Best Practices for Protection of SRv6 Networks

draft-liu-srv6ops-sr-protection-02

Presenter: Changwang Lin (New H3C Technologies)

Yisong Liu (China Mobile)
Wenying Jiang (China Mobile)
Changwang Lin (New H3C Technologies)

Xuesong Geng (Huawei Technologies)

Yao Liu (ZTE Corp.)

IETF 120
Different deployment practices suitable for different SRv6 protection scenarios.

- Protection deployment can improve network stability and performance, enhance fault handling capabilities, optimize management and monitoring, and enhance deployment experience.
- Protection includes path protection, local protection, and egress service protection etc., which require different deployment strategies.
SRv6 protection strategies

- Path Protection
 - Local Protection
 - LFA/TI-LFA/Micro-Loop Avoidance
 - BFD for Interface
 - BFD/S-BFD for Neighbor
 - Liveness Check
 - SR-Policy Candidate Path Hot-standby
 - BE Backup for TE
 - Liveness Check -- BFD/S-BFD for SR-Policy
 - End-to-End Protection
 - Service FRR
 - Egress Protection
 - Local Repair
 - Liveness Check -- BFD for Egress SID/IP
 - Ingress Node Switchover

- Ingress Protection
Operational Guidance for Single-homed Scenario

Deployments:
- TI-LFA as local protection
- Multiple candidate paths switchover as end-to-end protection
- BE backup for TE

Protection of SR-BE traffics:
- TI-LFA, triggered by BFD for links and neighbors

Protection of SR-TE traffics:
- High SLA cases (end-to-end protection preferred):
 - Only candidate path switchover
- Fast traffic restoring cases (local protection preferred):
 - First, TI-LFA, triggered by BFD for links and neighbors
 - Then, Candidate path switchover, triggered by BFD/S-BFD for SR Policy
- BE backup for TE
 - Operate when multi-point faults (When link PE1-P1 & P2-PE4 both fail, SR BE path can still reach PE3)
 - Exceptions (dropping preferred): strong SLA requirements
Deployments:

- For each egress PE, same with Single-homed Scenario
 - TI-LFA as local protection
 - Multiple candidate paths switchover as end-to-end protection
 - BE backup for TE
- Ingress Node Switchover
 - Monitor the liveness of egress nodes: BFD for egress nodes, or validating IGP routes of egress nodes
 - Switchover among different egress nodes (for example, when PE3 fails, PE1 switch from SR-Policy-to-PE3 to SR-Policy-to-PE4)
Recommended BFD Time Interval

Trigger of TI-LFA:
• BFD for links and neighbors: 10ms * 3

Trigger of candidate paths switchover (primary candidate path down):
• BFD for primary candidate path of SR Policy: 50ms * 3

Trigger of BE backup for TE (all candidate paths down):
• BFD for backup candidate path of SR Policy: 100ms * 3

Trigger of egress protection:
• BFD for egress nodes: 50ms * 3

Local protection ≤ 50ms
End-to-end protection ≤ 300ms
When SRv6 Segment List compression is enabled, the repair node will check the compression capabilities of nodes along the repair path and try to use C-SIDS to encode the repair path.

NEXT-C-SID flavor:

<table>
<thead>
<tr>
<th>Repair List</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R2-End.X</td>
</tr>
<tr>
<td>Next-C-SID</td>
</tr>
<tr>
<td>R2-R3-End.X</td>
</tr>
</tbody>
</table>

REPLACE-C-SID flavor:

<table>
<thead>
<tr>
<th>Repair List</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R2-End.X</td>
</tr>
<tr>
<td>Replace-C-SID</td>
</tr>
<tr>
<td>R2-R3-End.X</td>
</tr>
</tbody>
</table>
When SRv6 Segment List compression is enabled, the converging node will check the compression capabilities of nodes along the post-convergence path and try to use C-SIDs to encode the path.

NEXT-C-SID flavor:

<table>
<thead>
<tr>
<th>Loop-free Post-convergence Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4-R3-End.X</td>
</tr>
<tr>
<td>Next-C-SID</td>
</tr>
</tbody>
</table>

REPLACE-C-SID flavor:

<table>
<thead>
<tr>
<th>Loop-free Post-convergence Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>R4-R3-End.X</td>
</tr>
<tr>
<td>Replace-C-SID</td>
</tr>
</tbody>
</table>
Running Code

Lab Interop-test Status
Hardware devices and software implementations which have passed SRv6 protection interoperability tests hosted by China Mobile in 2021 and 2022:

• China Unitechs Unified Controller
• Huawei NE40E and NE5000E
• H3C CR16010H-FA and CR19000-8
• ZTE M6000-8S Plus and M6000-3S
• Ruijie RG-N8010-R

Both single AS domain and Inter-AS domain scenarios have passed interoperability testing.

Deployment Status
Trials of SRv6 protection in five branch networks of China Mobile in 2021 and 2022

• Beijing
• Zhejiang
• Fujian
• Guangdong
• Henan
Next Step

• Any questions or comments?
• Seeking an adoption call after revision.