
EUF-CMA for CMS
SignedData

IETF 121 – LAMPS

EUF-CMA in CMS - IETF 121 - LAMPS 1

The Problem

ForgedAttributes: An Existential Forgery Vulnerability of CMS and
PKCS#7 Signatures, Falko Strenzke,
https://eprint.iacr.org/2023/1801.pdf
• Different signing behaviour when SignedAttributes is present

allows an existential forgery.

EUF-CMA in CMS - IETF 121 - LAMPS 2

https://eprint.iacr.org/2023/1801.pdf

Attack
Presented by Falko

EUF-CMA in CMS - IETF 121 - LAMPS 3

►signedAttrs:

►SEQUENCE of attributes
►one of them is the messageDigest attribute:

► contains Hash(M)

►signedAttrDER = DER-encode(signedAttrs(M))M

► to indicate they contain Hash(M)

EUF-CMA in CMS - IETF 121 - LAMPS 4

S i g n e r I n f o : : = SEQUENCE {
v e r s i o n CMSVersion ,
s i d S i g n e r I d e n t i f i e r ,
d i g e s t A l g o r i t h m D i g e s t A l g o r i t h m I d e n t i f i e r ,
signedAttrs OPTIONAL[0] IMPLICIT S i g n e d A t t r i b u t e s ,

s i g n a t u r e A l g o r i t h m S i g n a t u r e A l g o r i t h m I d e n t i f i e r ,
s i g n a t u r e S i g n a t u r e V a l u e ,
u n s i g n ed A t t r s [1] IMPLICIT Unsigned A t t r i b u t e s OPTIONAL }

S i g n e d A t t r i b u t e s : : = SET SIZE (1 . . MAX) OF A t t r i b u t e

A t t r i b u t e : : = SEQUENCE {
a t t r T y p e OBJECT IDENTIFIER ,
a t t r V a l u e s SET OF A t t r i b u t e V a l u e }

A t t r i b u t e Va l u e : : = ANY

EUF-CMA in CMS - IETF 121 - LAMPS 5

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then
3: D = HASH(M)

4: else
5: MD = HASH(signedAttrDER)

6: end if
7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 6

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: M ′D = HASH(M) // M = signedAttrDER ←

4: else
5: MD = HASH(signedAttrDER)

6: end if
7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 7

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: M ′D = HASH(M) // M = signedAttrDER ←

4: else
5: M ′D = HASH(signedAttrDER)

6: end if
7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 8

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M) // M = signedAttrDER ←
M ′

4: else

M ′5: D = HASH(signedA ttrDER) // ←↑ cannot distinguish, signature valid for M ′

6: end if // (adds signedAttrs to IS)

7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 9

Attack variant 1: Let the signer sign an attacker-chosen message of specific form

w/o signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: M ′D = HASH(M) // M = signedAttrDER ←

4: else

M ′5: D = HASH(signedA ttrDER) // ←↑ cannot distinguish, signature valid for M ′

6: end if // (adds signedAttrs to IS)

7: return sign(Ks, D)
8: end procedure

→ Can forge signatures for arbitrary attacker-chosen message

EUF-CMA in CMS - IETF 121 - LAMPS 10

any messageAttack variant 2: Let the signer sign with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M)

4: else
5: MD = HASH(signedAttrDER)

6: end if
7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 11

any messageAttack variant 2: Let the signer sign with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M)

4: else
5: MD = HASH(signedAttrDER) // MM ′ = signedAttrDER ←

6: end if
7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 12

any messageAttack variant 2: Let the signer sign with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M’) // ← cannot be distinguished from this case (remove signedAttrs)

4: else
5: M MD = HASH(signedAttrDER) // M ′ = signedAttrDER ←

6: end if
7: return sign(Ks, D)
8: end procedure

EUF-CMA in CMS - IETF 121 - LAMPS 13

any messageAttack variant 2: Let the signer sign with signedAttrs:

1: procedure CMS-Sign(secret key Ks , message M)
2: if signedAttrs are absent then

3: D = HASH(M’) // ← cannot be distinguished from this case (remove signedAttrs)

4: else
5: M MD = HASH(signedAttrDER) // M ′ = signedAttrDER ←

6: end if
7: return sign(Ks, D)
8: end procedure

→ Can forge signatures for message of form signedAttrDER
M

EUF-CMA in CMS - IETF 121 - LAMPS 14

Unaffected Systems

• Where SignedAttributes is mandatory:
• SCEP
• Certificate Transparency
• RFC 4108 firmware update
• German Smart Metering CMS data format

• When the message is signed then encrypted.

