - [source prefix: P2, Interface Type: CMI, Subnet Tag: 1, Only Source]

- SAV rule generation
 - Prefix allowlist at Intf.1 and Intf.2
 - [P1, P2]
For Incomplete Multi-homed Interface and Internet Interface

◆ The router generates a prefix blocklist by using its own SPA messages (if any) and SPA messages from other routers

➢ Prefixes in SPA messages with "Single-homing Interface" or "Complete Multi-homing Interface" Type and Only Source Flag will be added into the prefix blocklist

➢ Prefixes in SPA messages with "Incomplete Multi-homed Interface" Type or without Only Source Flag should not be added into the prefix blocklist
Example #3

- SPA message of Router C: [P3, SI, 2, Only Source]
- SPA message of Router A: [P1, CMI, 1, Only Source]
- SPA message of Router B: [P2, CMI, 1, Only Source]

Scenario

- Intf.4 is an Incomplete Multi-homing Interface
- Intf.5 and Intf.6 are Internet Interfaces
- P1, P2, P3 in SPA messages have SI/CMI Tag and Only Source Flag

SPA Procedure

- SAV rule generation
 - Prefix blocklist at Intf.4, Intf.5, and Intf.6
 - [P1, P2, P3]
SPA-based SAVNET addresses the problems raised in the intra-domain problem statement draft and meets the design requirements under the intra-domain SAVNET architecture.

SPA-based SAVNET automatically generates accurate prefix allowlist or blocklist at edge routers and AS border routers by using SPA messages.

SPA-based SAVNET is a protocol-independent intra-domain SAV

It is recommended to communicate SPA messages by IGP or BGP.
Considerations

- Convergence considerations
 - SAV-specific information SHOULD at least have a similar propagation speed as routing information
 - When designing SPA message communication methods, routing protocol-based methods should be preferred

- Deployment considerations
 - SPA-based SAVNET can support incremental deployment by providing incremental benefits
 - Edge routers facing the same multi-homed subnet are suggested to deploy SPA-based SAVNET simultaneously

- Security considerations
 - The security considerations described in [draft-ietf-savnet-intra-domain-problem-statement] and [draft-ietf-savnet-intra-domain-architecture] also applies to this document
Next Step

- Improve the preliminary design
 - Your comments and suggestions are welcome

- Collaboration is welcome!
Thanks!
Backup
Example #4

Scenario
- **Intf.4** is an Incomplete Multi-homing Interface (IMI)
- **Router C** learns prefix **P4** through its local routes to Subnet 3
 - P4 is a multi-source prefix

SPA Procedure
- **SPA message generation**
 - **SPA message of Router C**: \([P4, \text{IMI}, 3]\)
- **SAV rule generation**
 - P4 should not be added in the prefix blocklist at Intf.4, Intf.5, and Intf.6

Diagram

- AS 1, AS 2, AS 3, AS 4
- Router A, Router B, Router C, Router D, Router E
- Subnet 1, Subnet 2, Subnet 3
- Intf.1, Intf.2, Intf.3, Intf.4, Intf.5, Intf.6
- SPA message of Router C: \([P4, \text{IMI}, 3]\)