SRv6 for Inter-Layer Network Programming

draft-dong-spring-srv6-inter-layer-programming-08

Liuyan Han @China Mobile
Jie Dong @Huawei
Minxue Wang @China Mobile
Ran Chen @ZTE
Zongpeng Du @China Mobile

SPRING WG IETF 120 Meeting July 2024
Operators usually have a multi-layered network, the layer-3 is normally IP, while different technologies can be used in layer-2 and below

- Cross-layer network planning and optimization is expected for better efficiency and resiliency

SRv6 enables network programming by encoding network instructions in IPv6 packet header

- Currently only the network instructions related to IP packet layer are defined
- The SRv6 network programming concept can be further extended for inter-layer network integration

This document describes the typical use cases of inter-layer network integration, and proposes SRv6 based mechanisms for inter-layer network programming

- New SRv6 behaviors are defined to instruct a node to send packet through (non-IP) underlay links or connections
Use Cases of Inter-layer Network Programming

• IP and Optical network integration
 • Redundant optical paths may not be fully used by IP layer
 • Optical paths may exist between non-adjacent IP nodes, thus not visible in the L3 topology

• IP and MTN（Metro Transport Network） inter-layer integration
 • The MTN architecture is defined in ITU-T G.8310
 • MTN nodes can support both per-hop IP forwarding and MTN Path (MTNP) cross-connect
 • An MTN path can be set up between two remote MTN nodes
 • Traffic can be carried using an IP path, an MTN path or the combination of IP and MTN path segments
SRv6 Behavior for Inter-layer Programming

- Two new SRv6 Endpoint Behaviors are proposed
 - End.XU: a variant of End.X
 - End.BXC: a variant of SRv6 binding SID

- The functionality in the data plane are similar
 - Both of the SRv6 behaviors can enable the programming of inter-layer TE paths

- Each option has different implications on the management plane and control plane functions
 - Operators may choose either one of the options that best suits their use cases, network management and operation models
 - The management and control plane extensions will be specified in separate documents
Option 1: SRv6 End.XU Behavior

- Endpoint with Underlay cross-connect
 - A variant of the End.X behavior
 - SID instance of this behavior is associated with an underlay interface, which connects to a remote node via underlay links or connections
 - The line S15 from the End processing is replaced by the following

S15. Send the packet through one of the underlay links associated with the underlay interface identified by S
Option 2: SRv6 End.BXC Behavior

- Endpoint Bound to an underlay Channel
 - A variant of the SRv6 End Behavior, an instantiation of a binding SID
 - SID instance of this behavior is associated with an underlay tunnel (e.g. L1 channel) X
 - The line S15 from the End processing is replaced by the following

 S15. Forward the packet to the new destination via underlay tunnel X.

- Optionally, an SRv6 End.BXC behavior may require additional information (i.e. ARG) for its processing
 - For example, the high part of ARG may be used to encode the Channel Type, and the low part of ARG may be used to carry the Channel ID
 - An underlay tunnel is uniquely identified by Channel Type + Channel ID
Updates since Last Presentation

• The End.BXC behavior defined in draft-han-spring-srv6-underlay-tunnel-programming is merged as another option

• Elaborates the reason of introducing new SRv6 behavior rather than using existing “End.X”
 • End.X is defined to “send packet via one of a group layer-3 adjacencies”, the behavior is similar
 • The underlay connections (e.g. MTN paths, ODUk or DWDM connections) can be unidirectional, which does not meet the bidirectional check for a functional layer-3 adjacency
 • Operators may want these underlay connections being invisible in L3 topology, so that they can only be used by a controller for cross-layer traffic engineering for specific types of services
 • Endpoints of an underlay connection may reside in different areas or domains, which makes the establishment of layer-3 adjacency difficult

• Clarifies the possible mechanisms of obtaining layer-2 information required for packet encapsulation
 • Mechanisms such as static Neighbor Discovery (ND) Cache can be used

• Editorial changes to improve the readability
Next Steps

• This document is in a good shape, all the received comments have been addressed

• Operators have interests to deploy it in SRv6 networks for inter-layer integration

• Further feedbacks on the two new SRv6 behavior options are appreciated

• Request for WG adoption
Thank You