EUF-CMA in CMS - IETF 121 - LAMPS 15

Conceivably Vulnerable Systems

• Must allow absence of SignedAttributes
• Unencrypted firmware update denial of service
• Dense message space
• Signing unstructured data
• External signatures over unstructured data
• Systems with permissive parsers

EUF-CMA in CMS - IETF 121 - LAMPS 16

Mitigation
Presented by Daniel

EUF-CMA in CMS - IETF 121 - LAMPS 17

Application-level Mitigation

• (Within CMS) Fail signature generation and verification if the
message is a valid DER-encoded SignedAttributes.

• Require SignedAttributes.
• Forbid SignedAttributes
• (Within application) More robust parsing, discard

EUF-CMA in CMS - IETF 121 - LAMPS 18

CMS Mitigation

We sketch three options:
• Quick and Dirty
• More Flexible
• Both

EUF-CMA in CMS - IETF 121 - LAMPS 19

CMS Mitigation: Quick and Dirty

• Update cms-sphincs-plus, cms-ml-dsa, and pq-composite-sigs
to set signature context: “CMS-with-SignedAttrs” vs “CMS-
without-SignedAttrs”

• (?)RFC to specify this behaviour for future signature algorithms.
• (?)Future signature algorithms refer to this RFC.
• Doesn’t address RSA, ECDSA, EdDSA
• Pro: forces implementations to support context now, universal

support
• Con: forces implementations to support context now

EUF-CMA in CMS - IETF 121 - LAMPS 20

CMS Mitigation: More Flexible

• New unsigned attribute: sign-with-context
• Attribute contains the context string:

“<keyword_1>[=value];…; <keyword_n>[=value]”
• Keywords are ordered alphanumerically
• Sign(K, M, ctx=“IETF/CMS:” + context_string)

• or Sign(K, M, ctx=“IETF/CMS:” + HASH(context_string)) to allow a longer
context string.

• keyword_1: “signedattrs” for when signed attributes are used.
• keyword/value 2?: “application_ctx=<value>”, e.g. “S/MIME”.

EUF-CMA in CMS - IETF 121 - LAMPS 21

CMS Mitigation: More Flexible

• cms-sphincs-plus, cms-ml-dsa, and pq-composite-sigs progress
with default context = “”, implementations indicate support with
new attribute.
• Requires signer to know that the verifier supports the attribute.

• Could create EdDSActx if anyone cared.
• Doesn’t address RSA, ECDSA
• Pro: allows current drafts to progress with no changes, gives

implementations time to support context
• Con: may never be universally supported

EUF-CMA in CMS - IETF 121 - LAMPS 22

CMS Mitigation: Both

• Update cms-sphincs-plus, cms-ml-dsa, and pq-composite-sigs
to set signature context: “CMS-with-SignedAttrs” vs “CMS-
without-SignedAttrs” unless overridden by some other advertised
values.

• New unsigned attribute: sign-with-context
• If the attribute it used, it replaces and “CMS-with-SignedAttrs” vs “CMS-

without-SignedAttrs”

EUF-CMA in CMS - IETF 121 - LAMPS 23

Next Steps?

• Should the WG address this issue?
• yes/maybe -> draft

• With which mitigation?

EUF-CMA in CMS - IETF 121 - LAMPS 24

	Slide 1: EUF-CMA for CMS SignedData
	Slide 2: The Problem
	Slide 3: Attack
	Slide 4
	Slide 5
	Slide 6: Attack variant 1: Let the signer sign an
	Slide 7: Attack variant 1: Let the signer sign an
	Slide 8: Attack variant 1: Let the signer sign an
	Slide 9: Attack variant 1: Let the signer sign an
	Slide 10: Attack variant 1: Let the signer sign an
	Slide 11: Attack variant 2: Let the signer sign with signedAttrs:
	Slide 12: Attack variant 2: Let the signer sign with signedAttrs:
	Slide 13: Attack variant 2: Let the signer sign with signedAttrs:
	Slide 14: Attack variant 2: Let the signer sign with signedAttrs:
	Slide 15: Unaffected Systems
	Slide 16: Conceivably Vulnerable Systems
	Slide 17: Mitigation
	Slide 18: Application-level Mitigation
	Slide 19: CMS Mitigation
	Slide 20: CMS Mitigation: Quick and Dirty
	Slide 21: CMS Mitigation: More Flexible
	Slide 22: CMS Mitigation: More Flexible
	Slide 23: CMS Mitigation: Both
	Slide 24: Next Steps?

