TCP ACK Rate Request (TARR) option

draft-ietf-tcpm-ack-rate-request-05

Carles Gomez
Universitat Politècnica de Catalunya

Jon Crowcroft
University of Cambridge

IETF 120 Vancouver, TCPM WG, July 2024
Intro: motivation

• Delayed ACKs
 • Intended to reduce protocol overhead
 • But may also contribute to suboptimal performance

• “Large” cwnd scenarios (i.e. cwnd >> MSS):
 – Saving more than 1 of every 2 ACKs may improve performance

• “Small” cwnd scenarios (i.e. cwnd up to ~1 MSS):
 – Delayed ACKs may incur delay, limit cwnd growth...
Intro: main TARR option format

- R carries binary encoding of ACK rate
- Maximum value of R: 127

• “R” is the ACK rate requested by the sender
 • R = 0: request an immediate ACK (but keep steady state R)
Status

• WG adoption
 • draft-ietf-tcpm-ack-rate-request-00
 – Same content as draft-gomez-tcpm-ack-rate-request-06
 • February 2023

• Version -05
 • Aims to address comments from IETF 119
 • Main comment:
 – Are we going to make something in the network very unhappy (due to TARR)?
 – In the presence of elements that aim to modify the ACK rate
Updates (I/III)

• Appendix C. Impact of TARR in the presence of elements that modify the ACK rate
 • ACK filtering
 – Several ACKs stored in the queue, older ones may be removed
 – Despite TARR, there will still be one ACK per cwnd of data
 • ACK decimation
 – ACKs are dropped (less control of which ones)
 – May drop all ACKs that correspond to a cwnd of data, producing retransmission timer expiration
 – TARR (with R > 2) may contribute to this problem
 – Proposed solution: upon retransmission timer expiration, sender requests the receiver to revert to Delayed ACKs in that case
Updates (II/II)

• Appendix C. Impact of TARR in the presence of elements that modify the ACK rate
 • Receiver-side aggregation (e.g., LRO) may reduce the number of ACKs
 • In this case, TARR ($R > 2$) may
 – Further reduce the number of ACKs
 – Contribute to the same problem of not eliciting at least one ACK per cwnd of data, leading to retransmission timer expiration
 • Same proposed solution: sender requests the receiver to revert to Delayed ACKs in that case
Updates (III/III)

• Section 3.1. Sender behavior:
 • When the sender knows that the receiver is TARR-capable
 • And the last ACK rate requested is $R > 2$
 • Upon RTO expiration, the segment carrying retransmitted data MUST carry a TARR option with $R=2$
 • This measure requests the receiver to revert to Delayed ACKs
Thanks!

Questions? Comments?

Carles Gomez
Universitat Politècnica de Catalunya

Jon Crowcroft
University of Cambridge

IETF 120 Vancouver, TCPM WG, July 2024