MLS-DSA / ML-KEM
Certificates I-Ds

|ETF 122 - LAMPS WG
Jake Massimo, Panos Kampanakis, Sean Turner, & Bas Westerbaan

raft-ietf-lamps-dilithium-certifi
GitHub: ML- DSAC rtificates & ML-KEM Cer


https://datatracker.ietf.org/doc/draft-ietf-lamps-dilithium-certificates/
https://datatracker.ietf.org/doc/draft-ietf-lamps-kyber-certificates/
https://github.com/lamps-wg/dilithium-certificates
https://github.com/lamps-wg/kyber-certificates

ML-KEM Certificates

New version; see diff
Some reorganization

Updated ASN.1 & text from the Great Private Key War of ¢25™;
see issue #95

Text about ASN.1 & consistency checking
Updated Examples
Need to merge: Align with ML-DSA I-D; see PR#104.


https://author-tools.ietf.org/api/iddiff?doc_1=draft-ietf-lamps-kyber-certificates&url_2=https://lamps-wg.github.io/kyber-certificates/draft-ietf-lamps-kyber-certificates.txt
https://github.com/lamps-wg/kyber-certificates/issues/95
https://github.com/lamps-wg/kyber-certificates/pull/104/files

Great Private Key War ‘25: ML-KEM

pk-ml-kem-512 PUBLIC-KEY ::= { ML-KEM-512-PrivateKey ::= CHOICE {
IDENTIFIER id-alg-ml-kem-512 seed [0] OCTET STRING (SIZE (64)),
—— KEY no ASN.1 wrapping; 800 octets —- expandedKey OCTET STRING (SIZE (1632)),
° b

both SEQUENCE {
PARAMS ARE absent seed OCTET STRING (SIZE (64)),

CERT-KEY-USAGE { keyEncipherment } expandedKey OCTET STRING (SIZE (1632))
PRIVATE-KEY ML-KEM-512-PrivateKey }
1 +

When receiving a private key that contains both the seed and the
expandedKey, the recipient SHOULD perform a seed consistency check to ensure
that the sender properly generated the private key.

If the check is done and the seed and the expandedKey are not consistent, the
recipient MUST reject the private key as malformed.



ML-DSA Certificates

New version; diff.

Updated ASN.1 and text from great Private Key War of ¢25™;
see 1issue #76

Text about ASN.1 and consistency checking
Updated Examples

Struct HashML-DSA constraint on TLS and on EE certificates
for other protocol; see PR#99

Need to merge: Tweak to Private Key Text; see PR#101.


https://lamps-wg.github.io/dilithium-certificates/#go.draft-ietf-lamps-dilithium-certificates.diff
https://github.com/lamps-wg/dilithium-certificates/issues/76
https://github.com/lamps-wg/dilithium-certificates/pull/99/files
https://github.com/lamps-wg/dilithium-certificates/pull/101/files

Great Private Key War ‘25: ML-DSA

pk-ml-dsa-44 PUBLIC-KEY ::= { ML-DSA-44-PrivateKey ::= CHOICE {
IDENTIFIER id-ml-dsa-44 seed [0] OCTET STRING (SIZE (32)),
-— KEY no ASN.1 wrapping; 1312 octets -- expandedKey OCTET STRING (SIZE (2560)),
PARAMS ARE absent both SEQUENCE {
CERT-KEY-USAGE { digitalSignature, nonRepudiation, seed OCTET STRING (SIZE (32)),

keyCertSign, cRLSign } expandedKey OCTET STRING (SIZE (2560))

PRIVATE-KEY ML-DSA-44-PrivateKey }
} }

When receiving a private key that contains both the seed and the
expandedKey, the recipient SHOULD perform a seed consistency check to ensure
that the sender properly generated the private key.

If the check is done and the seed and the expandedKey are not consistent, the
recipient MUST reject the private key as malformed.



Open Issues: 1st

Do we need text for public key derivation from private?

See issue #93

While this would be useful, not entirely sure we absolutely
need this in the I-D.


https://github.com/lamps-wg/dilithium-certificates/issues/93

Open Issues: 2nd

External Mu: Some are concerned
about whether what is in the I-D
is verifiable by a CAVP/CMVP lab;
the mu/ExternalMu-ML-DSA_sign
exchanges.

Not sure we need to say anything
about this in this I-D:

Some care about FIPS some don’t

All implementations interop

Module A

Application
ML-DSA.Sign(sk,M,ctx)

generate random rnd

v

constuct M

U

ML-DSA.Sign_internal(sk,M',md)

U

compute mu from tr and M*

return signature

b

Module A

Application

Module A Module B

(computes mu) (signing module)
Application
ML-DSA.Sign(sk.M.ctx)

compute tr from pk

Y

compute mu from tr and M

Y

ML-DSA sign_mu(sk mu)

um signat
um signan
. ]
Module A Module B
(computes mu) (signing module)

Module A Module B
(computes mu) (signing module)
Application
ExternalMu-ML-DSA.Prehash(pk, M, ctx)

tum mu
DRSIRSTIEAISE .1 TSRS
= ExternalMu-ML-DSA Sign(sk, mu)
urn signat
Module A Module B
(computes mu) (signing module)
Application

Picture courtesy
of Tim Hudson!



Are we done!?




