IPv6 Address Assignment for SRv6
draft-liu-srv6ops-sid-address-assignment-00

Presenter : Yongqing Zhu(China Telecom)
Background

- SRv6 SID as consisting of LOC:FUNCT:ARG per RFC8986

<table>
<thead>
<tr>
<th>Locator</th>
<th>Function</th>
<th>Arguments</th>
</tr>
</thead>
</table>

- RFC8986 Section 3.2 "SID Allocation within an SR Domain" provides basic principle and practice for allocating SRv6 SIDs within SRv6 networks. Assigning large IPv6 prefixes to the SR domain and further subdividing them into smaller prefixes for individual nodes.

- Existing work primarily focuses on basic SRv6 deployments without considering the complexities introduced by advanced features like SRv6 compression and diverse service provider requirements.

- Provide service providers and network engineers with a comprehensive and practical guide for optimizing SRv6 SID allocation in diverse deployment scenarios.
SRv6 SID Block Considerations

- Service providers typically allocate IPv6 addresses based on "administrative divisions" (e.g., state/province, city) and "network types" (e.g., IP network, wireless network, transport network).

- Assign distinct unicast addresses (e.g., interface and loopback addresses) for network device.

- **Fragmented SRv6 Space**: Independent allocations result in scattered SRv6 address blocks across the provider's network, hindering SRv6 SID aggregation. Aggregation simplifies network management and allows efficient use of address space.

- **Edge Filtering Complexity**: With fragmented SRv6 space, filtering SRv6 traffic at network edges becomes significantly more complex due to the dispersed nature of the addresses. This complicates network security and policy enforcement.
SRv6 SID Block Allocation Practice

- Allocate a "dedicated IPv6 address block" for SRv6 across the entire service provider network.
- Integrated SRv6 SIDs planning simplifies edge configuration by requiring only a single policy for the dedicated SRv6 prefix.

Scenario 1: Integrated SRv6 SIDs Planning

Assume Block A:A:X:X::/24 is allocated for SRv6 simply configuration, such as: deny A:A:X:X::/24

Scenario 2: Separate SIDs Planning in different administrative division

Each administrative division has its own SRv6 block

Multiple policies for each discrete prefix in edge configuration, such as: deny A:B:X:X:C1:D:/48 deny A:B:Z:Z:C2:D:/48

C1...Cn represent n administrative divisions
Both SRv6 P2P and P2MP utilize unicast IPv6 addresses, how to set address pools for SRv6

Consideration:
1) It's crucial to avoid allocating SRv6 SIDs for both P2P and P2MP connections under the same Node ID. This prevents address space contention and simplifies traffic management.

2) Independent Locator Advertisement for P2MP SIDs

Separate address pools for SRv6 P2P and P2MP Consideration:

Dedicate distinct SID ranges or Node IDs for P2P and P2MP traffic flows within a service provider's network to ensure clear differentiation.
SRv6 SID Compression Assignment Considerations

- **Full SID**
  
  Node ID allocation flat vs structured? less resource vs easy management
  
  Function ID allocation static vs dynamic? manageable allocation vs automatic allocation

- **Compressed SID**

  Balancing the length of Node ID and Function ID for Compressed SIDs

  Due to the inherent length limitations of compressed SIDs, a trade-off must be made between the scope of manageable nodes and the range of network functions

<table>
<thead>
<tr>
<th>Block</th>
<th>Node ID</th>
<th>Static/Dynamic Function</th>
<th>Padding/Args</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locator</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block</th>
<th>Node ID</th>
<th>Static/Dynamic Function</th>
<th>Padding/Args</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locator</td>
<td>C-SID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Next Steps

• Seeking for feedback from WG