Quick Recap

- IPv6-Mostly deployment guidelines
 - What, how, why
 - What could possibly go wrong
- IETF119 presentation
Key Changes since -00
Security Considerations

- Any IPv6 attacks would be much more visible
- New attack vector: spoofing NAT64 presence
 - DoS and/or MitM
 - Mitigation
 - Disable CLAT as soon as IPv4 is available
 - Use RFC8781 for PREF64 discovery (+RA Guard)
(More) Known Issues

- IPv4-Dependencies in Network Admission Control
 - Smart L2 devices: “no network access until I know your IPv4 address!”

- Representing IPv6-only hops in traceroute
 - See draft-equinox-intarea-icmpext-xlat-source
Open Issues
Issue #1: Document Focus

- Currently: operational
- Recommendations from the network operator perspective
- Assumed limited/no control over applications

Would more application requirements be useful?
Issue#2: DNS vs DNS64

- DNS64 serves two purposes
 - PREF64 detection for clat and local synthesis
 - Can be done via RFC8781
 - Using RFC7050 also requires implementing RFC8880
 - Providing AAAA for IPv4-only names
 - Application requirements (no IPv4 literals etc)
 - DNSSEC implications
Recommendations

- Local DNS(64) synthesis (using PREF64 discovered via RFC8781)
 - applications which use DNS
- CLAT (or some local NAT46 magic) for other cases
 - Raw sockets
 - IPv4 literals (think WebRTC/STUN)

Network-provided DNS64 only needed if

- No clat
- RFC8781 not supported
Globally-Unique Link-Local (draft-link-v6ops-gulla)

Unique link-local per the “mobility domain

vrrp vip: 2001:db8:1::1

vrrp link-local: fe80::2001:db8:1

- Can stay in draft-link-v6ops-gulla
- Can be merged with this draft
 - Is it too much of content?
Next Steps

Adoption call?
Question? Comments?