
Stuart Cheshire, Apple

TCP_REPLENISH_TIME
HotRFC, IETF 121 Dublin, November 2024

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

Source-Device Bufferbloat
April 2011

Mac OS Screen Sharing sluggish on slow networks

Network Bufferbloat suspected

Real cause was excessive buffering by the sender

2

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

Sluggish Screen Sharing
Source-device Bufferbloat

3

Data in flight

Data waiting to be sent

BDP

SO_SNDBUF

Two full seconds of unsent
RFB (Remote Frame Buffer)
frames waiting to go out

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

TCP_NOTSENT_LOWAT
TCP Not-Sent Low-Water Mark

kevent() doesn’t signal application to generate a new compressed frame 
until TCP is almost ready to need more data

Fixes excessive sender-side buffering for real-time delay-sensitive applications

See Apple WWDC 2015 video “Your App and Next Generation Networks”

4

https://developer.apple.com/videos/play/wwdc2015/719/?time=2199

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

Snappy Screen Sharing
Using TCP_NOTSENT_LOWAT

5

Data waiting to be sent
Data in flightBDP

SO_SNDBUF

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

TCP_NOTSENT_LOWAT problems
Low-Water Mark specified in bytes

16 kilobytes (about ten Ethernet frames) works pretty well, but…

• Can be too much on low-rate networks (e.g., 250 kb/s and less)

• Can be too little on high-rate networks (e.g., Gb/s and above)

• Would be better if specified in time (milliseconds, or microseconds)
indicating how much notice the application needs to generate 
next chunk of data

6

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

TCP_NOTSENT_LOWAT problems
Inconsistent across different platforms

On Mac OS and iOS, socket option determines low-water mark

• When unsent backlog falls below low-water mark, 

application is signaled (e.g., via kqueue) to generate more data

• Application can then atomically write as much as makes sense 

for that application, up to SO_SNDBUF

On Linux, socket option determines high-water mark

• Application is prevented from writing more than high-water mark

• Can severely reduce throughput if TCP_NOTSENT_LOWAT set to 16 kB

7

HotRFC, IETF 121 Dublin, November 2024 Stuart Cheshire, Apple TCP_REPLENISH_TIME

TCP_REPLENISH_TIME
Opportunity to fix this

New mechanism specified in terms of how much time an application needs 
to generate its next chunk of real-time delay-sensitive data

Make it work the same for all transport protocols, on all platforms

• TCP, QUIC, etc.

• Linux, FreeBSD, Windows, MacOS, iOS, etc.

Side Meeting, 19:00-20:00 Thursday 7th November, Wicklow Meeting Room 4

• If interested, email Stuart Cheshire <cheshire@apple.com> 

with TCP_REPLENISH_TIME in subject line 
by noon on Thursday 7th November

May look to form IETF Working Group if people feel that is appropriate next step

8

https://wiki.ietf.org/en/meeting/121/sidemeetings#:~:text=TCP_REPLENISH_TIME

